Water Vapor Wwwater Is Known by Differferferent Names in Differferferent States

Total Page:16

File Type:pdf, Size:1020Kb

Water Vapor Wwwater Is Known by Differferferent Names in Differferferent States Relative Humidity, Dewpoint, Mixing Ratio… The Many Faces of Water Vapor WWWater is known by differferferent names in differferferent states. It can be measured in many ways and described with various terms. The following article explains the behavior of water vapor in air and clarifies the terminology used to describe it. It is said that a beloved child volume of dry air is oxygen and pressure, so the tea water would this air enters a building it is has many names. This also around 1% is typically argon. boil at well below 70 °C. heated to +21 °C, but the applies to water, including amount of water remains water in gaseous form, which is Water vapor pressure Pw Relative humidity RH (%) constant – no water is removed the source of all life on our (hPa, PSI, Pa, mbar, mmHg, Relative humidity is the most or added to the air in normal planet. Most of us have heard of inHg, mmH20 or inH2O) commonly used humidity unit. ventilation systems. Because of relative humidity and dewpoint The air temperature dictates ‘Relatively’ few people, however, this heating, the saturation temperature, but there are the maximum partial water understand what it means. pressure of the water vapor rises many other ways to measure vapor pressure in air, in other The ‘relative’ in relative (i.e. the maximum possible the presence of water. Partial words, the water vapor humidity expresses the relation amount of water vapor in the water vapor pressure, absolute saturation pressure. The ability between the amount of water air), but the partial pressure of humidity, frostpoint, mixing of water to be gaseous form is vapor present and the the water vapor is unchanged. In ratio, wet bulb temperature and strongly dependent on its maximum amount that is this case, the relative humidity even enthalpy all describe the temperature (See Figure 1: physically possible at that will drop to 5%, which is usually humidity of a gas. Water vapor saturation pressure temperature. In other words, considered too dry for comfort. When the term humidity is curve). The higher the relative humidity, expressed in Temperature changes also used, we usually mean water temperature, the higher the per cent, is the partial water explain why we can sometimes vapor in a gas, typically air. partial pressure of the water vapor pressure in relation to the ‘see our breath’ outdoors. Moisture, on the other hand, is vapor. The partial water vapor saturation pressure. Consider what happens when used for liquids and solid pressure in the immediate we stand outside on a cool % RH= 100% * (p w / p ws ) materials. The term moisture presence of liquid water equals spring morning, at +7 °C and where: also applies to extremely dry the saturation pressure at that 80% RH. As we exhale air at P w = partial water vapor gases, when water vapor is specific temperature. about +32 °C and 90% RH, it pressure considered an impurity. cools rapidly, reaching the Pws = water vapor’s Figure 1. Water vapor saturation saturation point at around +30 saturation pressure Properties of gas mixtures pressure curve °C. As the cooling continues, A full understanding of the If the maximum amount of excess water vapor condenses various terms for humidity and water vapor has been reached into tiny water droplets, which moisture require some basic and more water is introduced we see as steam or mist. knowledge about the properties into the air, an equal amount of of gas mixtures. water must transform back to Dewpoint temperature In a gas mixture such as liquid or solid form through Td (°C or °F) air, the total pressure (same as condensation. At this point, the This brings us to another widely atmospheric or barometric air is said to be saturated with used humidity unit: dewpoint pressure) of the gas is the sum water, and the relative humidity temperature (°C or °F). Dewpoint of all the individual pressures of At 100 °C, the boiling point is 100%. On the other end of the is the temperature where its gas components. The of water, the water vapor scale, when there is no water condensation begins, or where atmospheric pressure, usually pressure surpasses normal vapor in the air, the relative the relative humidity would be around 1000 hPa, is the total of atmospheric pressure. In this humidity is 0% whatever the 100% if the air was cooled. This the partial gas pressure of light, the boiling point of a temperature, In other words, is readily apparent from the nitrogen (~775 hPa), oxygen liquid is dependent not only on relative humidity always lies diagram for water vapor, given (~10 hPa), argon (~10 hPa), the physical properties of the between 0 and 100%. that dewpoint is just a more carbon dioxide (~0.4 hPa) and a