Advances in Taxonomy and Systematics of Platygastroidea (Hymenoptera)

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Taxonomy and Systematics of Platygastroidea (Hymenoptera) Advances in Taxonomy and Systematics of Platygastroidea (Hymenoptera) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Charuwat Taekul, M.S. Graduate Program in Evolution, Ecology, and Organismal Biology ***** The Ohio State University 2012 Dissertation Committee: Dr. Norman F. Johnson, Advisor Dr. Johannes S. H. Klompen Dr. John V. Freudenstein Dr. Marymegan Daly Copyright by Charuwat Taekul 2012 ABSTRACT Wasps, Ants, Bees, and Sawflies one of the most familiar and important insects, are scientifically categorized in the order Hymenoptera. Parasitoid Hymenoptera display some of the most advanced biology of the order. Platygastroidea, one of the significant groups of parasitoid wasps, attacks host eggs more than 7 insect orders. Despite its success and importance, an understanding of this group is still unclear. I present here the world systematic revisions of two genera in Platygastroidea: Platyscelio Kieffer and Oxyteleia Kieffer, as well as introduce the first comprehensive molecular study of the most important subfamily in platygastroids as biological control benefit, Telenominae. For the systematic study of two Old World genera, I address the taxonomic history of the genus, identification key to species, as well as review the existing concepts and propose descriptive new species. Four new species of Platyscelio are discovered from South Africa, Western Australia, Botswana and Zimbabwe. Four species are considered to be junior synonyms of P. pulchricornis. Fron nine valid species of Oxyteleia, the new species are discovered throughout Indo-Malayan and Australasian regions in total of twenty-seven species. The genus Merriwa Dodd, 1920 is considered to be a new synonym. To better understanding of the relationships of subfamily Telenominae, I reconstruct the phylogeny based on approximately 3.7 kb of DNA sequence from 4 ii molecular markers (18S, 28S, COI and EF1-α) expanding 80 terminals: 6 genera (11 species groups), 5 broad-ranged out group genera. Results are drawn from both parsimony and statistical analyses (Bayesian and Maximum likelihood), and from 6 character coding and partitioning schemes. The molecular evidence showed that the subfamily is not monophyletic: one clade, the Psix group of genera, forms a monophyletic group with species of the tribe Gryonini, subfamily Scelioninae. Monophyletic clades were recovered with strong support including (Psix+Paratelenomus) and Gryon; Telenominae, s.str. (without Gryon and Psix group of genera); Phanuromyia and Telenomus crassiclava species group; Telenomus laricis species group; and Telenomus longicornis species group. The genera Eumicrosoma and Platytelenomus are nested within Telenomus californicus species complex. Pentatomoidea (Hemiptera) is the plesiomorphic host. The species in the clade Phanuromyia + Telenomus crassiclava species group all shared the same host group, Auchenorrhyncha (Hemiptera: Fulgoridae and Flatidae). The monophyly of the major genera Telenomus and Trissolcus is not supported; the interrelationships of their component species are largely unresolved. iii Dedication This work is dedicated to all of those in the United States and Thailand who gave me the opportunity and inspiration to work hard, overcome every kind of scientific and cultural obstacle, and see this project through to a successful conclusion. iv ACKNOWLEDGMENTS I have been passionate for detail, organizing, illustration, and nature since I was young. I am very lucky that my characters are related to my professional career. The dream of becoming systematist, however, would not have come true without the involvement of several people and I am most deeply indebted to my mentors, colleagues, friends, and family. First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Norman F. Johnson, for the intellectual support, encouragement, and the hours of his dedicated works making me a better scientist. I am thankful for his patience with my insanity, as well as for the logic and intellect that he impressed upon me. He truly is the role model. I would also like to express my gratitude to the members of my committee, Dr. Johannes S. H. Klompen, Dr. John V. Freudenstein, and Dr. Marymegan Daly, for providing guidance and support throughout my graduate education. I am grateful to Dr.Hans to put up with a whining student in the molecular lab. Thanks to John V.F. giving me many unforgettable memories, the discussion at MBD lunch table in particular. I thanks to Dr. Meg’s enthusiasm, giving me more energy. I also thank to Dr. John Wenzel, my former committee member, for advice and encouragement. v One chapter of this research, the