The Sister Group of Aculeata (Hymenoptera) – Evidence from Internal Head Anatomy, with Emphasis on the Tentorium

Total Page:16

File Type:pdf, Size:1020Kb

The Sister Group of Aculeata (Hymenoptera) – Evidence from Internal Head Anatomy, with Emphasis on the Tentorium 74 (2): 195 – 218 10.10.2016 © Senckenberg Gesellschaft für Naturforschung, 2016. The sister group of Aculeata (Hymenoptera) – evidence from internal head anatomy, with emphasis on the tentorium Dominique Zimmermann *, 1 & Lars Vilhelmsen 2 1 Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; Dominique Zimmermann [[email protected]] — 2 Natural History Museum of Denmark, SCIENCE, University of Copenhagen; Zoological Museum, Universitetsparken 15, DK-2100, Copen- hagen, Denmark; Lars Vilhelmsen [[email protected]] — * Corresponding author Accepted 23.viii.2016. Published online at www.senckenberg.de/arthropod-systematics on 21.ix.2016. Editor in charge: Benjamin Wipfler Abstract The Aculeata comprises some of the best known Hymenoptera. Traditionally, their sister group has been considered to be the Ichneumo- noidea; however, recent phylogenetic analyses contradict this hypothesis. We evaluate three potential candidates for the sister group of aculeate wasps: Ichneumonoidea, Evanioidea and Trigonaloidea. This is addressed by investigating the internal head anatomy of repre- sentatives of the relevant taxa, specifically the tentorium, musculature and glands. One species each of the families Braconidae, Evaniidae, Gasteruptiidae, Aulacidae and Trigonalidae, as well as Sphecidae and Sapygidae as representatives of Aculeata, and Ibaliidae as outgroup is examined. 33 head anatomical characters are mapped on the three competing hypotheses. Aculeata + Evanioidea are corroborated by the presence of a secondary bridge, the presence of a subforaminal cup and the presence of one medial sulcus on the ventral head sclerotisation instead of two sublateral ones. Trigonaloidea + (Aculeata + Evanioidea) is corroborated by the presence of a bent cibarium. The presence of a hypopharyngeal gland, the backwards shift of the origin of the antennal muscles, the loss of the connection of the dorsal tentorial arms with the head capsule and the loss of ventral salivarial dilators are retrieved as synapomorphies of Aculeata. Two hitherto unknown glands, a hypopharyngeal salivary gland in Sphecidae and Sapygidae and a hypopharyngeal-maxillary gland in Evaniidae, are described. Key words Evanioidea, Trigonaloidea, phylogeny, head musculature, glands, microCT. 1. Introduction Aculeata or stinging wasps include some of the insect identifying Aculeata’s closest relatives has not been an- taxa with the highest ecological and economic impact swered satisfactorily. such as ants and bees, in addition to other charismatic Three hypotheses have emerged repeatedly in recent groups, e.g., gold wasps, velvet ants and spider wasps. analyses of hymenopteran phylogeny: They fill vital ecological roles as predators and pollina- 1. Aculeata + Ichneumonoidea. Traditionally, Acu- tors, often to the benefit of humankind, although their leata have been regarded as the sister group of the Ich- medical impact is usually detrimental. Furthermore, the neumonoidea, one of the most diverse superfamilies of occurrence of eusociality among Hymenoptera is re- parasitoid wasps. Two morphological characters, the stricted to Aculeata, having evolved multiple times with- presence of ovipositor valvilli and distinct propodeal ar- in the group (e.g. DANFORTH 2002). Though a lot is known ticulating processes, were suggested by RASNITSYN (1988) about this fascinating group, the fundamental question of as synapomorphies in his analysis which, though intui- ISSN 1863-7221 (print) | eISSN 1864-8312 (online) 195 Zimmermann & Vilhelmsen: The sister group of Aculeata tive, can be regarded as a milestone in the reconstruc- ed by MIKO et