© in This Web Service Cambridge University

Total Page:16

File Type:pdf, Size:1020Kb

© in This Web Service Cambridge University Cambridge University Press 978-0-521-88873-8 - Biodiversity in Dead Wood Jogeir N. Stokland, Juha Siitonen and Bengt Gunnar Jonsson Index More information Index Abdera flexuosa, 170 alluvial forests, 292 Abies, 130, 288, 289 Alnus, 96, 375, 386 Abies alba, 135 Alpha-taxonomy, 409–410 Abies sibirica, 283 ambrosia beetles, 32, 36, 39, 40, 45, 145, abiotic environment, 194–201 226, 246, 273 above-ground environments, 200–205 ambrosia fungi, 32, 145, 246 fungi, 203–205 Ampedus, 158 invertebrates, 201–203 Ampedus cardinalis, 163, 391 Acanthocinus, 138 Ampedus hjorti, 391 Acanthocinus henschi, 4 Ampedus quadrisignatus, 4 Acari, 2, 35, 173 amphibians, 70, 165 associated species, 141 Amphicrossus, 153 bark-beetle association, 138, 141 Amylocystis lapponica, 179 evolution, 229 Amylostereum, 41 species diversity, 254 Amylostereum areolatum, 344 substrates, 75, 157, 167, 173, 179 Amylostereum chailletii, 27 Acer, 375 anaerobic conditions, 200 Acer platanoides, 155 Anaspidae, 167 Achilidae, 181 Anastrophyllum hellerianum, 77, 343 Acmaeops, 114 ancient forest, 383–384, 388 adaptive management, 330, species, 356, 357, 360, 383 411, 412 ancient tree, 161, 388, 390, Aedes geniculatus, 165 393, 395 Aesculus hippocastaneum, 102, 158 Aneides ferreus, 70 agaric fungi, 2, 169 Anisopodidae, 235 associated species, 181 Anisotoma, 174, 182 species diversity, 85 Anitys rubens, 163 Agaricochara, 43 Anobiidae, 26, 71, 154, 165, 170, 175, Agathidium, 174, 182 244, 357 Agathidium pulchellum, 181 Anobium nitidum, 154 Agathomyia wankowiczii, 44, 181 Anodorhynchus hyacinthinus, 66 Agnathosia mendicella, 174 Anomaluridae, 67 Agrilus, 167 Anoplodera sexguttata, 102 Agrilus angustulus, 202 Anthaxia zuzannae, 36 Agrilus obscuricollis, 202 Anthomyiidae, 73 Agrilus planipennis, 187, 197 Anthomyzidae, 76 Alaus, 42 Anthrenus scrophulariae, 76 Aleurodiscus amorphus, 130 Anthribidae, 167, 181, 182 Aleurodiscus disciformis, 130 antifreeze proteins, 195 Allecula, 158 Antrodia crassa, 119, 185, 379 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88873-8 - Biodiversity in Dead Wood Jogeir N. Stokland, Juha Siitonen and Bengt Gunnar Jonsson Index More information 496 • I n d e x Antrodia infirma, 119, 197 Basidiomycota, 2, 227 Antrodia primaeva, 54 evolution, 227–229 Antrodia serialis, 54, 347 species diversity, 84–85, 147, 251 Antrodia sinuosa, 170, 181 substrates, 185, 190, 191 Antrodia xantha, 170, 181 bats, 67 ants. See Formicidae beech. See Fagus Apidae, 70 beetles. See Coleoptera Apis mellifera, 73, 405 Betula, 104, 118, 132, 222, 375 Apomyelois bistriatella, 181 bioenergy, 304, 311, 364–365, 408 Aradidae, 181 biopulping, 404 Aradus erosus, 181 Biphyllidae, 182 Aranea, 158, 256 Bisporella citrina, 3 Archaeopteris, 219 Bjerkandera, 180 Arhopalus, 114 Bjerkandera adusta, 53, 180 Arhopalus rusticus, 203 Bjerkandera fumosa, 53 Arion, 344 Blepharostoma trichophyllum, 77 Armillaria, 32, 168, 180, 206, 207, Blera fallax, 377 209, 335 blue-stain fungi. See staining fungi Armillaria bulbosa, 103 Bolitophagus reticulatus, 44, 170, 174, 341 Armillaria mellea, 289 Bolitotherus cornutus, 174 Aromia moschata, 393 Bolopus furcatus, 181 Arthrobotrys, 48 boreal forest, 278 Arthrobotrys anchonia, 44, 48 Boros schneideri, 359 Arthrobotrys superba, 