Water Quality and Ecology of the Rangitāiki Catchment

Total Page:16

File Type:pdf, Size:1020Kb

Water Quality and Ecology of the Rangitāiki Catchment National Objectives Framework (NOF) The National Policy Statement includes a National Objectives Framework Water quality and ecology (NOF), which sets compulsory national values for freshwater to protect ‘human health for recreation’ and ‘ecosystem health’. of the Rangitāiki catchment The NOF has a series of ‘bands’ ranging from A to D, and National Bottom Lines for the following attributes in rivers: To protect To protect human Rangitāiki River Estuary Lakes Āniwaniwa (Aniwhenua) ecosystem health: health for recreation: At risk from: and Matahina Nitrate E.coli • Increasing nutrients At risk from: Ammonia Cyanobacteria • Unwanted plant and algae growth • High nutrient levels causing high algae and macrophyte (aquatic plant) growth • Loss of riparian and whitebait habitat NOF Banding Nitrate • Exotic macrophytes choking waterways River estuaries are dynamic environments with large • Impacts of macrophyte growth on recreation and ecology Ammonia changes in tidal and river flows. About 63 percent of native freshwater fish species use estuaries to swim We describe the health of lakes using the trophic level index Primary between fresh and salt water. contact Secondary contact (TLI), calculated using total nitrogen, total phosphorous, (swimming) (wading/boating) Like many river estuaries, the Rangitāiki has little water clarity and chlorophyll-a. Good aquatic vegetation or macro-algae. TLI results shown below demonstrate that both lakes are Good A A Freshwater usually dominates the water quality of nutrient-enriched, and that Lake Āniwaniwa is classed as B river estuaries. Flood flows and the delivery of sediment eutrophic (poor water quality) and Lake Matahina is classed B and nutrients into estuaries can make it hard for plants as supertrophic (very poor quality). These lakes often have C and animals to live and grow there. unsightly scums of algae and floating plants on the water Poor >MAS surface, which can lead to decreased animal and plant Phosphorus and nitrogen are increasing in the estuary. D diversity, and affect recreation. Primary (swimming) recreational Poor Nitrogen is also increasing in the whole catchment, while contact has a different rating system phosphorus is only increasing in the lower catchment. Good (Band A) to Trophic Level Index to secondary contact based on the Poor (Band D) ratings Discharges and land use influence phosphorus in the level of risk to people swimming. 6 are based on 2014 lower catchment. Good (Band A) rating means there 5.5 annual median levels Nutrients can promote excess plant and algae growth. is less than five percent risk of people Supertrophic of nitrate, ammonia We measure plant and algae growth by measuring the 5 getting sick from swimming. Poor and performance concentrations of chlorophyll-a, the pigment in plants (exceeding Minimum Acceptable 4.5 against safe bacteria that is used for photosynthesis. State) ratings mean there is more Eutrophic level guidelines 4 than five percent risk of people The Rangitāiki Estuary has the highest maximum for secondary TLI Units getting sick from swimming. chlorophyll-a concentrations and the second highest 3.5 contact (wading/ Mesotrophic median concentration of all Bay of Plenty river estuaries. Some sites do not meet the boating). 3 minimum acceptable state (MAS) 2.5 for recreational waters used for Chlorophyll-a Oligotrophic 2 primary contact. 16 12/13 01/14 02/14 03/14 04/14 Median 14 Āniwaniwa Matahina 25%-75% MCI Class Suitability Land use 12 Macrophytes are important habitats for fish and invertebrates for Recreation Min-Max Excellent Urban Grade 10 and play a key role in nutrient cycling. They are monitored Good Exotic Forest using a lake health assessment scoring system called the Good 8 Lake Submerged Plant Indicator (Lake SPI). Fair Indigenous Forest Fair Poor Horticulture 6 Because introduced macrophytes have largely out-competed native species in these two lakes, Lake SPI Pasture 4 GD154465 scores are low. Lake Matahina especially has very few native macrophytes left, and is dominated by exotic species. 2 See Lake SPI scores in the table below. 