molecular phylogeny of Telenominae, could not have succeeded with the primary help from two people: Dr. Alejandro A. Valerio (molecular technique and discussion) and Joseph R. Cora (statistical analyses). I am indebted to their support. This research would not be complete without the help of other taxonomists, from whom the specimens of my study have been borrowed, allowing me to examine approximately more than 1500 loaned specimens. Thanks also must be given to the curators of the museums indicated in the publications. I am grateful to the officemate I have made during my stay, Elijah J. Talamas, for giving me stimulating discussions, moral support and encouragement in both life and study. I would finally like to thank the following members of the Ohio State University Insect Collection, who made my life here more enjoyable: Dr. Luciana Musetti, Dr. Roger A. Burks, Joseph R. Cora, and Sara E. Hemly. My intellectual and philosophical knowledge could not be improved without surrounding by several scholars at MBD. I thanks to these people: Mike Broe, Ryan Folk, Ryan Caesar, Glene Mynhardt, Jeff Rose, Brandon Sinn, Mesfin Tadesse, Ryan Kitko, Paul Larson, Erin Morris, Elijah Talamas, Alejandro Valerio, and Matt Yoder. My graduate study was supported by the Agricultural Research Development Agency, Ministry of Agriculture and Cooperatives, Thailand, and by the National Science Foundation, USA. vi On a personal note, I thank to Carey K. S., Havely M., Khunying Prapaisri Pitakprivan, and Dr. Manita Kongchuensin for moral support and always believing in me. I am pleased to thank my parents, Dumrong and Jarunee Taekul, and both my elder brother and sister, Natthakarn and Tanate Taekul, for moral support. The last six years in my graduate program have meant more to me than the study of systematics, describing species, molecular systematics, and mastering the English language. I now have a better understanding of the importance of passions, sciences, nature, and thus have grown to love the flora and fauna of the world more than ever before. vii VITA December 18, 1975 ....................................................Born – Krabi, Thailand March 1998 ................................................................B.S. Entomology (Honors) Kasetsart University, Thailand 1999 – Present ............................................................Official Government, Department of Agriculture, Ministry of Agriculture and Cooperatives, Thailand. 2008............................................................................M.S. Entomology, The Ohio State University, USA 2010 – 2011................................................................Research Aide, Department of Evolution, Ecology and Organismal Biology, The Ohio State University PUBLICATIONS 1. Taekul, C., Johnson, N.F., Masner, L., Polaszek, A. & Rajmohana, K. (2010) World species of the genus Platyscelio Kieffer (Hymenoptera: Platygastridae). Zookeys, 50:97 – 126. 2. Taekul, C., Johnson, N.F., Masner,L., Rajmohana K., & Shu–Pei, C. (2008) Revision of the world species of the genus Fusicornia Risbec (Hymenoptera: Platygastridae, Scelioninae). Zootaxa, 1966:1–52 viii FIELD OF STUDY Major Field: Evolution, Ecology, and Organismal Biology Areas of Emphasis: Entomology, Taxonomy, Systematics, and Molecular Phylogeny ix TABLE OF CONTENTS Page Abstract .......................................................................................................................... ii Dedication ...................................................................................................................... iv Acknowledgments........................................................................................................... v Vita .............................................................................................................................. viii List of Tables ................................................................................................................ xv List of Figures ............................................................................................................ xvii Chapters: 1. General Introduction ................................................................................................... 1 Hymenoptera ....................................................................................................... 1 Parasitoid Hymenoptera ...................................................................................... 2 Superfamily Platygastroidea ............................................................................... 3 Taxonoic history ................................................................................................. 3 Diversity and geographic distribution ................................................................