al. (2007) and POPOVICI et al. (2014), the tion of hymenopteran phylogeny. However, VILHELMSEN latter being limited to the labiomaxillary complex but ex- et al. (2010) found the presence of propodeal articulating amined with confocal laser scanning microscopy which processes to be widespread among the Apocrita, not re- excellently illustrates the internal anatomy in great detail. stricted to just Aculeata and Ichneumonoidea. RONQUIST Finally RONQUIST & NORDLANDER (1989) provided an ex- et al. (1999) performed a formal cladistic reanalysis of tensive description of the skeletal morphology of the ba- Rasnitsyns dataset and found moderate support for the sal cynipoid Ibalia rufipes Cresson, 1879, which serves ichneumonoid-aculeate relationship, as it was retrieved as an outgroup taxon for our analyses. under implied weighting, but not among the equally The best-examined aculeate taxon is, unsurprisingly, weighted most parsimonious trees. Additional moder- the honeybee (Apis mellifera Linné, 1758). SNODGRASS’ ate support was provided by an early molecular analysis (1910) pioneering comprehensive study of honeybee based on 16S rRNA (DOWTON & AUSTIN 1994). Further- anatomy is a good starting point. For head anatomy, more, VILHELMSEN et al. (2010) retrieved Aculeata + Ich- YOUSSEF (1971) provided a detailed topography of the neumonoidea in their analyses based on morphological cephalic musculature and nervous system and also a first data, but again solely under implied weighting. Under attempt to homologize hitherto described head anatomi- equal weighting and with higher K values (K=25) the cal structures in Hymenoptera. A detailed investigation Aculeata were placed as sister group to the remaining of the honeybee tentorium has been performed by ERICK- Apocrita except Stephanoidea. SON & SHENG (1984), and it is also covered in BERRY & 2. Aculeata + Evanioidea. The Evanioidea comprise IBBOTSON (2010) and PORTO et al. (2016). Besides bees, three families united by having the metasoma inserted there are a couple of classical detailed anatomical studies high on the mesosoma, but which are otherwise highly of other aculeates, JANET (1900, 1905) on ants (Myrmi­ divergent morphologically and biologically: the Aulaci- ca rubra [Linné, 1758]) and DUNCAN (1939) on vespids dae are parasitoids of wood-dwelling insects, the Gaster- (Vespula pensylvanica [de Saussure, 1857]) which are uptiidae nest parasites of solitary bees and the Evanii- still unsurpassed in their level of detail. dae cockroach egg capsule predators. The Evanioidea Head anatomical data for the three evanioid families emerged as the sister group of Aculeata in the most com- and for Trigonaloidea are provided in the present study prehensive analysis of hymenopteran relationships to for the first time. date (SHARKEY et al. 2012). This analysis was performed by the Tree of Life project: morphological characters and molecular data were compiled from all sources available at the time, and analyzed using a combined approach. 2. Material and methods However, only the molecular data supported Aculeata + Evaniodea in SHARKEY et al. (2012). Additional mo- lecular support was found in a subsequent analysis of 2.1. Specimens examined 120.000 sequences from 80.000 sites that were extracted from GenBank (PETERS et al. 2011). To evaluate the putative sister groups of the Aculeata, 3. Aculeata + Trigonaloidea. The Trigonaloidea are we examined one ichneumonoid, one trigonaloid, and another small superfamily containing only the Trigonali- one representative of each of the three evanioid families, dae with less than 100 species worldwide (CARMEAN & in addition to two aculeates and an ibaliid as outgroup. KIMSEY 1998). Most of them are highly specialized hy- A detailed list of the material is given in Table 1. The perparasitoids of other parasitoid Hymenoptera (WEIN- specimens were chosen based on the