50 Bostrichidae, 26, 154 Ascomycota, 2, 225 Bothrideres contractus, 358 associated species, 181 Bothrideridae, 358 evolution, 224–226 Botryobasidium subcoronatum, 209 species diversity, 85, 252 Botryosphaeria, 116 substrates, 166, 190, 191 Brachyopa, 37, 153 ash. See Fraxinus branches Asiliidae, 47 associated species, 168 aspen. See Populus dead attached, 165, 166, 191, 205 Aspergillus, 140 on the ground, 167 Asterodon ferruginosus, 347 Brenthidae, 71 Asteroxylon, 223 broadleaved trees Athous mutilatus, 396 associated species, 84 Atomaria umbrina, 181 chemical and physical properties, 11, 12, Aulacigaster leucopeza, 37 60, 96, 121, 131, 150, 151 Auricularia auricula-judae, 181 evolution, 94, 222 avenue, 390 species diversity, 91, 95 brown rot, 19, 20–21, 215 bacteria, 23, 152, 200, 222, 243 evolution, 241 Actinobacteria, 23, 24 brown-rot fungi, 20, 28 as gut symbionts. See gut symbionts Bryophyta, 77–79, 144, 251, 253, freshwater decomposition, 24 344, 372 marine decomposition, 24, 26 Bucephala clangula, 66 nitrogen fixing, 125 Bucephala islandica, 66 tunnelling bacteria, 23, 24 Buceros bicornis, 66 bacterial wetwood, 23 Buprestidae, 38, 202 Baranowskiella ehnstromi, 170, 173 evolution, 233 bark beetles. See Scolytinae habitat preferences, 387 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88873-8 - Biodiversity in Dead Wood Jogeir N. Stokland, Juha Siitonen and Bengt Gunnar Jonsson Index More information Index • 497 species diversity, 273 Cerambyx cerdo, 118, 381 substrates, 167, 187 Cerambyx scopolii, 202 Buprestis splendens, 346 Ceratocystiopsis, 139 Bursaphelenchus xylophilus, 260, 409 Ceratocystis, 131, 139, 207, 226 Ceratocystis platani, 395 Calicium denigratum, 119 Ceratopogonidae, 164 Calitys scabra, 170, 359 Cerotelion, 45 Callicera, 164 Ceruchus chrysomelinus, 360 Callicera rufa, 378 Cetoniinae, 153, 158 Callidiellum rufipenne, 199 Chaenotheca, 79 Callidium coriaceum, 118 Chaenotheca ferruginea, 80 Calliphoridae, 76 Chaenothecopsis fennica, 119 Callixylon, 220, 223 Chaetoderma luna, 119 Calocera, 32, 133, 228 Chaetosphaeria myriocarpa, 34 cambium. See wood anatomy, cambium Chalara fraxinea, 395, 409 Camponotus, 71, 73, 74 Cheyletidae, 173 Camptodiplosis auriculariae, 181 Chilopoda, 158 cankers, 150 Chironomidae, 26, 28, 164, 210, 211, 244 canopy fungi, 166, 204 Chiroptera, 67 Carabidae, 76, 357 Cholevinae, 74, 76 Carphoborus, 118 Choristoneura fumiferana, 283, 289 Carpinus, 375, 386 Christiansenia pallida, 52 Carpophilus, 153 Chrysidae, 73, 74 Carya, 104, 118 Chrysura radians, 74 Castor canadensis, 263 Chyromyidae, 76 Castor fiber, 263 Cicadidae, 151 Castoroides ohioensis, 263 Ciidae, 43, 170, 174, 175–177 cavities Cis bidentatus, 175 associated species, 46, 58, 67, 73, 155, Cis bilamellatus, 176 158, 159, 162, 184, 256, 370, 389, Cis boleti, 176, 177 396, 405 Cis hispidus, 177 availability, 61–62 Cis jaquemarti, 170, 178 development, 60–61, 154–156 Cis nitidus, 176 hollow tree, 60, 121, 154, 155, 389, 390 Cis punctulatus, 170 microclimatic conditions, 157 Cis quadridens, 342 nesting and roosting in, 58–59 Cistella hymeniophila, 54 nests in, 165 Cixidia confinis, 181 water-filled, 162 Cladonia, 79 wood mould, 154, 157–158 Cleridae, 47 cavity use by mammals, 66–69 Climacocystis borealis, 185 cavity-nesting birds, 62–66, 314, 324, 325 climate Cecidomyiidae, 167, 173, 181, 235 change, 407–408 cellulose, 11 