Solutes and Solution

Total Page:16

File Type:pdf, Size:1020Kb

Solutes and Solution Solutes and Solution The first rule of solubility is “likes dissolve likes” Polar or ionic substances are soluble in polar solvents Non-polar substances are soluble in non- polar solvents Solutes and Solution There must be a reason why a substance is soluble in a solvent: either the solution process lowers the overall enthalpy of the system (Hrxn < 0) Or the solution process increases the overall entropy of the system (Srxn > 0) Entropy is a measure of the amount of disorder in a system—entropy must increase for any spontaneous change 1 Solutes and Solution The forces that drive the dissolution of a solute usually involve both enthalpy and entropy terms Hsoln < 0 for most species The creation of a solution takes a more ordered system (solid phase or pure liquid phase) and makes more disordered system (solute molecules are more randomly distributed throughout the solution) Saturation and Equilibrium If we have enough solute available, a solution can become saturated—the point when no more solute may be accepted into the solvent Saturation indicates an equilibrium between the pure solute and solvent and the solution solute + solvent solution KC 2 Saturation and Equilibrium solute + solvent solution KC The magnitude of KC indicates how soluble a solute is in that particular solvent If KC is large, the solute is very soluble If KC is small, the solute is only slightly soluble Saturation and Equilibrium Examples: + - NaCl(s) + H2O(l) Na (aq) + Cl (aq) KC = 37.3 A saturated solution of NaCl has a [Na+] = 6.11 M and [Cl-] = 6.11 M + - AgCl(s) + H2O(l) Ag (aq) + Cl (aq) -10 KC = 1.8 x 10 A saturated solution of AgCl has a [Ag+] = 1.34 x 10-5 M and [Cl-] 1.34 x 10-5 M 3 Saturation and Equilibrium Saturation and Equilibrium 4 Solubility of Gases When a gas is dissolved in a solvent, the process is usually exothermic: gas + solvent solution Hrxn < 0 In solution, the gas molecules are now in close proximity to the solvent molecules which increases the effects of the intermolecular forces and lowers the overall enthalpy of the system Solubility of Gases To understand the effects of temperature on solubility, we can use LeChatlier’s Principle: gas + solvent solution + heat Since heat appears on the product side of the chemical equilibrium, increasing the temperature will move the equilibrium toward the reactants and the gas will be less soluble 5 Solubility of Gases Pressure has no effect on the solubility of solids and liquids, but it has a significant effect on the solubility of gases The higher the pressure of the gas over the solution, the higher the solubility of te gas in solution Henry’s Law: Sg = kH Pg Solubility of Gases Henry’s Law: Sg = kH Pg Sg = solubility of gas in solution kH = Henry’s Law constant for that gas/solvent combination Pg = partial pressure of gas over the solution 6 Solubility of Gases Example: What is the molar concentration of N2 in water when the partial pressure of N2 is 600. Torr? -7 kH = 8.4 x 10 mol/Lmm Hg -7 SN2 = (8.4 x 10 mol/Lmm Hg)(600. mm Hg) = 5.04 x 10-4 M What is the concentration at 20. Torr? -7 SN2 = (8.4 x 10 mol/Lmm Hg)(20. mm Hg) = 1.7 x 10-5 M Solubility of Gases 7 Concentration Units Molarity: defined as moles of solute per liter of solution moles solute mol M = = liters of solution L The volume used is the total volume of the solution, not just the volume of the solvent Usually the volume of the solute is negligible compared to the solvent volume Concentration Units Molality: defined as moles of solute per mass of solvent moles solute mol m = = kilograms of solvent kg In this case, the mass is only the mass of the solvent, not the total mass of the solution 8 Concentration Units Mole fraction: mole fraction is defined as the number of moles solute divided by the total number of moles of all species in the solution moles solute nA X A = = total moles in solution ntot Mole fraction is a unitless number Colligative Properties Colligative properties are a set properties that depend only on the amount of solute in a solution, and not on the chemical identity of the solute Colligative properties include: Vapor pressure lowering Freezing point depression Boiling point elevation Osmotic pressure 9 Colligative Properties Vapor pressure lowering When solute is added to a pure solvent, solvent molecules are “tied up” in keeping the solute molecules in solution Because solvent molecules are more strongly attracted to the solute than to themselves, it requires more energy to remove them from the solution