taxon sample of STEIN & AUSTIN 1991). In molecular analyses by HERATY the Hymenopteran Tree of Life Project (SHARKEY et al. et al. (2011) and KLOPFSTEIN et al. (2013) the Trigona- 2012). For each species one microCT scan, one sagittal loidea were retrieved as the sister group of the aculeates. and one cross section were acquired except for Doryctes Again, morphological support is missing. erythromelas, where no microCT scan was obtained. For In the present study we use characters from the inter- morphological investigations the specimens were killed nal head anatomy to test these hypotheses. Head charac- in 90% alcohol, and then fixed in alcoholic Bouin’s fluid ters have proven to be informative on higher phyloge- for 3 hours. The voucher specimens are deposited in the netic levels in previous studies in other holometabolan Hymenoptera Collection of the Natural History Museum orders (e.g. BEUTEL et al. 2009; DRESSLER & BEUTEL 2010; Vienna. RANDOLF et al. 2014), while in apocritan Hymenoptera this is a hitherto underexplored character complex. A few head anatomical studies have been done for basal Hyme- 2.2. Histological sections noptera, either on the complete head anatomy of selected species (MATSUDA 1957; BEUTEL & VILHELMSEN 2007) or In order to better allow the resin to infiltrate the speci- with focus on specific regions of the head (VILHELMSEN men, the head was carefully cut open with a scalpel on 1996, 1999, 2011). Thorough studies of the head also both sides at the eye region so that none of the structures exist for Braconidae: ALAM (1951) and, more recently, studied were damaged. Subsequently the heads were em- KARLSSON & RONQUIST (2012). Platygastridae were treat- bedded in Araldite. Semithin histological sections (2 µm) 196 ARTHROPOD SYSTEMATICS & PHYLOGENY — 74 (2) 2016 Table 1. List of studied material. Family Species Sex MicroCT Saggital his- Cross histol. Label data tol. sections sections Aulacidae Pristaulacus strangaliae f Morphosource file × × USA, West Virginia, Hardy Co. [unty],
Recommended publications
  • A New Record of Aulacidae (Hymenoptera: Evanioidea) from Korea
    Journal of Asia-Pacific Biodiversity Vol. 6, No. 4 419-422, 2013 http://dx.doi.org/10.7229/jkn.2013.6.4.00419 A New Record of Aulacidae (Hymenoptera: Evanioidea) from Korea Jin-Kyung Choi1, Jong-Chul Jeong2 and Jong-Wook Lee1* 1Department of Life Sciences, Yeungnam University, Gyeongsan, 712-749, Korea 2National Park Research Institute, Korea National Park Service, Namwon, 590-811, Korea Abstract: Pristaulacus comptipennis Enderlein, 1912 is redescribed and illustrated based on a recently collected specimen in Korea. With a newly recorded species, P. comptipennis Enderlein, a total of six Korean aulacids are recognized: Aulacus salicius Sun and Sheng, 2007, Pristaulacus insularis Konishi, 1990, P. intermedius Uchida, 1932, P. kostylevi Alekseyev, 1986, P. jirisani Smith and Tripotin, 2011, and P. comptipennis Enderlein, 1912. A key to species of Korean Aulacidae is provided with, redescription and diagnostic characteristics of Pristaulacus comptipennis. Keywords: Aulacidae, Pristaulacus comptipennis, new record, Korea Introduction of Yeungnam University (YNU, Gyeongsan, Korea). Also, for identification of Korean Aulacidae, type materials of Family Aulacidae currently includes 244 extant species some species were borrowed from NIBR. Images were placed in two genera: Aulacus Jurine, 1807 with 76 species obtained using a stereo microscope (Zeiss Stemi SV 11 and Pristaulacus Kieffer, 1900 with 168 species. Members Apo; Carl Zeiss, Göttingen, Germany). The key characters of this family are distributed in all zoogeographic regions shown in the photographs were produced using a Delta except Antarctica (e.g. Benoit 1984; Lee & Turrisi 2008; imaging system (i-Delta 2.6; iMTechnology, Daejeon, Smith and Tripotin 2011; Turrisi and Smith 2011). The Korea).