Clytus arietis, 202 Cephalozia, 77 Cochliodon, 264 Cerambycidae, 26, 71, 154, 167, 199, 202, cohort dynamics, 315 216, 410 Coleoptera evolution, 240, 245 evolution, 232 habitat preferences, 360, 387 species diversity, 86, 106, 105, 256 species diversity, 273 substrates, 157, 158, 169, 174, 179, 189, substrates, 105, 153, 167, 187 203 Cerambycomima, 245 Collembola, 157, 167, 179, 259 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88873-8 - Biodiversity in Dead Wood Jogeir N. Stokland, Juha Siitonen and Bengt Gunnar Jonsson Index More information 498 • I n d e x colonization, 155, 168, 178, 188, 298, 343 hedgerow, 387 rate, 352, 367 parks, 154, 388–390 Columnocystis abietina, 347 threats, 393–396 Colydiidae, 46, 182 types, 380–382 competition, 65, 78, 277, 291–292, 339, Cupedidae, 244 340 Curculionidae, 244 self-thinning, 291 Curtimorda maculosa, 170 coniferous trees Cycadophyta, 87 associated species, 84 Cylindrosella, 173 chemical and physical properties, 11, 12, Cylister, 142 60, 96, 117, 292 Cyllodes ater, 180, 181 evolution, 92, 93, 220 Cyphelium pinicola, 119 species diversity, 91, 92 Cytospora, 116 connectivity, 316 conservation, 161 Dacrymyces, 32, 133, 228 conservation management, 331, 352 Dacrymyces stillatus, 117 continuity, 353–355 Dactylopsila trivirgata, 263 continuous-cover dynamics, 280, 286–292 Daldinia, 33, 133 Convention on Biological Diversity, 331 Daldinia concentrica, 182 coppicing, 386 Daldinia loculata, 115, 181, 182 Coriolus, 132 Dasyhelea, 165 Cornuvesica, 139 Daubentonia madagascariensis, 263 Corticeus, 142 dead wood Corticeus suturalis, 359 continuity, 307, 353 corticioid fungi, 2 diversity, 281, 299–301 species diversity, 85 dynamics, 307, 327 substrates, 166 quality, 306–307 Corylus, 222, 375, 386 spatial distribution, 286, 298, 299 Cossidae, 151, 240 volume, 279, 293, 295–298, 302–306, Cossonus, 163 327 Cossus, 40 decay rate, 200, 215, 296, 297 Cossus cossus, 245 decay rate constant, 125, 296, 297 Crepidoderus mutilatus, 389 decay resistance, 214, 215 Crepidotus, 132 decay stages, 126–128 Criorhina berberina, 209 decay succession, 168 Crustacea, 165, 210, 213 deciduous trees. See broadleaved trees Cryphonectria [=Endothia] parasitica, 409 decomposition pathways, 121–122 Cryptarcha, 153 defoliators, 111, 283 Cryptocerus, 25, 238, 244 deforestation, 362 Cryptophagidae, 74, 170, 174, 181, 182 Dendrocopos leucotus, 360, 369 Cryptophagus corticinus, 181 Dendroctonus, 284 Cryptophagus micaceus, 74 Dendroctonus brevicomis, 117 Ctenophora ornata, 162 Dendroctonus frontalis, 100, 117, 138, 141, 284 Cucujidae, 182 Dendroctonus mexicanus, 284 Cucujus, 143 Dendroctonus micans, 136, 285 Cucujus cinnaberinus, 359, 360 Dendroctonus ponderosae, 100, 117, 140, 284 Culicidae, 164 Dendroctonus pseudotsugae, 112 cultural environments. See cultural Dendroctonus
Recommended publications
  • Rafał Ruta Zabytkowy Park W Kujanie Koło Złotowa Jako Ostoja