compared to the pure solvent Colligative Properties Vapor pressure lowering As a consequence, the vapor pressure of the solution is lowered Raoult’s Law states: o P1 = X1 P1 P1 = vapor pressure of the solution X1 = mole fraction of solvent o P1 = vapor pressure of the pure solvent 10 Colligative Properties Vapor pressure lowering Example: What is the vapor pressure of a saturated NaCl solution at 25 oC? Po = 23.76 Torr H2O = 0.99707 g/mL 35.7 g NaCl per 100 mL H2O Step 1—Determine mole fraction of solution 35.7 g NaCl/58.443 g/mol =0.611 mol NaCl (100 mL)(.9971 g/mL)/(18.0152 g.mol) =5.53 mol H2O Colligative Properties Vapor pressure lowering Example: What is the vapor pressure of a saturated NaCl solution at 25 oC? Step 1—Determine mole fraction of solution 5.53 mol X = = .819 2(.611 mol) + 5.53 mol 11 Colligative Properties Vapor pressure lowering Example: What is the vapor pressure of a saturated NaCl solution at 25 oC? Step 2—Determine vapor pressure of solution P = X Po = (.819)(23.76 Torr) = 19.5 Torr The vapor pressure over a saturated NaCl solution is nearly 20% lower than that of pure water Colligative Properties Boiling Point Elevation Because the vapor pressure of solution is lower than the vapor pressure of the pure solvent, the solution’s boiling point will be elevated Remember that the boiling point is that temperature where the vapor pressure of the solution is equal to the pressure over the solution 12 Colligative Properties Boiling Point Elevation Tb = Tb(soln) – Tb(solvent) = Kb m Kb = boiling point elevation constant m = molality of solute Colligative Properties Boiling Point Elevation Example: What is boiling point of a NaCl solution that is saturated at 25 oC? Kb(H2O) = 0.512 K kg/mol m = (1.22 mol solute)/(.09771 kg H2O) = 12.5 m Tb = (12.5 mol/kg)(0.512 K kg/mol) = 6.40 K o Tb = 106.4 C 13 Colligative Properties Freezing Point Depression The freezing point of a solution will be lower than that of the pure solvent because the solute molecules interrupt the crystal structure of the solid solvent Tf = Kf m Kf = freezing pt depression constant m = molality of solute Colligative Properties Freezing Point Depression Example: Determine the freezing point of a solution that is 40% by volume ethylene glycol in water Kf(H2O) = 1.86 K kg/mol (C2H6O2) =1.109 g/mL 14 Colligative Properties Freezing Point Depression Example: Determine the freezing point of a solution that is 40% by volume ethylene glycol in water Step 1—Assume we have 1.00 L of the solution; determine molality of ethylene glycol (400 mL C2H6O2)(1.109 g/mL)/(62.069 g/mol) = 7.15 mol C2H6O2 m = (7.15 mol)/(.600 kg H2O) =11.9 m Colligative Properties Freezing Point Depression Example: Determine the freezing point of a solution that is 40% by volume ethylene glycol in water Step 2—Determine freezing point depression Tf = (11.9 m)(1.86 K kg/mol) = 22.1 K o Tf = -22.1 C 15 Colligative Properties Osmotic Pressure A solution is initially separated from a reservoir of pure solvent by a semi- pure solution permeable membrane solvent A semi-permeable membrane allows the solvent to move through in either direction, but does not allow the solute species to pass through semi-permeable membrane Colligative Properties Osmotic Pressure The solvent wants to have equal concentrations on solution each side of the system The solvent will flow from pure the pure solvent side to the solvent solution side of the system to minimize the flow of solvent concentration difference between each side of the system semi-permeable membrane 16 Colligative Properties Osmotic Pressure The solution side is now higher than the solvent side solution which creates a pressure difference pure solvent The increased pressure on the solution side tends to push solvent back to the pure solvent side of the system semi-permeable membrane Colligative Properties Osmotic Pressure The osmotic pressure of the solution is the pressure solution exerted by the solution when the system reaches pure equilibrium—balance solvent between force exerted by pure solvent to equalize concentration and force exerted by increased height of solution semi-permeable membrane 17 Colligative Properties Osmotic Pressure The osmotic pressure is given by: solution = c R T i pure where solvent c = molar concentration R = gas constant T = temperature (in K) i = solute particles per unit formula semi-permeable membrane Colligative Properties Osmotic Pressure Example: Determine the osmotic pressure of a 1.00 M solution of NaCl c = 1.00 mol/L i = 2 (Na+ and Cl-) = 2(1.00 mol/L)(.08206 L atm/mol K)(298 K) = 48.9 atm 18.