liquid, but also on the As mentioned, the ability intelligible way to express partial number of other gases with surrounding atmospheric of air to hold water vapor is water vapor pressure (see Figure lower partial pressures. All pressure. If the mountain strongly dependent on 2: Dewpoint of gas at 42% RH). gases produce the same climber made himself a cup of temperature. This means that Even though dewpoint is pressure and volume with the tea on top of Mount Everest, the relative humidity is also expressed as a temperature, it same number of molecules, so taste would probably leave strongly temperature correlates with the amount of the partial pressures also something to be desired. The dependent. Let’s imagine that water vapor in the air, and is represent the proportion by atmospheric pressure at an the outside temperature on a therefore not dependent on volume of the various gases. altitude of 8,800 meters is only crisp winter day is -14 °C and ambient temperature. Dewpoint On this basis, 21% of the total about one-third the sea level the relative humidity is 60%. As temperature is always less than or equal to the actual glass. These small water processes the pressure must be Water activity aw temperature, with the extremes droplets are called dew. known in order to calculate Water activity can be defined for normal outdoor air being – If the temperature of the mixing ratio from other as the free moisture available in 30°C and +30°C. Dryer and drink is above the dewpoint humidity variables. material as opposed to the wetter gases can be found in temperature of air, the relative Mixing ratio is mainly used chemically bound moisture. In industrial environments, for humidity of the air surrounding for calculating water content simple terms, water activity is example, where dewpoints the glass will be higher than the when the mass flow of air is the equilibrium relative between –100 °C and +100 °C ambient humidity, but no visible known, for example, in humidity created by a sample are sometimes measured. condensation will occur. ventilation systems. of material in a sealed air space. Theoretically, the dewpoint Water activity is used in temperature can be as low as – Frostpoint Tf (C° or °F) Wet bulb temperature connection with moisture in oil 273 °C (absolute zero), but at a If the dewpoint temperature is Tw (°C or °F) measurements. It indicates normal atmospheric pressure it below the freezing point, the As water evaporates, it directly if there is a risk of free can never exceed 100 °C. When term frostpoint is sometimes consumes heat. This cooling water formation. With a relative the dewpoint is 100 °C, the air used. The water vapor effect depends on the ambient scale from 0 (no water present) only contains water vapor and saturation pressure of ice is temperature and the difference to 1 (the oil is saturated with no other gas, so the amount of slightly lower than that of water, between the water vapor water) it gives a reliable water cannot be raised without which must be taken into pressure of the ambient air and indication of how close the oil is increasing the density of the account when calculating the saturation pressure at that to the saturation point. The vapor, and hence the pressure. frostpoint. When frost actually temperature. By measuring the advantage of aw is that the forms on a surface, it always cooling effect, it is therefore measurement is independent Figure 2: occurs at the frostpoint, and not possible to determine the of oil type, age and Dewpoint of gas at 42% RH at the dewpoint temperature. ambient relative humidity. The temperature. cooling effect is measured with Absolute Humidity a a psychrometer, an instrument Available as calculated (g/m 3 or gr/ft3) with two thermometers, one of variable Absolute humidity refers to the which is covered by a wet cloth. Vaisala has a choice of products weight of water in a certain The reading of this for measuring relative humidity, volume of gas. For example, on thermometer is called the wet temperature and dewpoint. a typical summer day (+23°, bulb temperature. Wet bulb Some products also have built- 55% RH), there are 11.3 grams temperature can also be in calculation options to give of water vapor per cubic meter. calculated from the outputs in terms of other The density of air varies with temperature, pressure and humidity variables mentioned The water vapor saturation pressure, so the absolute relative humidity. in this article. For example pressure at different humidity depends quite Vaisala HUMICAP ® Humidity temperatures is a known strongly on the gas pressure. In Enthalpy h and Temperature Transmitter variable, so the dewpoint can be pressurized processes, the (kJ/kg or Btu/lb) Series HMT330 provides the calculated from the relative pressure must be known in Enthalpy is a unit expressing most flexible measurement humidity and temperature.