    Przegląd Przyrodniczy XXV, 2 (2014): 91-100 Rafał Ruta ZABYTKOWY PARK W KUJANIE KOłO ZłOTOWA JAKO OSTOJA SAPROKSYLICZNYCH CHrząSZCZY (INSECTA: COLEOPTERA) An old park in Kujan near Złotów as a refuge of saproxylic beetles (Insecta: Coleoptera) ABSTRAKT: Podsumowano kilkuletnie obserwacje nad chrząszczami parku w Kujanie. W niewielkim obiekcie o pow. ok. 2 ha odnotowano występowanie rzadkich owadów saproksylicznych, jak Anitys ru- bens, Elater ferrugineus, Osmoderma barnabita i Gnorimus nobilis. Przedyskutowano znaczenie obiektu dla zachowania fauny saproksylicznej. SŁOWA KLUCZOWE: Pomorze, Bory Kujańskie, martwe drewno, ochrona przyrody, owady, Coleo- ptera, Diptera ABSTRACT: Survey of Coleoptera of a park in Kujan is recapitulated. In the small park (area of ca. 2 ha) several endangered species were found, including Anitys rubens, Elater ferrugineus, Osmoderma barna- bita and Gnorimus nobilis. Significance of the area for preservation of saproxylic fauna is discussed. KEY WORDS: Pomerania, Bory Kujańskie forest, deadwood, nature conservation, insects, Coleoptera, Diptera Wstęp saproksylicznych w okolicach Piły. Znacze- nie zabytkowych alej drzew dla entomofau- Owady saproksyliczne, wymagające do ny w okolicach Piły odnotowali Ruta i Melke życia sędziwych, obumierających i mar- (2002) dla otoczenia rez. Kuźnik k. Piły oraz twych drzew, w gospodarczych lasach stały Gutowski i Ruta (2004) dla okolic Tuczna. się rzadkie wraz z juwenalizacją drzewo- W latach 1995-2014 prowadzono nie- stanów i zmianą ich składu gatunkowego. regularne obserwacje entomologiczne w W wielu przypadkach zastępczym środo- niewielkim parku w miejscowości Kujan wiskiem stały się dla nich aleje, w których (koordynaty: 53.3644N, 17.1881 E), których poszczególne drzewa osiągają starszy wiek, podsumowaniem jest niniejsza publikacja. niż w okolicznych lasach gospodarczych. Podobne znaczenie mają stare parki o roz- maitej genezie (Franc 1997, Jonsell 2004, Teren badani i metodyka Stokland et al.
    [Show full text]
  • Topic Paper Chilterns Beechwoods
    . O O o . 0 O . 0 . O Shoping growth in Docorum Appendices for Topic Paper for the Chilterns Beechwoods SAC A summary/overview of available evidence BOROUGH Dacorum Local Plan (2020-2038) Emerging Strategy for Growth COUNCIL November 2020 Appendices Natural England reports 5 Chilterns Beechwoods Special Area of Conservation 6 Appendix 1: Citation for Chilterns Beechwoods Special Area of Conservation (SAC) 7 Appendix 2: Chilterns Beechwoods SAC Features Matrix 9 Appendix 3: European Site Conservation Objectives for Chilterns Beechwoods Special Area of Conservation Site Code: UK0012724 11 Appendix 4: Site Improvement Plan for Chilterns Beechwoods SAC, 2015 13 Ashridge Commons and Woods SSSI 27 Appendix 5: Ashridge Commons and Woods SSSI citation 28 Appendix 6: Condition summary from Natural England’s website for Ashridge Commons and Woods SSSI 31 Appendix 7: Condition Assessment from Natural England’s website for Ashridge Commons and Woods SSSI 33 Appendix 8: Operations likely to damage the special interest features at Ashridge Commons and Woods, SSSI, Hertfordshire/Buckinghamshire 38 Appendix 9: Views About Management: A statement of English Nature’s views about the management of Ashridge Commons and Woods Site of Special Scientific Interest (SSSI), 2003 40 Tring Woodlands SSSI 44 Appendix 10: Tring Woodlands SSSI citation 45 Appendix 11: Condition summary from Natural England’s website for Tring Woodlands SSSI 48 Appendix 12: Condition Assessment from Natural England’s website for Tring Woodlands SSSI 51 Appendix 13: Operations likely to damage the special interest features at Tring Woodlands SSSI 53 Appendix 14: Views About Management: A statement of English Nature’s views about the management of Tring Woodlands Site of Special Scientific Interest (SSSI), 2003.