Recommended publications
  • Modelling and Numerical Simulation of Phase Separation in Polymer Modified Bitumen by Phase- Field Method
    http://www.diva-portal.org Postprint This is the accepted version of a paper published in Materials & design. This paper has been peer- reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Zhu, J., Lu, X., Balieu, R., Kringos, N. (2016) Modelling and numerical simulation of phase separation in polymer modified bitumen by phase- field method. Materials & design, 107: 322-332 http://dx.doi.org/10.1016/j.matdes.2016.06.041 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188830 ACCEPTED MANUSCRIPT Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method Jiqing Zhu a,*, Xiaohu Lu b, Romain Balieu a, Niki Kringos a a Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Brinellvägen 23, SE-100 44 Stockholm, Sweden b Nynas AB, SE-149 82 Nynäshamn, Sweden * Corresponding author. Email: [email protected] (J. Zhu) Abstract In this paper, a phase-field model with viscoelastic effects is developed for polymer modified bitumen (PMB) with the aim to describe and predict the PMB storage stability and phase separation behaviour. The viscoelastic effects due to dynamic asymmetry between bitumen and polymer are represented in the model by introducing a composition-dependent mobility coefficient. A double-well potential for PMB system is proposed on the basis of the Flory-Huggins free energy of mixing, with some simplifying assumptions made to take into account the complex chemical composition of bitumen.
    [Show full text]
  • Reverse Osmosis Bibliography Additional Readings
    8/24/2016 Osmosis ­ AccessScience from McGraw­Hill Education (http://www.accessscience.com/) Osmosis Article by: Johnston, Francis J. Department of Chemistry, University of Georgia, Athens, Georgia. Publication year: 2016 DOI: http://dx.doi.org/10.1036/1097­8542.478400 (http://dx.doi.org/10.1036/1097­8542.478400) Content Osmotic pressure Reverse osmosis Bibliography Additional Readings The transport of solvent through a semipermeable membrane separating two solutions of different solute concentration. The solvent diffuses from the solution that is dilute in solute to the solution that is concentrated. The phenomenon may be observed by immersing in water a tube partially filled with an aqueous sugar solution and closed at the end with parchment. An increase in the level of the liquid in the solution results from a flow of water through the parchment into the solution. The process occurs as a result of a thermodynamic tendency to equalize the sugar concentrations on both sides of the barrier. The parchment permits the passage of water, but hinders that of the sugar, and is said to be semipermeable. Specially treated collodion and cellophane membranes also exhibit this behavior. These membranes are not perfect, and a gradual diffusion of solute molecules into the more dilute solution will occur. Of all artificial membranes, a deposit of cupric ferrocyanide in the pores of a fine­grained porcelain most nearly approaches complete semipermeability. The walls of cells in living organisms permit the passage of water and certain solutes, while preventing the passage of other solutes, usually of relatively high molecular weight. These walls act as selectively permeable membranes, and allow osmosis to occur between the interior of the cell and the surrounding media.
    [Show full text]
  • Chapter 2: Basic Tools of Analytical Chemistry
    Chapter 2 Basic Tools of Analytical Chemistry Chapter Overview 2A Measurements in Analytical Chemistry 2B Concentration 2C Stoichiometric Calculations 2D Basic Equipment 2E Preparing Solutions 2F Spreadsheets and Computational Software 2G The Laboratory Notebook 2H Key Terms 2I Chapter Summary 2J Problems 2K Solutions to Practice Exercises In the chapters that follow we will explore many aspects of analytical chemistry. In the process we will consider important questions such as “How do we treat experimental data?”, “How do we ensure that our results are accurate?”, “How do we obtain a representative sample?”, and “How do we select an appropriate analytical technique?” Before we look more closely at these and other questions, we will first review some basic tools of importance to analytical chemists. 13 14 Analytical Chemistry 2.0 2A Measurements in Analytical Chemistry Analytical chemistry is a quantitative science. Whether determining the concentration of a species, evaluating an equilibrium constant, measuring a reaction rate, or drawing a correlation between a compound’s structure and its reactivity, analytical chemists engage in “measuring important chemical things.”1 In this section we briefly review the use of units and significant figures in analytical chemistry. 2A.1 Units of Measurement Some measurements, such as absorbance, A measurement usually consists of a unit and a number expressing the do not have units. Because the meaning of quantity of that unit. We may express the same physical measurement with a unitless number may be unclear, some authors include an artificial unit. It is not different units, which can create confusion. For example, the mass of a unusual to see the abbreviation AU, which sample weighing 1.5 g also may be written as 0.0033 lb or 0.053 oz.