0 Lake Āniwaniwa Lake Matahina For more information -2 12% 10% Tarawera Rangitāiki Whakatāne Kaituna Ōpōtiki Ōpōtiki Lake SPI Condition % Visit www.boprc.govt.nz/rangitaiki River River River River Estuary at Estuary at Poor Good Poor Good Phone 0800 884 880 Estuary Estuary Estuary Estuary Kukumoa Wharf Email [email protected] Freshwater is essential to life; it sustains the things we value BAY OF PLENTY REGIONAL COUNCIL TOI MOANA Rangitāiki Freshwater is essential to life; it sustains the things we value Nutrients Coastal and freshwater Excess nutrients can cause increased growth of macrophytes The graphs below show total phosphorus and nitrogen loads recreation monitoring (aquatic plants) and algae. The macrophytes can then clog at sites monitored by the Regional Council in 2013. These water intakes, use up dissolved oxygen during the night or as show a general increase in nutrients moving down the Water contaminated by human or animal they decompose, and dramatically change habitat suitability catchment. Nitrate levels are also increasing at Murupara. faeces can contain disease-causing bacteria, for fish and other wildlife. viruses and protozoa such as salmonella, campylobacter or giardia. Average Annual Average Annual These organisms can pose a health risk in Total Phosphorus Load Total Nitrogen Load water used for recreational activities such (2013) (2013) as swimming. Phosphorus load Otamatea Otamatea Avg. Flow Rangitāiki Rangitāiki at SH5 at SH5 Bridge Bridge Whirinaki Whirinaki at Galatea at Galatea Bridge See more at: www.boprc.govt.nz/swimmingwaterquality Bridge Rangitāiki Rangitāiki at Murupara at Murupara Bridge Bridge Rangitāiki Rangitāiki at Te Teko Ecological health at Te Teko 0 1000 2000 3000 Aquatic macroinvertebrates (such as aquatic insects, exotic forest have the highest ecological health, 0 50 100 150 200 snails and shrimp) are very useful for assessing stream health. while the ecological health of streams draining kg/day (m3/s) kg/day A water sample captures a single moment in time, however from pasture is lower. macroinvertebrates are influenced by a wide range of factors Stream health was especially low in the over a longer time period. Rangitāiki River’s main channel on the plains. A healthy macroinvertebrate community is typically found in Other sites, particularly in the lower Rangitāiki, streams with good or excellent health. Monitoring results from had macroinvertebrate communities indicative 2013/14 show that streams draining from native bush and of fair to poor health. Macroinvertebrates are collected from the streambed by disturbing the streambed immediately above a triangular net, which captures all dislodged material (both invertebrates and organic matter). BAY OF PLENTY REGIONAL COUNCIL TOI MOANA Rangitāiki Freshwater is essential to life; it sustains the things we value.
Recommended publications
  • Occupants' Health and Their Living Conditions of Remote Indigenous
    International Journal of Environmental Research and Public Health Article Occupants’ Health and Their Living Conditions of Remote Indigenous Communities in New Zealand Bin Su 1,* and Lian Wu 2 1 School of Architecture, Unitec Institute of Technology, 0600 Auckland, New Zealand 2 School of Healthcare and Social Practice, Unitec Institute of Technology, 0600 Auckland, New Zealand; [email protected] * Correspondence: [email protected] Received: 29 September 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: The New Zealand Ministry of Health reported that respiratory disease affects 700,000 people, annually costs New Zealand NZ$7.05 billion, and is the third-highest cause of death. The hospitalisation rate for asthma of Maori¯ communities is 2.0 higher than that of other ethnic groups, and hospitalisation rates for deprived homes are 2.3 times higher than those of the least deprived homes. Based on physical data and evidence, which were drawn from a mixed methodology that includes field studies of the indoor microclimate, dust-mite allergens, mould growth, and occupants’ Respiratory Health Survey of a number of sample houses of Maori¯ communities in Minginui, Te Whaiti, Murupara, and Rotorua of New Zealand, the study identifies unhealthy indoor thermal conditions, thresholds or ranges of indoor micro-climate related to different levels of dust-mite allergen and mould growth, the most common type of indoor mould, and correlations between dust-mite and mould and correlations. The study not only identified that the poor health of occupants is closely related to their inadequate living conditions, but also identifies the threshold of indoor micro-climates to maintain indoor allergens at the acceptable level, which can be used as a guideline to maintain or improve indoor health conditions for future housing development or retrofitted old housing.