    [Show full text]
  • The Ecology, Behavior, and Biological Control Potential of Hymenopteran Parasitoids of Woodwasps (Hymenoptera: Siricidae) in North America
    REVIEW:BIOLOGICAL CONTROL-PARASITOIDS &PREDATORS The Ecology, Behavior, and Biological Control Potential of Hymenopteran Parasitoids of Woodwasps (Hymenoptera: Siricidae) in North America 1 DAVID R. COYLE AND KAMAL J. K. GANDHI Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 Environ. Entomol. 41(4): 731Ð749 (2012); DOI: http://dx.doi.org/10.1603/EN11280 ABSTRACT Native and exotic siricid wasps (Hymenoptera: Siricidae) can be ecologically and/or economically important woodboring insects in forests worldwide. In particular, Sirex noctilio (F.), a Eurasian species that recently has been introduced to North America, has caused pine tree (Pinus spp.) mortality in its non-native range in the southern hemisphere. Native siricid wasps are known to have a rich complex of hymenopteran parasitoids that may provide some biological control pressure on S. noctilio as it continues to expand its range in North America. We reviewed ecological information about the hymenopteran parasitoids of siricids in North America north of Mexico, including their distribution, life cycle, seasonal phenology, and impacts on native siricid hosts with some potential efÞcacy as biological control agents for S. noctilio. Literature review indicated that in the hymenop- teran families Stephanidae, Ibaliidae, and Ichneumonidae, there are Þve genera and 26 species and subspecies of native parasitoids documented from 16 native siricids reported from 110 tree host species. Among parasitoids that attack the siricid subfamily Siricinae, Ibalia leucospoides ensiger (Norton), Rhyssa persuasoria (L.), and Megarhyssa nortoni (Cresson) were associated with the greatest number of siricid and tree species. These three species, along with R. lineolata (Kirby), are the most widely distributed Siricinae parasitoid species in the eastern and western forests of North America.
    [Show full text]
  • Order Hymenoptera, Family Gasteruptiidae
    Arthropod fauna of the UAE, 6: 190–224 (2017) Order Hymenoptera, family Gasteruptiidae Christoph Saure, Christian Schmid-Egger & Cornelis van Achterberg INTRODUCTION The family Gasteruptiidae is a small group of wasps comprising about 500 described species in two subfamilies, Gasteruptiinae (four genera) (Macedo, 2011; Zhao et al., 2012) and Hyptiogastrinae (two genera) (Jennings & Austin, 2002). They are easily recognized from other Hymenoptera Apocrita by the elongated ’neck‘ (propleuron), the swollen hind tibiae and the elongate metasoma attached at a high point on the thorax. Adults are free-living insects feeding on nectar mainly on flowers with easily accessible nectar such are of the families Apiaceae, Asteraceae or Euphorbiaceae, but probably at least some Gasteruption species feed on both nectar and pollen (Jennings & Austin, 2004). Gasteruptiidae are also known by their hovering flight during inspection of bee nests (van Achterberg, 2013). The larvae feed on the larval food of solitary bees, after consuming the egg or larva of the bee (Malyshev, 1964, 1965). They select solitary bees of the families Apidae, Colletidae, Halictidae and Megachilidae nesting in stems or in wood, and less often in clay banks or other vertical soil substrates (Zhao et al., 2012; van Achterberg, 2013); as far as known, bees nesting in flat ground are far less often attacked. In Australia, members of the Hyptiogastrinae attend bee nests in the ground (Houston, 1987). There is only indirect evidence that Gasteruptiinae attack wasp nests, e.g. Crabronidae, Sphecidae and solitary Vespidae (Eumeninae) (Jennings & Austin, 2004; van Achterberg, 2013). The pupa of Gasteruptiidae hibernates until the next spring or summer (He, 2004; Jennings & Austin, 2004).