    [Show full text]
  • Parametrisation in Electrostatic DPD Dynamics and Applications
    Parametrisation in electrostatic DPD Dynamics and Applications E. Mayoraly and E. Nahmad-Acharz February 19, 2016 y Instituto Nacional de Investigaciones Nucleares, Carretera M´exico-Toluca S/N, La Marquesa Ocoyoacac, Edo. de M´exicoC.P. 52750, M´exico z Instituto de Ciencias Nucleares, Universidad Nacional Aut´onomade M´exico, Apartado Postal 70-543, 04510 M´exico DF, Mexico abstract A brief overview of mesoscopic modelling via dissipative particle dynamics is presented, with emphasis on the appropriate parametrisation and how to cal- culate the relevant parameters for given realistic systems. The dependence on concentration and temperature of the interaction parameters is also considered, as well as some applications. 1 Introduction In a colloidal dispersion, the stability is governed by the balance between Van der Waals attractive forces and electrostatic repulsive forces, together with steric mechanisms. Being able to model their interplay is of utmost importance to predict the conditions for colloidal stability, which in turn is of major interest in basic research and for industrial applications. Complex fluids are composed typically at least of one or more solvents, poly- meric or non-polymeric surfactants, and crystalline substrates onto which these surfactants adsorb. Neutral polymer adsorption has been extensively studied us- ing mean-field approximations and assuming an adsorbed polymer configuration of loops and tails [1,2,3,4]. Different mechanisms of adsorption affecting the arXiv:1602.05935v1 [physics.chem-ph] 18 Feb 2016 global
    [Show full text]
  • Page 1 of 6 This Is Henry's Law. It Says That at Equilibrium the Ratio of Dissolved NH3 to the Partial Pressure of NH3 Gas In
    CHMY 361 HANDOUT#6 October 28, 2012 HOMEWORK #4 Key Was due Friday, Oct. 26 1. Using only data from Table A5, what is the boiling point of water deep in a mine that is so far below sea level that the atmospheric pressure is 1.17 atm? 0 ΔH vap = +44.02 kJ/mol H20(l) --> H2O(g) Q= PH2O /XH2O = K, at ⎛ P2 ⎞ ⎛ K 2 ⎞ ΔH vap ⎛ 1 1 ⎞ ln⎜ ⎟ = ln⎜ ⎟ − ⎜ − ⎟ equilibrium, i.e., the Vapor Pressure ⎝ P1 ⎠ ⎝ K1 ⎠ R ⎝ T2 T1 ⎠ for the pure liquid. ⎛1.17 ⎞ 44,020 ⎛ 1 1 ⎞ ln⎜ ⎟ = − ⎜ − ⎟ = 1 8.3145 ⎜ T 373 ⎟ ⎝ ⎠ ⎝ 2 ⎠ ⎡1.17⎤ − 8.3145ln 1 ⎢ 1 ⎥ 1 = ⎣ ⎦ + = .002651 T2 44,020 373 T2 = 377 2. From table A5, calculate the Henry’s Law constant (i.e., equilibrium constant) for dissolving of NH3(g) in water at 298 K and 340 K. It should have units of Matm-1;What would it be in atm per mole fraction, as in Table 5.1 at 298 K? o For NH3(g) ----> NH3(aq) ΔG = -26.5 - (-16.45) = -10.05 kJ/mol ΔG0 − [NH (aq)] K = e RT = 0.0173 = 3 This is Henry’s Law. It says that at equilibrium the ratio of dissolved P NH3 NH3 to the partial pressure of NH3 gas in contact with the liquid is a constant = 0.0173 (Henry’s Law Constant). This also says [NH3(aq)] =0.0173PNH3 or -1 PNH3 = 0.0173 [NH3(aq)] = 57.8 atm/M x [NH3(aq)] The latter form is like Table 5.1 except it has NH3 concentration in M instead of XNH3.