Recommended publications
  • The Influence of Prairie Restoration on Hemiptera
    CAN THE ONE TRUE BUG BE THE ONE TRUE ANSWER? THE INFLUENCE OF PRAIRIE RESTORATION ON HEMIPTERA COMPOSITION Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Biology By Stephanie Kay Gunter, B.A. Dayton, Ohio August 2021 CAN THE ONE TRUE BUG BE THE ONE TRUE ANSWER? THE INFLUENCE OF PRAIRIE RESTORATION ON HEMIPTERA COMPOSITION Name: Gunter, Stephanie Kay APPROVED BY: Chelse M. Prather, Ph.D. Faculty Advisor Associate Professor Department of Biology Ryan W. McEwan, Ph.D. Committee Member Associate Professor Department of Biology Mark G. Nielsen Ph.D. Committee Member Associate Professor Department of Biology ii © Copyright by Stephanie Kay Gunter All rights reserved 2021 iii ABSTRACT CAN THE ONE TRUE BUG BE THE ONE TRUE ANSWER? THE INFLUENCE OF PRAIRIE RESTORATION ON HEMIPTERA COMPOSITION Name: Gunter, Stephanie Kay University of Dayton Advisor: Dr. Chelse M. Prather Ohio historically hosted a patchwork of tallgrass prairies, which provided habitat for native species and prevented erosion. As these vulnerable habitats have declined in the last 200 years due to increased human land use, restorations of these ecosystems have increased, and it is important to evaluate their success. The Hemiptera (true bugs) are an abundant and varied order of insects including leafhoppers, aphids, cicadas, stink bugs, and more. They play important roles in grassland ecosystems, feeding on plant sap and providing prey to predators. Hemipteran abundance and composition can respond to grassland restorations, age of restoration, and size and isolation of habitat.
    [Show full text]
  • Hymenoptera: Platygastridae) Parasitizing Pauropsylla Cf
    2018 ACTA ENTOMOLOGICA 58(1): 137–141 MUSEI NATIONALIS PRAGAE doi: 10.2478/aemnp-2018-0011 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu SHORT COMMUNICATION A new species of Synopeas (Hymenoptera: Platygastridae) parasitizing Pauropsylla cf. depressa (Psylloidea: Triozidae) in India Kamalanathan VEENAKUMARI1,*), Peter Neerup BUHL2) & Prashanth MOHANRAJ1) 1) National Bureau of Agricultural Insect Resources, P.B. No. 2491, Hebbal, 560024 Bangalore, India; e-mail: [email protected]; [email protected] 2) Troldhøjvej 3, DK-3310 Ølsted, Denmark; e-mail: [email protected] *) corresponding author Accepted: Abstract. Synopeas pauropsyllae Veenakumari & Buhl, sp. nov., a new species of Synopeas 23rd April 2018 Förster, 1856 (Hymenoptera: Platygastroidea: Platygastridae: Platygastrinae), is recorded from Published online: galls induced by Pauropsylla cf. depressa Crawford, 1912 (Hemiptera: Psylloidea: Triozidae) 29th May 2018 on Ficus benghalensis L. (Moraceae) in India. It is concluded that S. pauropsyllae is a pa- rasitoid of this psyllid species. This is the fi rst record of a platygastrid parasitizing this host. Key words. Hymenoptera, parasitoid wasp, Hemiptera, Sternorrhyncha, psyllid, taxonomy, gall, host plant, Ficus, India, Oriental Region Zoobank: http://zoobank.org/urn:lsid:zoobank.org:pub:5D64E6E7-2F4C-4B40-821F-CBF20E864D7D © 2018 The Authors. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Licence. Introduction inducing plant galls are mostly scale insects, aphids and With more than 5700 species and 264 genera, Platy- psyllids. Among psyllids (Hemiptera: Sternorrhyncha: gastroidea is the third largest superfamily in the parasitic Psylloidea), several families are known to induce galls; Hymenoptera after Ichneumonoidea and Chalcidoidea gall-making species are particularly numerous in Triozidae, (AUSTIN et al.