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Elementos Para El Conocimiento De Los
    Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 49 (31/12/2011): 309‒319. ELEMENTOS PARA EL CONOCIMIENTO DE LOS MELÁNDRIDOS Y TETRATÓMIDOS DEL NORTE DE ESPAÑA Y ACTUALIZACIÓN DEL CATÁLOGO DE ESPECIES IBÉRICAS (COLEOPTERA: TENEBRIONOIDEA: MELANDRYIDAE, TETRATOMIDAE) J. I. Recalde Irurzun1 & I. Pérez-Moreno2 1 C/Andreszar, 21. 31610 Villava. Navarra. Spain. ‒ [email protected] 2 Universidad de La Rioja. Depto. de Agricultura y Alimentación. C/Madre de Dios, 51. 26006. Logroño. Spain. ‒ [email protected] Resumen: Se registran 18 especies de Melandryidae y 2 de Tetratomidae de provincias septentrionales españolas. Dos de estas especies (Anisoxya fuscula (Illiger, 1798) e Hypulus quercinus (Quensel, 1790)) son nuevas para las faunas española e ibérica. Se presenta una lista de la fauna ibérica española de melándridos (27 especies) y tetratómidos (7 especies), junto con una actualiza- ción de su distribución conocida. Palabras clave: Coleoptera, Melandryidae, Tetratomidae, Tenebrionoidea, escarabajos saproxílicos, España. Contribution to the knowledge of the melandrids and tetratomids of northern Spain, with an update of the catalogue of Ibe- rian species (Coleoptera: Tenebrionoidea: Melandryidae, Tetratomidae) Abstract: Eighteen species of Melandryidae and two of Tetratomidae are recorded from northern Spanish provinces. Two of those species (Anisoxya fuscula (Illiger, 1798) and Hypulus quercinus (Quensel, 1790)) are new records both for the Spanish and Iberian faunas. A list of the Spanish Iberian melandrids (27 species) and tetratomids (7 species) is presented, together with an update of their known distribution. Key words: Coleoptera, Melandryidae, Tetratomidae, Tenebrionoidea, saproxylic beetles, Spain. Introducción La superfamilia Tenebrionoidea Latreille, 1802 está constitui- desarrollados, sobre todo el artejo terminal, que adquiere da por un grupo de familias de apariencia y biología diversa formas diversas en las diferentes especies.
    [Show full text]
  • Food Webs in Space: on the Interplay of Dynamic Instability and Spatial Processes Robert D
    Ecological Research (2002) 17, 261–273 Food webs in space: On the interplay of dynamic instability and spatial processes Robert D. Holt* Department of Zoology, University of Florida, Gainesville, Florida 32611-8525, USA Ecologists increasingly recognize that a consideration of spatial dynamics is essential for resolving many classical problems in community ecology. In the present paper, I argue that understanding how trophic interactions influence population stability can have important implications for the expression of spatial processes. I use two examples to illustrate this point. The first example has to do with spatial determinants of food chain length. Prior theoretical and empirical work has sug- gested that colonization–extinction dynamics can influence food chain length, at least for specialist consumers. I briefly review evidence and prior theory that food chain length is sensitive to area. A metacommunity scenario, in which each of various patches can have a food chain varying in length (but in which a consumer is not present on a patch unless its required resource is also present), shows that alternative landscape states are possible. This possibility arises if top predators moder- ate unstable interactions between intermediate predators and basal resources. The second example has to do with the impact of recurrent immigration on the stability of persistent populations. Immi- gration can either stabilize or destabilize local population dynamics. Moreover, an increase in immigration can decrease average population size for unstable populations with direct density- dependence, or in predator–prey systems with saturating functional responses. These theoretical models suggest that the interplay of temporal variation and spatial fluxes can lead to novel quali- tative phenomena.