    [Show full text]
  • Archaeology of the Bay of Plenty
    Figure 10. Pa at Ruatoki, of Plenty region. This is a plausible date for this region, as can be seen W16/167. from the individual site reviews. It shows that the emergence of a perceived need for security in the region occurred as early there as anywhere else in New Zealand. 9.2.3 Terraces Terrace sites are common in the Bay of Plenty and may or may not be associated with pits or midden. As noted in the section under pits in the field records, terrace sites are more likely to have midden associated with them than are pit sites, which is consistent with terraces having a primarily domestic (housing) function. On excavation, terraces often turn out to be part of wider site complexes. In the Kawerau area, the Tarawera lapilli has filled most pits, so that the sites appear now as if they were simple terrace sites only. O’Keefe (1991) has extracted the number of terraces per site from the recorded sites in the western Bay of Plenty. Single terraces occur most frequently, and the frequency of sites with larger numbers of terraces decreases regularly up to sites with about nine terraces. Thereafter, sites with larger numbers of terraces are more frequent than would be expected. This indicates that sites with ten or more terraces comprise a different population, perhaps the result of construction under different social circumstances than the smaller sites. Undefended occupation sites are represented in the excavation record, most notably the Maruka research project at Kawerau (Lawlor 1981; Walton 1981; Furey 1983). Elsewhere in New Zealand, records indicate that some undefended sites have had long occupancies, and have yielded reasonably numerous artefacts.
    [Show full text]
  • Hydrodictyon Reticulatum) in Lake Aniwhenua, New Zealand
    WELLS, CLAYTON: IMPACTS OF WATER NET 55 Ecological impacts of water net (Hydrodictyon reticulatum) in Lake Aniwhenua, New Zealand Rohan D. S. Wells and John S. Clayton National Institute of Water and Atmospheric Research, P.O. Box 11 115, Hamilton, New Zealand (E-mail: [email protected]) Abstract: The ecological impacts of Hydrodictyon reticulatum blooms (1989-94) were studied at Lake Aniwhenua (a constructed lake) in North Island, New Zealand by collating fish, invertebrate and macrophyte data collected towards the end of a four year bloom period and following its decline. Hydrodictyon reticulatum had some localised impacts on the biota of the lake. Some macrophyte beds were smothered to the extent that they collapsed and disappeared, and dense compacted accumulations of H. reticulatum caused localised anoxic conditions while it decayed. However, fish and some invertebrates in the lake benefited from the H. reticulatum blooms. High numbers of Ceriodaphnia sp. (maximum, 5.5 x 104 m-2) were recorded amongst H. reticulatum, and gastropods were exceptionally abundant, the most common being Potamopyrgus antipodarum (maximum, 1.8 x IOS m-2). Hydrodictyon reticulatum was consumed by three species of common gastropods in experimental trials, with Austropeplea tomentosa consuming up to 1.3 g dry weight H. reticulatum g-1,live weight of snail day-1. Gastropods comprised the major portion of the diet of Oncorhynchus mykiss in Lake Aniwhenua during and after the H. reticulatum bloom. A marked peak in sports fishing (with exceptional sizes and numbers of fish caught) coincided with the period of H. reticulatum blooms and the abundant invertebrate food source associated with the blooms.