    [Show full text]
  • Twenty Three Species of Platygastrinae (Hymenoptera: Platygastridae) New to the Fauna of Poland
    Acta entomologica silesiana Vol. 26: (online 016): 1–7 ISSN 1230-7777, ISSN 2353-1703 (online) Bytom, April 4, 2018 Twenty three species of Platygastrinae (Hymenoptera: Platygastridae) new to the fauna of Poland http://doi.org/10.5281/zenodo.1212271 PETER NEERUP BUHL1, Paweł Jałoszyński2 1 Troldhøjvej 3, DK-3310 Ølsted, Denmark, e-mail: [email protected] 2 Muzeum Przyrodnicze Uniwersytetu Wrocławskiego, ul. Sienkiewicza 21, 50-335 Wrocław, e-mail: [email protected] ABSTRACT. Twenty three species of Platygastrinae (Hymenoptera: Platygastridae) new to the fauna of Poland. New distributional records of twenty three species of Platygastrinae (Hymenoptera: Platygastridae) are given, all reported for the first time from Poland: Gastrotrypes caudatus Brues, Leptacis coryphe BUHL, Platygaster betularia kieffer, P. damokles (BUHL), P. frater BUHL, P. germanica BUHL, P. gracilipes HUGGERT, P. microsculpturata BUHL, P. philinna walker, P. robiniae Buhl & Duso, P. signata (foerster), P. soederlundi BUHL, P. splendidula RUTHE, P. striatithorax BUHL, P. varicornis BUHL, Prosactogaster erdosi szelenyi, Synopeas convexum thomson, S. doczkali BUHL, S. fungorum BUHL, S. jasius (walker), S. noyesi BUHL, S. osaces (walker) and Trichacis pisis (walker). The new records increase the number of Platygastrinae known to occur in Poland to 124 species. KEY WORDS: Hymenoptera, Platygastroidea, Platygastridae, Platygastrinae; faunistics, new records, Poland. INTRODUCTION Since the synopsis of GarBarczyk (1997), who listed from Poland 56 species of Platygastrinae (i.e., Platygastridae excluding Scelionidae and Sceliotrachelidae, as accepted by most authors today), a substantial progress has been made in the faunistic study of this group of tiny parasitoid wasps. Two species, Synopeas bialowiezaensis BUHL, 2005 and Platygaster polonica Buhl & Jałoszyński, 2016a were described based on specimens known only from Poland, and Inostemma kaponeni BUHL, 2005 was described from Finland and Poland.
    [Show full text]
  • Evaluating the Potential of Using Spodoptera Litura Eggs for Mass-Rearing Telenomus Remus, a Promising Egg Parasitoid of Spodoptera Frugiperda
    insects Article Evaluating the Potential of Using Spodoptera litura Eggs for Mass-Rearing Telenomus remus, a Promising Egg Parasitoid of Spodoptera frugiperda Wanbin Chen , Yuyan Li , Mengqing Wang, Jianjun Mao and Lisheng Zhang * State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (W.C.); [email protected] (Y.L.); [email protected] (M.W.); [email protected] (J.M.) * Correspondence: [email protected]; Tel.: +86-10-6281-5909 Simple Summary: Telenomus remus (Nixon) is an effective egg parasitoid for controlling Spodoptera frugiperda (J. E. Smith), which is a major destructive agricultural pest. Currently, this parasitoid is reared on Corcyra cephalonica (Stainton) eggs in several countries. However, previous studies carried out in China have reported that it cannot parasitize in C. cephalonica eggs. Meanwhile, those works have indicated that Spodoptera litura (Fabricius) can potentially be used as an alternative host. In order to evaluate this potential, our study compared the development and parasitism ability of T. remus on the eggs of S. frugiperda and S. litura at different temperatures in a laboratory. We found that S. litura eggs are more advantageous as an alternative host for the mass-rearing of parasitoid when compared with S. frugiperda eggs. Our results provide a more specific basis and reference for the large-scale Citation: Chen, W.; Li, Y.; Wang, M.; production and low temperature storage of T. remus. Mao, J.; Zhang, L. Evaluating the Potential of Using Spodoptera litura Abstract: Although Telenomus remus, a promising parasitoid of Spodoptera frugiperda, had been Eggs for Mass-Rearing Telenomus successfully reared on the eggs of Corcyra cephalonica in some countries, reports from China have remus, a Promising Egg Parasitoid of argued that it is infeasible.