    [Show full text]
  • Stagetus Micoae N. Sp. Del Parque Nacional De Cabañeros, Ciudad Real, España (Coleoptera: Anobiidae: Dorcatominae)
    Heteropterus Revista de Entomología 2011 Heteropterus Rev. Entomol. 11(1): 13-19 ISSN: 1579-0681 Stagetus micoae n. sp. del Parque Nacional de Cabañeros, Ciudad Real, España (Coleoptera: Anobiidae: Dorcatominae) A. VIÑOLAS Departament de Biologia Animal; Unitat d’Artròpodes; Facultat de Biologia; Avinguda Diagonal, 645; 08028 Barcelona; E-mail: [email protected] Resumen Se describe un nuevo Dorcatominae del género Stagetus Wollaston, 1861 (Coleoptera: Anobiidae) del Parque Na- cional de Cabañeros, en la provincia de Ciudad Real. Fue recolectado en las campañas realizadas para el estudio de la biodiversidad de insectos saproxílicos en el Parque, durante los años 2006 y 2009, por el CIBIO (Universidad de Alicante). Stagetus micoae n. sp. está bien caracterizado y diferenciado de las otras especies del género por la conformación de los ángulos posteriores del protórax, por el punteado de las estrías elitrales y sobre todo por la forma del lóbulo medio del edeago, aparte de otros detalles de su morfología externa, como las antenas, el último artejo de los palpos maxilares o la pubescencia. Palabras clave: Coleoptera, Anobiidae, Dorcatominae, Stagetus micoae n. sp., P. N. de Cabañeros, Ciudad Real, España. Laburpena Stagetus micoae sp. n. Cabañeros Parke Nazionalekoa, Ciudad Real, Espainia (Coleoptera: Anobiidae: Dorcatominae) Stagetus Wollaston, 1861 generoko Dorcatominae berri bat (Coleoptera: Anobiidae) deskribatzen da, Cabañeros Parke Nazionalekoa, Ciudad Real probintzian. Parkeko intsektu saproxilikoen biodibertsitatea ikertzeko kanpai- netan zehar, 2006 eta 2009 artean, bildu zuen materiala CIBIOk (Alacanteko Unibertsitatea). Stagetus micoae n. sp., berezko ezaugarriak izanik, ongi bereizten da generoko beste espezieetatik, protoraxaren atzealdeko angeluen itxura, elitroetako ildoen punteaketa eta bereziki edeagoaren erdialdeko lobuluaren forma direla eta.
    [Show full text]
  • Biodiversity of Wood-Decay Fungi in Italy
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Biodiversity of wood-decay fungi in Italy This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/88396 since 2016-10-06T16:54:39Z Published version: DOI:10.1080/11263504.2011.633114 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 28 September 2021 This is the author's final version of the contribution published as: A. Saitta; A. Bernicchia; S.P. Gorjón; E. Altobelli; V.M. Granito; C. Losi; D. Lunghini; O. Maggi; G. Medardi; F. Padovan; L. Pecoraro; A. Vizzini; A.M. Persiani. Biodiversity of wood-decay fungi in Italy. PLANT BIOSYSTEMS. 145(4) pp: 958-968. DOI: 10.1080/11263504.2011.633114 The publisher's version is available at: http://www.tandfonline.com/doi/abs/10.1080/11263504.2011.633114 When citing, please refer to the published version. Link to this full text: http://hdl.handle.net/2318/88396 This full text was downloaded from iris - AperTO: https://iris.unito.it/ iris - AperTO University of Turin’s Institutional Research Information System and Open Access Institutional Repository Biodiversity of wood-decay fungi in Italy A. Saitta , A. Bernicchia , S. P. Gorjón , E.
    [Show full text]
  • Report on Beetles (Coleoptera) Collected from the Dartington Hall Estate, 2013 by Dr Martin Luff
    Report on beetles (Coleoptera) collected from the Dartington Hall Estate, 2013 by Dr Martin Luff. 1. Introduction This year has been a particularly busy one for my work on the beetles of the Estate. I recorded numbers of species on 11 separate dates from April (at the end of the cold spring) through to mid- November. The generally warm and dry summer enabled me to record much more by sweeping herbaceous vegetation around field margins, especially in Hill Park. At the end of May I was assisted by an old friend of mine, and former fellow student, Dr Colin Welch (RCW), who is an authority on the Staphylinidae (rove beetles). I was also provided with the contents of the nest boxes from Dartington Hills in February and September, thanks to Will Wallis and Mike Newby. Finally Mary Bartlett again encouraged me to examine the fauna of her compost heap in November. 2. Results A total of 201 beetle species from 35 families were recorded. This is considerably more than in any previous year that I have collected at Dartington. Of these, 85 species were not recorded in my earlier lists (Luff, 2010-12). The overall number of species that I have recorded from the Estate is now 369, which is almost 10% of the entire British beetle fauna. The bird nest boxes yielded 13 species, with over half being new to the Estate, despite having examined the boxes in previous years; the contents of the boxes were also rather different between spring and autumn, with only four species common to both.