    [Show full text]
  • Description of Mature Larvae and Ecological Notes on Gasteruption Latreille
    JHR 65: 1–21 (2018)Description of mature larvae and ecological notes on Gasteruption Latreille... 1 doi: 10.3897/jhr.65.26645 RESEARCH ARTICLE http://jhr.pensoft.net Description of mature larvae and ecological notes on Gasteruption Latreille (Hymenoptera, Evanioidea, Gasteruptiidae) parasitizing hymenopterans nesting in reed galls Petr Bogusch1, Cornelis van Achterberg2, Karel Šilhán1, Alena Astapenková1, Petr Heneberg3 1 Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, CZ-500 03 Hra- dec Králové, Czech Republic 2 Department of Terrestrial Zoology, Naturalis Biodiversity Center, Pesthuislaan 7, 2333 BA Leiden, The Netherlands 3 Third Faculty of Medicine, Charles University, Ruská 87, CZ-100 00 Praha, Czech Republic Corresponding author: Petr Bogusch ([email protected]) Academic editor: M. Ohl | Received 13 May 2018 | Accepted 19 June 2018 | Published 27 August 2018 http://zoobank.org/D49D4029-A7DA-4631-960D-4B4D7F512B8D Citation: Bogusch P, van Achterberg C, Šilhán K, Astapenková A, Heneberg P (2018) Description of mature larvae and ecological notes on Gasteruption Latreille (Hymenoptera, Evanioidea, Gasteruptiidae) parasitizing hymenopterans nesting in reed galls. Journal of Hymenoptera Research 65: 1–21. https://doi.org/10.3897/jhr.65.26645 Abstract Wasps of the genus Gasteruption are predator-inquilines of bees nesting in cavities in wood, stems, galls, and vertical soil surfaces. During studies of hymenopterans associated with reed galls caused by flies of the genus Lipara we recorded three species. We provide the evidence that a rare European species Gasteruption phragmiticola is a specialized predator-inquiline of an equally rare wetland bee Hylaeus pectoralis. Gasteruption nigrescens is a predator-inquiline of bees of the family Megachilidae, using the common bee Hoplitis leucomelana as the main host.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 Pp. Donovan, B. J. 2007
    Donovan, B. J. 2007: Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 pp. EDITORIAL BOARD REPRESENTATIVES OF L ANDCARE R ESEARCH Dr D. Choquenot Landcare Research Private Bag 92170, Auckland, New Zealand Dr R. J. B. Hoare Landcare Research Private Bag 92170, Auckland, New Zealand REPRESENTATIVE OF UNIVERSITIES Dr R.M. Emberson c/- Bio-Protection and Ecology Division P.O. Box 84, Lincoln University, New Zealand REPRESENTATIVE OF M USEUMS Mr R.L. Palma Natural Environment Department Museum of New Zealand Te Papa Tongarewa P.O. Box 467, Wellington, New Zealand REPRESENTATIVE OF OVERSEAS I NSTITUTIONS Dr M. J. Fletcher Director of the Collections NSW Agricultural Scientific Collections Unit Forest Road, Orange NSW 2800, Australia * * * SERIES EDITOR Dr T. K. Crosby Landcare Research Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 57 Apoidea (Insecta: Hymenoptera) B. J. Donovan Donovan Scientific Insect Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand [email protected] Manaaki W h e n u a P R E S S Lincoln, Canterbury, New Zealand 2007 4 Donovan (2007): Apoidea (Insecta: Hymenoptera) Copyright © Landcare Research New Zealand Ltd 2007 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher. Cataloguing in publication Donovan, B. J. (Barry James), 1941– Apoidea (Insecta: Hymenoptera) / B. J. Donovan – Lincoln, N.Z. : Manaaki Whenua Press, Landcare Research, 2007. (Fauna of New Zealand, ISSN 0111–5383 ; no.
    [Show full text]
  • Managing Alternative Pollinators a Handbook for Beekeepers, Growers, and Conservationists
    Managing Alternative Pollinators A Handbook for Beekeepers, Growers, and Conservationists ERIC MADER • MARLA SPIVAK • ELAINE EVANS Fair Use of this PDF file of Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, NRAES-186 By Eric Mader, Marla Spivak, and Elaine Evans Co-published by SARE and NRAES, February 2010 You can print copies of the PDF pages for personal use. If a complete copy is needed, we encourage you to purchase a copy as described below. Pages can be printed and copied for educational use. The book, authors, SARE, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, by Eric Mader, Marla Spivak, and Elaine Evans, and co- published by SARE and NRAES.---- No use of the PDF should diminish the marketability of the printed version. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES secure web site, www.nraes.org, or by calling (607) 255-7654. The book can also be purchased from SARE, visit www.sare.org. The list price is $23.50 plus shipping and handling. Quantity discounts are available. SARE and NRAES discount schedules differ. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org SARE 1122 Patapsco Building University of Maryland College Park, MD 20742-6715 (301) 405-8020 (301) 405-7711 – Fax www.sare.org More information on SARE and NRAES is included at the end of this PDF.