    [Show full text]
  • Large Positive Ecological Changes of Small Urban Greening Actions Luis Mata, Amy K. Hahs, Estibaliz Palma, Anna Backstrom, Tyler King, Ashley R
    Large positive ecological changes of small urban greening actions Luis Mata, Amy K. Hahs, Estibaliz Palma, Anna Backstrom, Tyler King, Ashley R. Olson, Christina Renowden, Tessa R. Smith and Blythe Vogel WebPanel 2 Table S2.1. List of the 94 insect species that were recorded during the study. DET: Detritivore; HER: Herbivore; PRE: Predator; PAR: Parasitoid. All species are indigenous to the study area, excepting those marked with an *. Year 0 Year 1 Year 2 Year 3 Species/morphospecies Common name Family DET HER PRE PAR [2016] [2017] [2018] [2019] Hymenoptera | Apocrita Apocrita 5 Apocrita 5 Apocrita 33 Apocrita 33 Apocrita 36 Apocrita 36 Apocrita 37 Apocrita 37 Apocrita 40 Apocrita 40 Apocrita 44 Apocrita 44 Apocrita 46 Apocrita 46 Apocrita 48 Apocrita 48 Apocrita 49 Apocrita 49 Apocrita 51 Apocrita 51 Apocrita 52 Apocrita 52 Apocrita 53 Apocrita 53 Apocrita 54 Apocrita 54 Apocrita 55 Apocrita 55 Apocrita 56 Apocrita 56 Apocrita 57 Apocrita 57 Apocrita 58 Apocrita 58 Apocrita 59 Apocrita 59 Apocrita 60 Apocrita 60 Apocrita 61 Apocrita 61 Apocrita 62 Apocrita 62 Apocrita 65 Apocrita 65 Apocrita 74 Apocrita 74 Apocrita 89 Apocrita 89 Apocrita 90 Apocrita 90 Apocrita 91 Apocrita 91 Hymenoptera | Apoidea | Anthophila Anthophila 1 Anthophila 1 Anthophila 3 Anthophila 3 Apis mellifera* European honeybee Apidae Diptera | Brachycera Brachycera 2 Brachycera 2 Brachycera 7 Brachycera 7 Brachycera 8 Brachycera 8 Brachycera 14 Brachycera 14 Brachycera 15 Brachycera 15 Brachycera 16 Brachycera 16 Brachycera 18 Brachycera 18 Brachycera 19 Brachycera
    [Show full text]
  • Diversity and Abundance of Insect Herbivores Foraging on Seedlings in a Rainforest in Guyana
    R Ecological Entomology (1999) 24, 245±259 Diversity and abundance of insect herbivores foraging on seedlings in a rainforest in Guyana YVES BASSET CABI Bioscience: Environment, Ascot, U.K. Abstract. 1. Free-living insect herbivores foraging on 10 000 tagged seedlings representing ®ve species of common rainforest trees were surveyed monthly for more than 1 year in an unlogged forest plot of 1 km2 in Guyana. 2. Overall, 9056 insect specimens were collected. Most were sap-sucking insects, which represented at least 244 species belonging to 25 families. Leaf-chewing insects included at least 101 species belonging to 16 families. Herbivore densities were among the lowest densities reported in tropical rainforests to date: 2.4 individuals per square metre of foliage. 3. Insect host speci®city was assessed by calculating Lloyd's index of patchiness from distributional records and considering feeding records in captivity and in situ. Generalists represented 84 and 78% of sap-sucking species and individuals, and 75 and 42% of leaf-chewing species and individuals. In particular, several species of polyphagous xylem-feeding Cicadellinae were strikingly abundant on all hosts. 4. The high incidence of generalist insects suggests that the Janzen±Connell model, explaining rates of attack on seedlings as a density-dependent process resulting from contagion of specialist insects from parent trees, is unlikely to be valid in this study system. 5. Given the rarity of ¯ushing events for the seedlings during the study period, the low insect densities, and the high proportion of generalists, the data also suggest that seedlings may represent a poor resource for free-living insect herbivores in rainforests.