    [Show full text]
  • Strategic Direction Identification of Influences on the Whakatane District
    IDENTIFICATION OF INFLUENCES ON THE WHAKATANE DISTRICT SECTION 1 - STRATEGIC DIRECTION IDENTIFICATION OF INFLUENCES ON THE WHAKATANE DISTRICT BACKGROUND on decisions made in a global environment, the Council additional compliance costs associated with meeting has a responsibility to ensure we retain the ongoing higher drinking water standards. Government policy will The Council’s plans and work programmes over the sustainability of our communities. Internet access impact on the Council, what it does, and the relative cost next ten years are targeted to meet the future needs enables increased visibility of the Whakatane District of the provision of services. These impacts need to be of the District. To do this successfully, it is important to to the rest of the world and to enable those who live managed. understand what will influence change in our district and here, access to increased knowledge, people in other In a country that is increasingly urbanised, the “one the elements of change that can be influenced by the countries, lifestyle choices and to goods and services. Council so that our communities can achieve their aims size fits all” approach does not necessarily benefit and aspirations for the future. NATIONAL IMPACTS our communities which make up some of the most socio-economically deprived areas of New Zealand. While the LTCCP 2009-2019 has a 10 year time horizon, A three-year electoral system leads to uncertainty around Our Council needs to be well placed and resourced many of the programmes and budgets have a longer the stability of policy decisions and the continuation to advocate for our communities and to ensure that it term focus.
    [Show full text]
  • Murupara Community Board 24 February 2020
    Murupara Community Board MONDAY, 24 FEBRUARY 2020 AGENDA Meeting to be held in the Murupara Service Centre, Civic Square, Murupara at 10:00 am Steph O'Sullivan CHIEF EXECUTIVE 19 February 2020 WHAKATĀNE DISTRICT COUNCIL MONDAY, 24 FEBRUARY 2020 Murupara Community Board - AGENDA TABLE OF CONTENTS ITEM SUBJECT PAGE NO 1 Preface ...................................................................................................... 4 2 Membership .............................................................................................. 4 3 Apologies .................................................................................................. 4 4 Public Forum ............................................................................................. 4 5 Confirmation of Minutes ........................................................................... 5 5.1 Minutes – Inaugural Murupara Community Board 18 November 2019 ....................................... 5 6 Reports ................................................................................................... 11 6.1 Murupara Community Board - Activity Report to January 2020 ................................................ 11 6.1.1 Appendix 1 Murupara School Safety Improvements - Final Design ................................ 15 6.2 Two Extraordinary Vacancies - Murupara Community Board .................................................... 17 6.3 Request for Funding – Te Houhi Collective ............................................................................... 20 6.3.1
    [Show full text]
  • Combined Irrigation / Flood Control Storage in Upper Rangitāiki
    Combined Irrigation and Flood Storage in Upper Rangitāiki Catchment Bay of Plenty Regional Council 13-Jan-2017 Doc No. 1 Combined Irrigation / Flood Control Storage in Upper Rangitāiki Initial Feasibility Study 13-Jan-2017 Prepared for – Bay of Plenty Regional Council – Co No.: N/A AECOM Combined Irrigation and Flood Storage in Upper Rangitāiki Catchment Combined Irrigation / Flood Control Storage in Upper Rangitāiki – Initial Feasibility Study Combined Irrigation / Flood Control Storage in Upper Rangitāiki Initial Feasibility Study Client: Bay of Plenty Regional Council Co No.: N/A Prepared by AECOM New Zealand Limited 121 Rostrevor Street, Hamilton 3204, PO Box 434, Waikato MC, Hamilton 3240, New Zealand T +64 7 834 8980 F +64 7 834 8981 www.aecom.com 13-Jan-2017 Job No.: 60493009 AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001. © AECOM New Zealand Limited (AECOM). All rights reserved. AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client’s description of its requirements and AECOM’s experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified.