Recommended publications
  • Chapter 5 Measures of Humidity Phases of Water
    Chapter 5 Atmospheric Moisture Measures of Humidity 1. Absolute humidity 2. Specific humidity 3. Actual vapor pressure 4. Saturation vapor pressure 5. Relative humidity 6. Dew point Phases of Water Water Vapor n o su ti b ra li o n m p io d a a at ep t v s o io e en s n d it n io o n c freezing Liquid Water Ice melting 1 Coexistence of Water & Vapor • Even below the boiling point, some water molecules leave the liquid (evaporation). • Similarly, some water molecules from the air enter the liquid (condense). • The behavior happens over ice too (sublimation and condensation). Saturation • If we cap the air over the water, then more and more water molecules will enter the air until saturation is reached. • At saturation there is a balance between the number of water molecules leaving the liquid and entering it. • Saturation can occur over ice too. Hydrologic Cycle 2 Air Parcel • Enclose a volume of air in an imaginary thin elastic container, which we will call an air parcel. • It contains oxygen, nitrogen, water vapor, and other molecules in the air. 1. Absolute Humidity Mass of water vapor Absolute humidity = Volume of air The absolute humidity changes with the volume of the parcel, which can change with temperature or pressure. 2. Specific Humidity Mass of water vapor Specific humidity = Total mass of air The specific humidity does not change with parcel volume. 3 Specific Humidity vs. Latitude • The highest specific humidities are observed in the tropics and the lowest values in the polar regions.
    [Show full text]
  • Solutes and Solution
    Solutes and Solution The first rule of solubility is “likes dissolve likes” Polar or ionic substances are soluble in polar solvents Non-polar substances are soluble in non- polar solvents Solutes and Solution There must be a reason why a substance is soluble in a solvent: either the solution process lowers the overall enthalpy of the system (Hrxn < 0) Or the solution process increases the overall entropy of the system (Srxn > 0) Entropy is a measure of the amount of disorder in a system—entropy must increase for any spontaneous change 1 Solutes and Solution The forces that drive the dissolution of a solute usually involve both enthalpy and entropy terms Hsoln < 0 for most species The creation of a solution takes a more ordered system (solid phase or pure liquid phase) and makes more disordered system (solute molecules are more randomly distributed throughout the solution) Saturation and Equilibrium If we have enough solute available, a solution can become saturated—the point when no more solute may be accepted into the solvent Saturation indicates an equilibrium between the pure solute and solvent and the solution solute + solvent solution KC 2 Saturation and Equilibrium solute + solvent solution KC The magnitude of KC indicates how soluble a solute is in that particular solvent If KC is large, the solute is very soluble If KC is small, the solute is only slightly soluble Saturation and Equilibrium Examples: + - NaCl(s) + H2O(l) Na (aq) + Cl (aq) KC = 37.3 A saturated solution of NaCl has a [Na+] = 6.11 M and [Cl-] =
    [Show full text]
  • Insar Water Vapor Data Assimilation Into Mesoscale Model
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1 InSAR Water Vapor Data Assimilation into Mesoscale Model MM5: Technique and Pilot Study Emanuela Pichelli, Rossella Ferretti, Domenico Cimini, Giulia Panegrossi, Daniele Perissin, Nazzareno Pierdicca, Senior Member, IEEE, Fabio Rocca, and Bjorn Rommen Abstract—In this study, a technique developed to retrieve inte- an extremely important element of the atmosphere because its grated water vapor from interferometric synthetic aperture radar distribution is related to clouds, precipitation formation, and it (InSAR) data is described, and a three-dimensional variational represents a large proportion of the energy budget in the atmo- assimilation experiment of the retrieved precipitable water vapor into the mesoscale weather prediction model MM5 is carried out. sphere. Its representation inside numerical weather prediction The InSAR measurements were available in the framework of the (NWP) models is critical to improve the weather forecast. It is European Space Agency (ESA) project for the “Mitigation of elec- also very challenging because water vapor is involved in pro- tromagnetic transmission errors induced by atmospheric water cesses over a wide range of spatial and temporal scales. An vapor effects” (METAWAVE), whose goal was to analyze and pos- improvement in atmospheric water vapor monitoring that can sibly predict the phase delay induced by atmospheric water vapor on the spaceborne radar signal. The impact of the assimilation on be assimilated in NWP models would improve the forecast the model forecast is investigated in terms of temperature, water accuracy of precipitation and severe weather [1], [3].