    [Show full text]
  • André Nel Sixtieth Anniversary Festschrift
    Palaeoentomology 002 (6): 534–555 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2019 Magnolia Press Editorial ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.2.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:25D35BD3-0C86-4BD6-B350-C98CA499A9B4 André Nel sixtieth anniversary Festschrift DANY AZAR1, 2, ROMAIN GARROUSTE3 & ANTONIO ARILLO4 1Lebanese University, Faculty of Sciences II, Department of Natural Sciences, P.O. Box: 26110217, Fanar, Matn, Lebanon. Email: [email protected] 2State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 3Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France. 4Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain. FIGURE 1. Portrait of André Nel. During the last “International Congress on Fossil Insects, mainly by our esteemed Russian colleagues, and where Arthropods and Amber” held this year in the Dominican several of our members in the IPS contributed in edited volumes honoring some of our great scientists. Republic, we unanimously agreed—in the International This issue is a Festschrift to celebrate the 60th Palaeoentomological Society (IPS)—to honor our great birthday of Professor André Nel (from the ‘Muséum colleagues who have given us and the science (and still) national d’Histoire naturelle’, Paris) and constitutes significant knowledge on the evolution of fossil insects a tribute to him for his great ongoing, prolific and his and terrestrial arthropods over the years.
    [Show full text]
  • Occurrence and Biology of Pseudogonalos Hahnii (Spinola, 1840) (Hymenoptera: Trigonalidae) in Fennoscandia and the Baltic States
    © Entomologica Fennica. 1 June 2018 Occurrence and biology of Pseudogonalos hahnii (Spinola, 1840) (Hymenoptera: Trigonalidae) in Fennoscandia and the Baltic states Simo Väänänen, Juho Paukkunen, Villu Soon & Eduardas Budrys Väänänen, S., Paukkunen, J., Soon, V. & Budrys, E. 2018: Occurrence and bio- logy of Pseudogonalos hahnii (Spinola, 1840) (Hymenoptera: Trigonalidae) in Fennoscandia and the Baltic states. Entomol. Fennica 29: 8696. Pseudogonalos hahnii is the only known species of Trigonalidae in Europe. It is a hyperparasitoid of lepidopteran larvae via ichneumonid primary parasitoids. Possibly, it has also been reared from a symphytan larva. We report the species for the first time from Estonia, Lithuania and Russian Fennoscandia, and list all known observations from Finland and Latvia. An overview of the biology of the species is presented with a list of all known host records. S. Väänänen, Vantaa, Finland; E-mail: [email protected] J. Paukkunen, Finnish Museum of Natural History, Zoology Unit, P.O. Box 17, FI-00014 University of Helsinki, Finland; E-mail: [email protected] V. Soon, Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; E-mail: [email protected] E. Budrys, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; E-mail: [email protected] Received 27 June 2017, accepted 22 September 2017 1. Introduction ovipositor with Aculeata (Weinstein & Austin 1991). The trigonalid ovipositor is reduced and Trigonalidae is a moderately small family of par- hidden within the abdomen and it is not known if asitic wasps of little over 100 species and about it is used in egg placement (Quicke et al. 1999).
    [Show full text]
  • Components of Nest Provisioning Behavior in Solitary Bees (Hymenoptera: Apoidea)*
    Apidologie 39 (2008) 30–45 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2007055 Review article Components of nest provisioning behavior in solitary bees (Hymenoptera: Apoidea)* John L. Neff Central Texas Melittological Institute, 7307 Running Rope, Austin, Texas 78731, USA Received 13 June 2007 – Revised 28 September 2007 – Accepted 1 October 2007 Abstract – The components of nest provisioning behavior (resources per cell, transport capacity, trip dura- tion, trips per cell) are examined for a data set derived from the literature and various unpublished studies. While there is a trade-off between transport capacity and trips required per cell, the highest provisioning rates are achieved by bees carrying very large pollen loads at intermediate trip durations. Most solitary bees appear to be either egg or resource limited, so sustained provisioning rates over one cell per day are unusual. Provisioning rate / body size / transport capacity / solitary bees / trip duration 1. INTRODUCTION tradeoffs between provisioning one large cell or two small cells direct, indirect, or nonex- There is a vast literature on the foraging tac- istent? Are provisioning rates related to body tics of bees: what kinds of flowers to visit, how size? long to spend on a flower, how many flowers Provisioning rate is a general term and can in an inflorescence to visit, when to turn, and simply refer to the rate (mass per unit time) so forth. Much of this work is done within a at which foragers bring various food items framework of whether a forager should max- (pollen, nectar, oils, carrion, or whatever) to imize harvesting rate or foraging efficiency their nests.