    [Show full text]
  • Hymenoptera: Platygastroidea: Scelionidae) in Western Iran
    Published May 5, 2011 Klapalekiana, 47: 75–82, 2011 ISSN 1210-6100 Distribution of scelionid wasps (Hymenoptera: Platygastroidea: Scelionidae) in Western Iran Rozšíření čeledi Scelionidae (Hymenoptera: Platygastroidea) v západním Íránu Najmeh SAMIN1), Mahmood SHOJAI1), Erhan KOÇAK2) & Hassan GHAHARI1) 1) Department of Entomology, Islamic Azad University, Science and Research Branch, P. O. Box 14515/775, Poonak, Hesarak, Tehran, Iran; e-mail: [email protected]; [email protected] 2) Ministry of Agriculture, Central Plant Protection Research Institute, 06172 PK: 49, Yenimahalle Street, Ankara, Turkey; e-mail: [email protected] Scelionidae, parasitoid, distribution, Western Iran, Palaearctic region Abstract. The fauna of Scelionid wasps (Hymenoptera: Scelionidae) from Western Iran (Ilam, Kermanshah, Kur- distan, Khuzestan and West Azarbaijan provinces) is studied in this paper. In total 18 species of 5 genera (Anteris Förster, 1856, Psix Kozlov et Le, 1976, Scelio Latreille, 1805, Telenomus Haliday, 1833 and Trissolcus Ashmead, 1893) were collected. Of these, Anteris simulans Kieffer, 1908 is new record for Iran. INTRODUCTION Scelionidae (Hymenoptera) are primary, solitary endoparasitoids of the eggs of insects from most major orders and occasionally of spider eggs (Masner 1995). Members of this large family are surprisingly diverse in appearance, depending on the shape and size of the host egg from which they emerged: cylindrical to depressed, elongate and spindle-shaped to short, squat and stocky (Kononova 1992, Masner 1993). All scelionid wasps are parasitoids of the eggs of other arthropods, that is, females lay their own eggs within the eggs of other species of insects or spiders. The wasp larva that hatches consumes the contents of the host egg and pupates within it.
    [Show full text]
  • Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha Halys in Europe with a Large-Scale Monitoring Program
    insects Article Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha halys in Europe with a Large-Scale Monitoring Program Livia Zapponi 1 , Francesco Tortorici 2 , Gianfranco Anfora 1,3 , Simone Bardella 4, Massimo Bariselli 5, Luca Benvenuto 6, Iris Bernardinelli 6, Alda Butturini 5, Stefano Caruso 7, Ruggero Colla 8, Elena Costi 9, Paolo Culatti 10, Emanuele Di Bella 9, Martina Falagiarda 11, Lucrezia Giovannini 12, Tim Haye 13 , Lara Maistrello 9 , Giorgio Malossini 6, Cristina Marazzi 14, Leonardo Marianelli 12 , Alberto Mele 15 , Lorenza Michelon 16, Silvia Teresa Moraglio 2 , Alberto Pozzebon 15 , Michele Preti 17 , Martino Salvetti 18, Davide Scaccini 15 , Silvia Schmidt 11, David Szalatnay 19, Pio Federico Roversi 12 , Luciana Tavella 2, Maria Grazia Tommasini 20, Giacomo Vaccari 7, Pietro Zandigiacomo 21 and Giuseppino Sabbatini-Peverieri 12,* 1 Centro Ricerca e Innovazione, Fondazione Edmund Mach (FEM), Via Mach 1, 38098 S. Michele all’Adige, TN, Italy; [email protected] (L.Z.); [email protected] (G.A.) 2 Dipartimento di Scienze Agrarie, Forestali e Alimentari, University di Torino (UniTO), Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy; [email protected] (F.T.); [email protected] (S.T.M.); [email protected] (L.T.) 3 Centro Agricoltura Alimenti Ambiente (C3A), Università di Trento, Via Mach 1, 38098 S. Michele all’Adige, TN, Italy 4 Fondazione per la Ricerca l’Innovazione e lo Sviluppo Tecnologico dell’Agricoltura Piemontese (AGRION), Via Falicetto 24, 12100 Manta, CN,
    [Show full text]