    [Show full text]
  • Molarity Versus Molality Concentration of Solutions SCIENTIFIC
    Molarity versus Molality Concentration of Solutions SCIENTIFIC Introduction Simple visual models using rubber stoppers and water in a cylinder help to distinguish between molar and molal concentrations of a solute. Concepts • Solutions • Concentration Materials Graduated cylinder, 1-L, 2 Water, 2-L Rubber stoppers, large, 12 Safety Precautions Watch for spills. Wear chemical splash goggles and always follow safe laboratory procedures when performing demonstrations. Procedure 1. Tell the students that the rubber stoppers represent “moles” of solute. 2. Make a “6 Molar” solution by placing six of the stoppers in a 1-L graduated cylinder and adding just enough water to bring the total volume to 1 liter. 3. Now make a “6 molal” solution by adding six stoppers to a liter of water in the other cylinder. 4. Remind students that a kilogram of water is about equal to a liter of water because the density is about 1 g/mL at room temperature. 5. Set the two cylinders side by side for comparison. Disposal The water may be flushed down the drain. Discussion Molarity, moles of solute per liter of solution, and molality, moles of solute per kilogram of solvent, are concentration expressions that students often confuse. The differences may be slight with dilute aqueous solutions. Consider, for example, a dilute solution of sodium hydroxide. A 0.1 Molar solution consists of 4 g of sodium hydroxide dissolved in approximately 998 g of water, while a 0.1 molal solution consists of 4 g of sodium hydroxide dissolved in 1000 g of water. The amount of water in both solutions is virtually the same.
    [Show full text]
  • THE SOLUBILITY of GASES in LIQUIDS Introductory Information C
    THE SOLUBILITY OF GASES IN LIQUIDS Introductory Information C. L. Young, R. Battino, and H. L. Clever INTRODUCTION The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values are recommended and in some cases a smoothing equation is given to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages. The following paper by E. Wilhelm gives a rigorous thermodynamic treatment on the solubility of gases in liquids. DEFINITION OF GAS SOLUBILITY The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas-liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the criti­ cal temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned.
    [Show full text]
  • Introduction to the Solubility of Liquids in Liquids
    INTRODUCTION TO THE SOLUBILITY OF LIQUIDS IN LIQUIDS The Solubility Data Series is made up of volumes of comprehensive and critically evaluated solubility data on chemical systems in clearly defined areas. Data of suitable precision are presented on data sheets in a uniform format, preceded for each system by a critical evaluation if more than one set of data is available. In those systems where data from different sources agree sufficiently, recommended values are pro­ posed. In other cases, values may be described as "tentative", "doubtful" or "rejected". This volume is primarily concerned with liquid-liquid systems, but related gas-liquid and solid-liquid systems are included when it is logical and convenient to do so. Solubilities at elevated and low 'temperatures and at elevated pressures may be included, as it is considered inappropriate to establish artificial limits on the data presented. For some systems the two components are miscible in all proportions at certain temperatures or pressures, and data on miscibility gap regions and upper and lower critical solution temperatures are included where appropriate and if available. TERMINOLOGY In this volume a mixture (1,2) or a solution (1,2) refers to a single liquid phase containing components 1 and 2, with no distinction being made between solvent and solute. The solubility of a substance 1 is the relative proportion of 1 in a mixture which is saturated with respect to component 1 at a specified temperature and pressure. (The term "saturated" implies the existence of equilibrium with respect to the processes of mass transfer between phases) • QUANTITIES USED AS MEASURES OF SOLUBILITY Mole fraction of component 1, Xl or x(l): ml/Ml nl/~ni = r(m.IM.) '/.