    [Show full text]
  • Nan's Stories
    BYRON RANGIWAI Nan’s Stories Introduction This paper explores some of the many stories that my grandmother, Rēpora Marion Brown—Nan, told me when growing up and throughout my adult life. Nan was born at Waiōhau in 1940 and died at her home at Murupara in 2017. Nan was married to Papa— Edward Tapuirikawa Brown. Nan and Papa lived on Kōwhai Avenue in Murupara. Nan’s parents were Koro Ted (Hāpurona Edward (Ted) Maki Nātana) and Nanny Pare (Pare Koekoeā Rikiriki). Koro Ted and Nanny Pare lived around the corner from her on Miro Drive. My sister and I were raised on the same street as my great-grandparents, just six or seven houses away. I could see Koro Ted’s house— located on a slight hill—from my bedroom window. Byron Rangiwai is a Lecturer in the Master of Applied Indigenous Knowledge programme in Māngere. 2 Nan’s Stories Figure 1. Koro Ted and Nanny Pare (see Figure 2; B. Rangiwai, personal collection) Koura and Patuheuheu Nan often talked about her Patuheuheu hapū and her ancestor, Koura (see Figure 2). In a battle between Ngāti Rongo and Ngāti Awa, Koura’s mokopuna was killed. (Rangiwai, 2018). To memorialise this tragedy, a section of Ngāti Rongo was renamed, Patuheuheu (Rangiwai, 2018, 2021b). Te Kaharoa, vol. 14, 2021, ISSN 1178-6035 Nan’s Stories 3 Figure 2. Whakapapa Koura was a Ngāti Rongo and Patuheuheu chief who resided at Horomanga in the 1830s and was closely connected with Ngāti Manawa (Mead & Phillis, 1982; Waitangi Tribunal, 2002). Local history maintains that Koura was responsible for upholding and retaining the mana of Tūhoe in the Te Whaiti, Murupara, Horomanga, Te Houhi and Waiōhau areas (Rangiwai, 2018).
    [Show full text]
  • A HISTORY of the TUARARANGAIA BLOCKS Wai894 #A3 Wai36 #A22 Wai 726 #A4
    A HISTORY OF THE TUARARANGAIA BLOCKS Wai894 #A3 Wai36 #A22 Wai 726 #A4 PETER CLAYWORTH A REPORT COMMISSIONED BY THE WAITANGI TRIBUNAL MAY 2001 CONTENTS LIST OF MAPS ....................................................................................................................... 5 LIST OF TABLES ................................................................................................................... 6 INTRODUCTION ................................................................................................................... 8 i.i Claims relating to the Tuararangaia blocks ...................................................................... 12 CHAPTER 1: THE TUARARANGAIA BLOCK: TE WHENUA, TE TANGATA ....... 16 1.1 Te Whenua, Te Ngahere ................................................................................................. 16 1.2 Early occupation and resource uses ................................................................................ 19 1.3 Hapu and iwi associated with Tuararangaia ................................................................... 22 1.3.1 Ngati Awa ................................................................................................................. 22 1.3.2 Ngati Pukeko ............................................................................................................. 23 1.3.3 Warahoe .................................................................................................................... 24 1.3.4 Ngati Hamua ............................................................................................................
    [Show full text]
  • Part B: Community Property 12 MARCH 2018
    ASSET MANAGEMENT PLAN Part B: Community Property 12 MARCH 2018 whakatane.govt.nz Community Property - Asset Management Plan Part B – Community Property 2018 Draft Asset Management Plan Part B – Community Property 2018-28 Part B provides the specific Asset Management information for Community Property, for the period 2018-2028. X[A1228573] 2018-2028 Asset management Plan Page 1 of 66 Community Property - Contents Contents Contents .................................................................................................................................................. 2 Foreword ................................................................................................................................................. 7 1 Asset Management Plan – Part A ................................................................................................ 7 2 Asset Management Plan – Part B ................................................................................................ 7 Introduction ............................................................................................................................................ 8 1 The Assets This Plan Covers ........................................................................................................ 8 Business Overview .................................................................................................................................. 9 1 Why we do it ..............................................................................................................................
    [Show full text]
  • Assessment of Flooding and Drainage Issues at Kopuriki
    Bay of Plenty Regional Council Assessment of Flooding and Drainage Issues at Kopuriki Bay of Plenty Regional Council Assessment of Flooding and Drainage Issues at Kopuriki Prepared By Opus International Consultants Ltd Peter Askey Whakatane Office Principal Environmental Engineer Level 1, Opus House, 13 Louvain Street PO Box 800, Whakatane 3158 New Zealand Reviewed By Telephone: +64 7 308 0139 Jack McConchie Facsimile: +64 7 308 4757 Principal Hydrologist Date: 30rd November 2017 Reference: 2-34346.00 Status: Issue 2 © Opus International Consultants Ltd 2017 Assessment of Flooding and Drainage Issues at Kopuriki i Contents Executive Summary ................................................................................................... 1 1 Introduction ....................................................................................................... 2 1.1 Background ....................................................................................................................... 2 1.2 Key Issues .......................................................................................................................... 2 1.3 Land ownership ................................................................................................................. 3 1.4 Resource Consents ............................................................................................................ 3 2 Lake Aniwaniwa and the Rangitaiki River .......................................................... 5 2.1 Lake Accretion Rates ........................................................................................................