    [Show full text]
  • Page 1 of 6 This Is Henry's Law. It Says That at Equilibrium the Ratio of Dissolved NH3 to the Partial Pressure of NH3 Gas In
    CHMY 361 HANDOUT#6 October 28, 2012 HOMEWORK #4 Key Was due Friday, Oct. 26 1. Using only data from Table A5, what is the boiling point of water deep in a mine that is so far below sea level that the atmospheric pressure is 1.17 atm? 0 ΔH vap = +44.02 kJ/mol H20(l) --> H2O(g) Q= PH2O /XH2O = K, at ⎛ P2 ⎞ ⎛ K 2 ⎞ ΔH vap ⎛ 1 1 ⎞ ln⎜ ⎟ = ln⎜ ⎟ − ⎜ − ⎟ equilibrium, i.e., the Vapor Pressure ⎝ P1 ⎠ ⎝ K1 ⎠ R ⎝ T2 T1 ⎠ for the pure liquid. ⎛1.17 ⎞ 44,020 ⎛ 1 1 ⎞ ln⎜ ⎟ = − ⎜ − ⎟ = 1 8.3145 ⎜ T 373 ⎟ ⎝ ⎠ ⎝ 2 ⎠ ⎡1.17⎤ − 8.3145ln 1 ⎢ 1 ⎥ 1 = ⎣ ⎦ + = .002651 T2 44,020 373 T2 = 377 2. From table A5, calculate the Henry’s Law constant (i.e., equilibrium constant) for dissolving of NH3(g) in water at 298 K and 340 K. It should have units of Matm-1;What would it be in atm per mole fraction, as in Table 5.1 at 298 K? o For NH3(g) ----> NH3(aq) ΔG = -26.5 - (-16.45) = -10.05 kJ/mol ΔG0 − [NH (aq)] K = e RT = 0.0173 = 3 This is Henry’s Law. It says that at equilibrium the ratio of dissolved P NH3 NH3 to the partial pressure of NH3 gas in contact with the liquid is a constant = 0.0173 (Henry’s Law Constant). This also says [NH3(aq)] =0.0173PNH3 or -1 PNH3 = 0.0173 [NH3(aq)] = 57.8 atm/M x [NH3(aq)] The latter form is like Table 5.1 except it has NH3 concentration in M instead of XNH3.
    [Show full text]
  • Air Pressure
    Name ____________________________________ Date __________ Class ___________________ SECTION 15-3 SECTION SUMMARY Air Pressure Guide for ir consists of atoms and molecules that have mass. Therefore, air has Reading A mass. Because air has mass, it also has other properties, includ- ing density and pressure. The amount of mass per unit volume of a N What are some of substance is called the density of the substance. The force per unit area the properties of air? is called pressure. Air pressure is the result of the weight of a column of N What instruments air pushing down on an area. The molecules in air push in all directions. are used to mea- This is why air pressure doesn’t crush objects. sure air pressure? Falling air pressure usually indicates that a storm is approaching. Rising N How does increas- air pressure usually means that the weather is clearing. A ing altitude affect barometer is an instrument that measures changes in air pressure. There air pressure and are two kinds of barometers: mercury barometers and aneroid density? barometers. A mercury barometer consists of a glass tube open at the bottom end and partially filled with mercury. The open end of the tube rests in a dish of mercury, and the space above the mercury in the tube contains no air. The air pressure pushing down on the surface of the mer- cury in the dish is equal to the weight of the column of mercury in the tube. At sea level, the mercury column is about 76 centimeters high, on average. An aneroid barometer has an airtight metal chamber that is sen- sitive to changes in air pressure.