  • Hymenoptera, Platygastridae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen Jahr/Year: 1997 Band/Volume: 49 Autor(en)/Author(s): Buhl Peter Neerup Artikel/Article: Revision of some types of Platygastrinae described by A. Förster (Hymenoptera, Platygastridae). 21-28 ©Arbeitsgemeinschaft Österreichischer Entomologen, Wien, download unter www.biologiezentrum.at Z.Arb.Gem.Öst.Ent. 49 21-28 Wien, 15.5. 1997 ISSN 0375-5223 Revision of some types of Platygastrinae described by A. FÖRSTER (Hymenoptera, Platygastridae) Peter Neerup BUHL Abstract FÖRSTER's types of Amblyaspis walkeri, Synopeas melampus, S. rigidicornis, S. prospectus, Sactogaster curvicauda, and S. subaequalis are redescribed. Synopeas melampus and S. rigidicornis are transferred back to Synopeas from Leptacis, placed there by H. J. VLUG in 1973. Sactogaster longicauda and 5. pisi are proposed as new synonyms for Sactogaster curvicauda. Synopeas melampus sensu KOZLOV is given the new name S. sculpturatus. Key words: Platygastridae, taxonomy, redescriptions, types, synonymies, new names. Introduction The platygastrid types of Arnold FÖRSTER, deposited in the „Naturhistorisches Museum" in Vienna, were designated and commented upon by VLUG (1973). However, FöRSTER's very short and ina- dequate original descriptions also make a redescription of his types necessary. Recently, the types belonging to genus Platygaster were redescribed by BUHL(1996). The remaining species described by FÖRSTER (1856, 1861 ) are revised below, except Monocrita affinis FÖRSTER, 1861, M. monheimi FÖRSTER, 1861 and Synopeas nigriscapis FÖRSTER, 1861. Redescriptions and comments Amblyaspis walkeri FÖRSTER, 1861 (Figs 1-4) Lectotype 9: Body length 1.5 mm. Colour blackish; scape and legs yellowish; mandibles and coxae reddish.
    [Show full text]
  • Genomes of the Hymenoptera Michael G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes.
    [Show full text]
  • Phragmites Australis
    Journal of Ecology 2017, 105, 1123–1162 doi: 10.1111/1365-2745.12797 BIOLOGICAL FLORA OF THE BRITISH ISLES* No. 283 List Vasc. PI. Br. Isles (1992) no. 153, 64,1 Biological Flora of the British Isles: Phragmites australis Jasmin G. Packer†,1,2,3, Laura A. Meyerson4, Hana Skalov a5, Petr Pysek 5,6,7 and Christoph Kueffer3,7 1Environment Institute, The University of Adelaide, Adelaide, SA 5005, Australia; 2School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; 3Institute of Integrative Biology, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich,€ Switzerland; 4University of Rhode Island, Natural Resources Science, Kingston, RI 02881, USA; 5Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, CZ-25243, Pruhonice, Czech Republic; 6Department of Ecology, Faculty of Science, Charles University, CZ-12844, Prague 2, Czech Republic; and 7Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa Summary 1. This account presents comprehensive information on the biology of Phragmites australis (Cav.) Trin. ex Steud. (P. communis Trin.; common reed) that is relevant to understanding its ecological char- acteristics and behaviour. The main topics are presented within the standard framework of the Biologi- cal Flora of the British Isles: distribution, habitat, communities, responses to biotic factors and to the abiotic environment, plant structure and physiology, phenology, floral and seed characters, herbivores and diseases, as well as history including invasive spread in other regions, and conservation. 2. Phragmites australis is a cosmopolitan species native to the British flora and widespread in lowland habitats throughout, from the Shetland archipelago to southern England.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]