    [Show full text]
  • 6118 NEW ZEALAND GAZETTE No. 228
    6118 NEW ZEALAND GAZETTE No. 228 2. The Whakatane District Council's proposed classification of The Road Classification (New Plymouth City) the roads as set out in the Schedule is approved. Notice No. 1, 1987 3. The Road Classification (Whakatane District) Notice No. 1, Pursuant to Regulation 3 (8) of the Heavy Motor Vehicle 1987, signed the 9th day of November 1987*, issued pursuant Regulations 197 4 and a delegation from the Secretary for to Regulation 3 of the Heavy Motor Vehicle Regulations 1974, Transport, I, Carne Maurice Clissold, Chief Traffic Engineer, which relates to the roads described in the Schedule, is give the following notice: revoked. Notice Schedule 1. This notice may be cited as the Road Classification (New Whakatane District Plymouth City) Notice No. 1, 1987. Roads Classified in Class One. 2. The New Plymouth City Council's proposed classification of the roads as set out in the Schedule is approved. All roads within the urban areas of Whakatane, Edgecumbe, Matata, Ohope, Taneatua, Te Teko and Waimana. Schedule Arawa Road. Roads Classified in Class One Awaiti South Road: from Hallet Road to Matata Road. All roads or parts of roads under the control of New Plymouth City. Awakeri Road: from Awakeri to Edgecumbe. Signed at Wellington this 9th day of December 1987. East Bank Road: from No. 2 State Highway (Pokeno to Wellington via Gisborne) to Edgecumbe. C. M. CLISSOLD, Chief Traffic Engineer. Foster Road: from White Pine Bush Road to Grace Road. (MOT. 28/8/New Plymouth City) lnl940 Galatea Road: from No. 30 State Highway (Te Kuiti to Whakatane via Atiamuri) to Whirinaki Road.
    [Show full text]
  • Kawerau Geothermal System Management Plan
    KAWERAU GEOTHERMAL SYSTEM MANAGEMENT PLAN February 2018 Prepared in Collaboration with Executive Summary The Kawerau Geothermal System is located to the north-east of Kawerau within the Bay of Plenty Region, and partially underlies the township of Kawerau. It has been substantially developed for industrial purposes pursuant to resource consents granted by the Bay of Plenty Regional Council (BOPRC) under the Resource Management Act 1991 (RMA). This includes geothermal energy being used for electricity generation, industrial processes (direct heat) and cultural purposes. Bay of Plenty Regional Council has functions under Section 30 of the RMA for the management of geothermal resources. The Bay of Plenty Regional Policy Statement (RPS) requires the preparation of a System Management Plan (SMP) for the Kawerau Geothermal System as a key part of the way in which BOPRC intends to manage the Kawerau Geothermal System. This SMP has been prepared in collaboration with the four consent holders authorised to take more than 1,000 tonnes per day of geothermal fluid from the Kawerau Geothermal System, being: Mercury NZ Limited, Ngāti Tūwharetoa Geothermal Assets Limited, Geothermal Developments Ltd, and Te Ahi O Māui Partnership. Engagement has also been undertaken with tangata whenua and interested and potentially affected parties, including industrial operators using the geothermal resource. The purpose of this SMP is to ensure that the Kawerau Geothermal System is managed in a sustainable manner in accordance with the requirements of the RMA and the relevant policy and planning documents prepared under the RMA. The content anticipated in an SMP is set out in Policy GR7B of the RPS and includes objectives for its overall management and strategies to achieve the objectives The SMP is a non-statutory document and will be periodically reviewed and updated to ensure that it remains relevant and fit for purpose.
    [Show full text]