    [Show full text]
  • Physics, Chapter 17: the Phases of Matter
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 17: The Phases of Matter Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 17: The Phases of Matter" (1958). Robert Katz Publications. 165. https://digitalcommons.unl.edu/physicskatz/165 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 17 The Phases of Matter 17-1 Phases of a Substance A substance which has a definite chemical composition can exist in one or more phases, such as the vapor phase, the liquid phase, or the solid phase. When two or more such phases are in equilibrium at any given temperature and pressure, there are always surfaces of separation between the two phases. In the solid phase a pure substance generally exhibits a well-defined crystal structure in which the atoms or molecules of the substance are arranged in a repetitive lattice. Many substances are known to exist in several different solid phases at different conditions of temperature and pressure. These solid phases differ in their crystal structure. Thus ice is known to have six different solid phases, while sulphur has four different solid phases.
    [Show full text]
  • THE SOLUBILITY of GASES in LIQUIDS Introductory Information C
    THE SOLUBILITY OF GASES IN LIQUIDS Introductory Information C. L. Young, R. Battino, and H. L. Clever INTRODUCTION The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values are recommended and in some cases a smoothing equation is given to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages. The following paper by E. Wilhelm gives a rigorous thermodynamic treatment on the solubility of gases in liquids. DEFINITION OF GAS SOLUBILITY The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas-liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the criti­ cal temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned.
    [Show full text]
  • Chapter 3 Equations of State
    Chapter 3 Equations of State The simplest way to derive the Helmholtz function of a fluid is to directly integrate the equation of state with respect to volume (Sadus, 1992a, 1994). An equation of state can be applied to either vapour-liquid or supercritical phenomena without any conceptual difficulties. Therefore, in addition to liquid-liquid and vapour -liquid properties, it is also possible to determine transitions between these phenomena from the same inputs. All of the physical properties of the fluid except ideal gas are also simultaneously calculated. Many equations of state have been proposed in the literature with either an empirical, semi- empirical or theoretical basis. Comprehensive reviews can be found in the works of Martin (1979), Gubbins (1983), Anderko (1990), Sandler (1994), Economou and Donohue (1996), Wei and Sadus (2000) and Sengers et al. (2000). The van der Waals equation of state (1873) was the first equation to predict vapour-liquid coexistence. Later, the Redlich-Kwong equation of state (Redlich and Kwong, 1949) improved the accuracy of the van der Waals equation by proposing a temperature dependence for the attractive term. Soave (1972) and Peng and Robinson (1976) proposed additional modifications of the Redlich-Kwong equation to more accurately predict the vapour pressure, liquid density, and equilibria ratios. Guggenheim (1965) and Carnahan and Starling (1969) modified the repulsive term of van der Waals equation of state and obtained more accurate expressions for hard sphere systems. Christoforakos and Franck (1986) modified both the attractive and repulsive terms of van der Waals equation of state. Boublik (1981) extended the Carnahan-Starling hard sphere term to obtain an accurate equation for hard convex geometries.