    [Show full text]
  • Schutz Des Naturhaushaltes Vor Den Auswirkungen Der Anwendung Von Pflanzenschutzmitteln Aus Der Luft in Wäldern Und Im Weinbau
    TEXTE 21/2017 Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit Forschungskennzahl 3714 67 406 0 UBA-FB 002461 Schutz des Naturhaushaltes vor den Auswirkungen der Anwendung von Pflanzenschutzmitteln aus der Luft in Wäldern und im Weinbau von Dr. Ingo Brunk, Thomas Sobczyk, Dr. Jörg Lorenz Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Tharandt Im Auftrag des Umweltbundesamtes Impressum Herausgeber: Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Durchführung der Studie: Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Professur für Forstzoologie, Prof. Dr. Mechthild Roth Pienner Straße 7 (Cotta-Bau), 01737 Tharandt Abschlussdatum: Januar 2017 Redaktion: Fachgebiet IV 1.3 Pflanzenschutz Dr. Mareike Güth, Dr. Daniela Felsmann Publikationen als pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4359 Dessau-Roßlau, März 2017 Das diesem Bericht zu Grunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit unter der Forschungskennzahl 3714 67 406 0 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren. UBA Texte Entwicklung geeigneter Risikominimierungsansätze für die Luftausbringung von PSM Kurzbeschreibung Die Bekämpfung
    [Show full text]
  • A Baseline Invertebrate Survey of the Knepp Estate - 2015
    A baseline invertebrate survey of the Knepp Estate - 2015 Graeme Lyons May 2016 1 Contents Page Summary...................................................................................... 3 Introduction.................................................................................. 5 Methodologies............................................................................... 15 Results....................................................................................... 17 Conclusions................................................................................... 44 Management recommendations........................................................... 51 References & bibliography................................................................. 53 Acknowledgements.......................................................................... 55 Appendices.................................................................................... 55 Front cover: One of the southern fields showing dominance by Common Fleabane. 2 0 – Summary The Knepp Wildlands Project is a large rewilding project where natural processes predominate. Large grazing herbivores drive the ecology of the site and can have a profound impact on invertebrates, both positive and negative. This survey was commissioned in order to assess the site’s invertebrate assemblage in a standardised and repeatable way both internally between fields and sections and temporally between years. Eight fields were selected across the estate with two in the north, two in the central block
    [Show full text]
  • Wildfire Yields a Distinct Turnover of the Beetle Community in a Semi-Natural
    Fredriksson et al. Ecological Processes (2020) 9:44 https://doi.org/10.1186/s13717-020-00246-5 RESEARCH Open Access Wildfire yields a distinct turnover of the beetle community in a semi-natural pine forest in northern Sweden Emelie Fredriksson1* , Roger Mugerwa Pettersson1, Jörgen Naalisvaara2 and Therese Löfroth1 Abstract Background: Fires have been an important natural disturbance and pervasive evolutionary force in the boreal biome. Yet, fire suppression has made forest fires rare in the managed landscapes in Fennoscandia, causing significant habitat loss for saproxylic species such as polypores and insects. To better understand how the beetle community changes (species turnover) after a wildfire in a landscape with intense fire suppression, we monitored beetles with flight intercept traps the first 3 years as well as 12 years after a large wildfire in a national park in northern Sweden (a control/unburnt area was set up for the last year of sampling). Results: Species composition changed significantly among all studied years with a continuous turnover of species following the wildfire. The indicator species analysis showed that year 1 post-fire was mostly associated with cambium consumers and also the pyrophilous species Batrisodes hubenthali. Year 2 was the most abundant and species-rich year, with Tomicus piniperda as the most important indicator species. The indicator species year 3 were mostly secondary successional species, fungivores, and predators and were characterized by lower species diversity. Year 12 had higher diversity compared with year 3 but lower species richness and abundance. A control area was established during year 12 post-fire, and our analyses showed that the control area and burned area differed in species composition suggesting that the beetle community needs longer than 12 years to recover even after a low- intensive ground fire.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]