    [Show full text]
  • A Short History Regarding the Taxonomy and Systematic Researches of Platygastroidea (Hymenoptera)
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXIV, 2011 BIOLOGY A SHORT HISTORY REGARDING THE TAXONOMY AND SYSTEMATIC RESEARCHES OF PLATYGASTROIDEA (HYMENOPTERA) O.A. POPOVICI1 and P.N. BUHL2 1 “Al.I.Cuza” University, Faculty of Biology, Bd. Carol I, nr. 11, 700506, Iasi, Romania. 2 Troldhøjvej 3, DK-3310 Ølsted, Denmark, e-mail: [email protected],dk Corresponding author: [email protected] This paper presents an overview of the most important and best-known works that were the subject of taxonomy or systematics Platygastroidea superfamily. The paper is divided into three parts. In the first part of the research surprised the early period can be placed throughout the XIXth century between Latreille and Dalla Torre. Before this period, references about platygastrids and scelionids were made by Linnaeus and Schrank, they are the ones who described the first platygastrid and scelionid respectively. In this the first period work entomologists as: Haliday, Westwood, Walker, Forster, Ashmead, Thomson, Howard, etc., the result of their work being the description of 699 scelionids species which are found quoted in Dalla Torre's catalogue. The second part of the paper is devoted to early 20th century. This vibrant work is marked by the work of two great entomologists: Kieffer and Dodd. In this period one publish the first and only global monograph of platygastrids and scelionids until now. In this monograph are twice the number of species than in Dalla Torre's catalogue which shows the magnitude of the systematic research of those moments. The third part of the paper refers to the late 20th and early 21st century.
    [Show full text]
  • Peranan Bioteknologi Di Era Industri 4.0 Untuk Meningkatkan Ketahanan Pangan Indonesia”
    PROSIDING Seminar Nasional Agroteknologi “PERANAN BIOTEKNOLOGI DI ERA INDUSTRI 4.0 UNTUK MENINGKATKAN KETAHANAN PANGAN INDONESIA” Program Studi Agroteknologi Fakultas Pertanian UPN VETERAN JATIM Penerbit : Higher Education Press PROSIDING Seminar Nasional Agroteknologi “PERANAN BIOTEKNOLOGI DI ERA INDUSTRI 4.0 UNTUK MENINGKATKAN KETAHANAN PANGAN INDONESIA” UPN VETERAN JATIM Editor : Maroeto, Kemal Wijaya , Medina Uli Alba, dan Deru Dewanti Reviewer : Ida Retno M, Nova Triani, Wiwin Windriyanti, Edang Triwahyu dan Noni Rahmadhini ISBN : 978-623-93261-5-9 Diterbitkan pertama kali dalam bahasa Indonesia oleh : Cetakan I : Februari 2021 Hak cipta dilindungi oleh undang-undang. Dilarang memproduksi atau memperbanyak sebagian atau seluruh isi buku ini tanpa seijin tertulis dari penerbit. KATA PENGANTAR Puji dan syukur kehadirat Allah SWT, Tuhan Yang Maha Esa yang terus mencurahkan rahmat dan karunia-Nya kepada kita semua, serta dengan ijinNya Seminar Nasional Agroteknologi, Fakultas Pertanian, UPN “Veteran” Jawa Timur dengan tema “Peranan Bioteknologi di Era Industri 4.0 untuk Meningkatkan Ketahanan Pangan Indonesia” dapat terlaksana dengan baik dan Prosiding ini dapat diterbitkan. Kegiatan Seminar Nasional Agroteknologi dimaksudkan untuk mengeksplorasi informasi terkini hasil penelitian yang berkaitan dengan bioteknologi dan implementasinya di bidang pertanian untuk kedaulatan pangan yang didasarkan pada era industri 4.0, sehingga dihasilkan produk pertanian yang efektif dan efisien tapi dapat menghasilkan produk yang optimal melalui pengembangan
    [Show full text]