    [Show full text]
  • Producing Nitrogen Via Pressure Swing Adsorption
    Reactions and Separations Producing Nitrogen via Pressure Swing Adsorption Svetlana Ivanova Pressure swing adsorption (PSA) can be a Robert Lewis Air Products cost-effective method of onsite nitrogen generation for a wide range of purity and flow requirements. itrogen gas is a staple of the chemical industry. effective, and convenient for chemical processors. Multiple Because it is an inert gas, nitrogen is suitable for a nitrogen technologies and supply modes now exist to meet a Nwide range of applications covering various aspects range of specifications, including purity, usage pattern, por- of chemical manufacturing, processing, handling, and tability, footprint, and power consumption. Choosing among shipping. Due to its low reactivity, nitrogen is an excellent supply options can be a challenge. Onsite nitrogen genera- blanketing and purging gas that can be used to protect valu- tors, such as pressure swing adsorption (PSA) or membrane able products from harmful contaminants. It also enables the systems, can be more cost-effective than traditional cryo- safe storage and use of flammable compounds, and can help genic distillation or stored liquid nitrogen, particularly if an prevent combustible dust explosions. Nitrogen gas can be extremely high purity (e.g., 99.9999%) is not required. used to remove contaminants from process streams through methods such as stripping and sparging. Generating nitrogen gas Because of the widespread and growing use of nitrogen Industrial nitrogen gas can be produced by either in the chemical process industries (CPI), industrial gas com- cryogenic fractional distillation of liquefied air, or separa- panies have been continually improving methods of nitrogen tion of gaseous air using adsorption or permeation.
    [Show full text]
  • Effect of Tropospheric Air Density and Dew Point Temperature on Radio (Electromagnetic) Waves and Air Radio Wave Refractivity
    International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 356 ISSN 2229-5518 Effect of Tropospheric Air density and dew point temperature on Radio (Electromagnetic) waves and Air radio wave refractivity <Joseph Amajama> University of Calabar, Department of Physics, Electronics and Computer Technology Unit Etta-agbor, Calabar, Nigeria [email protected] Abstract: Signal strengths measurements were obtained half hourly for some hours and simultaneously, the atmospheric components: atmospheric temperature, atmospheric pressure, relative humidity and wind direction and speed were registered to erect the effects of air density and dew point temperature on radio signals (electromagnetic waves) as they travel through the atmosphere and air radio wave refractivity. The signal strength from Cross River State Broadcasting Co-operation Television (CRBC-TV), (4057'54.7''N, 8019'43.7''E) transmitted at 35mdB and 519.25 MHz (UHF) were measured using a Cable TV analyzer in a residence along Ettaabgor, Calabar, Nigeria (4057'31.7''N, 8020'49.7''E) using the digital Community – Access (Cable) Television (CATV) analyzer with 24 channels, spectrum 46 – 870 MHz, connected to a domestic receiver antenna of height 4.23 m. Results show that: on the condition that the wind speed and direction are the same or (0 mph NA), the radio signal strength is near negligibly directly proportional to the air density, mathematically Ss / ∂a1.3029 = K, where Ss is Signal Strength in dB, ∂a is Density of air Kg/m3 and K is constant; radio
    [Show full text]
  • “Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
    National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target
    [Show full text]
  • Air Infiltration Glossary (English Edition)
    AIRGLOSS: Air Infiltration Glossary (English Edition) Carolyn Allen ~)Copyrlght Oscar Faber Partnership 1981. All property rights, Including copyright ere vested In the Operating Agent (The Oscar Faber Partnership) on behalf of the International Energy Agency. In particular, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permluion of the operat- ing agent. Contents (i) Preface (iii) Introduction (v) Umr's Guide (v) Glossary Appendix 1 - References 87 Appendix 2 - Tracer Gases 93 Appendix 3 - Abbreviations 99 Appendix 4 - Units 103 (i) (il) Preface International Energy Agency In order to strengthen cooperation In the vital area of energy policy, an Agreement on an International Energy Program was formulated among a number of industrialised countries In November 1974. The International Energy Agency (lEA) was established as an autonomous body within the Organisation for Economic Cooperation and Development (OECD) to administer that agreement. Twenty-one countries are currently members of the lEA, with the Commission of the European Communities participating under a special arrangement. As one element of the International Energy Program, the Participants undertake cooperative activities in energy research, development, and demonstration. A number of new and improved energy technologies which have the potential of making significant contributions to our energy needs were identified for collaborative efforts. The lEA Committee on Energy Research and Development (CRD), assisted by a small Secretariat staff, coordinates the energy research, development, and demonstration programme. Energy Conservation in Buildings and Community Systems The International Energy Agency sponsors research and development in a number of areas related to energy.
    [Show full text]