    [Show full text]
  • Producing Nitrogen Via Pressure Swing Adsorption
    Reactions and Separations Producing Nitrogen via Pressure Swing Adsorption Svetlana Ivanova Pressure swing adsorption (PSA) can be a Robert Lewis Air Products cost-effective method of onsite nitrogen generation for a wide range of purity and flow requirements. itrogen gas is a staple of the chemical industry. effective, and convenient for chemical processors. Multiple Because it is an inert gas, nitrogen is suitable for a nitrogen technologies and supply modes now exist to meet a Nwide range of applications covering various aspects range of specifications, including purity, usage pattern, por- of chemical manufacturing, processing, handling, and tability, footprint, and power consumption. Choosing among shipping. Due to its low reactivity, nitrogen is an excellent supply options can be a challenge. Onsite nitrogen genera- blanketing and purging gas that can be used to protect valu- tors, such as pressure swing adsorption (PSA) or membrane able products from harmful contaminants. It also enables the systems, can be more cost-effective than traditional cryo- safe storage and use of flammable compounds, and can help genic distillation or stored liquid nitrogen, particularly if an prevent combustible dust explosions. Nitrogen gas can be extremely high purity (e.g., 99.9999%) is not required. used to remove contaminants from process streams through methods such as stripping and sparging. Generating nitrogen gas Because of the widespread and growing use of nitrogen Industrial nitrogen gas can be produced by either in the chemical process industries (CPI), industrial gas com- cryogenic fractional distillation of liquefied air, or separa- panies have been continually improving methods of nitrogen tion of gaseous air using adsorption or permeation.
    [Show full text]
  • Chapter 15: Solutions
    452-487_Ch15-866418 5/10/06 10:51 AM Page 452 CHAPTER 15 Solutions Chemistry 6.b, 6.c, 6.d, 6.e, 7.b I&E 1.a, 1.b, 1.c, 1.d, 1.j, 1.m What You’ll Learn ▲ You will describe and cate- gorize solutions. ▲ You will calculate concen- trations of solutions. ▲ You will analyze the colliga- tive properties of solutions. ▲ You will compare and con- trast heterogeneous mixtures. Why It’s Important The air you breathe, the fluids in your body, and some of the foods you ingest are solu- tions. Because solutions are so common, learning about their behavior is fundamental to understanding chemistry. Visit the Chemistry Web site at chemistrymc.com to find links about solutions. Though it isn’t apparent, there are at least three different solu- tions in this photo; the air, the lake in the foreground, and the steel used in the construction of the buildings are all solutions. 452 Chapter 15 452-487_Ch15-866418 5/10/06 10:52 AM Page 453 DISCOVERY LAB Solution Formation Chemistry 6.b, 7.b I&E 1.d he intermolecular forces among dissolving particles and the Tattractive forces between solute and solvent particles result in an overall energy change. Can this change be observed? Safety Precautions Dispose of solutions by flushing them down a drain with excess water. Procedure 1. Measure 10 g of ammonium chloride (NH4Cl) and place it in a Materials 100-mL beaker. balance 2. Add 30 mL of water to the NH4Cl, stirring with your stirring rod.
    [Show full text]
  • Solute Concentration: Molality
    5/25/2012 Colligative Properties of Solutions . Colligative Properties: • Solution properties that depend on concentration of solute particles, not the identity of particles. Previous example: vapor pressure lowering. Consequences: change in b.p. and f.p. of solution. © 2012 by W. W. Norton & Company Solute Concentration: Molality . Changes in boiling point/freezing point of solutions depends on molality: moles of solute m kg of solvent • Preferred concentration unit for properties involving temperature changes because it is independent of temperature. © 2012 by W. W. Norton & Company 1 5/25/2012 Calculating Molality Starting with: a) Mass of solute and solvent. b) Mass of solute/ volume of solvent. c) Volume of solution. © 2012 by W. W. Norton & Company Sample Exercise 11.8 How many grams of Na2SO4 should be added to 275 mL of water to prepare a 0.750 m solution of Na2SO4? Assume the density of water is 1.000 g/mL. © 2012 by W. W. Norton & Company 2 5/25/2012 Boiling-Point Elevation and Freezing-Point Depression . Boiling Point Elevation (ΔTb): • ΔTb = Kb∙m • Kb = boiling point elevation constant of solvent; m = molality. Freezing Point Depression (ΔTf): • ΔTf = Kf∙m • Kf = freezing-point depression constant; m = molality. © 2012 by W. W. Norton & Company Sample Exercise 11.9 What is the boiling point of seawater if the concentration of ions in seawater is 1.15 m? © 2012 by W. W. Norton & Company 3 5/25/2012 Sample Exercise 11.10 What is the freezing point of radiator fluid prepared by mixing 1.00 L of ethylene glycol (HOCH2CH2OH, density 1.114 g/mL) with 1.00 L of water (density 1.000 g/mL)? The freezing-point-depression constant of water, Kf, is 1.86°C/m.
    [Show full text]
  • The New Formula That Replaces Van't Hoff Osmotic Pressure Equation
    New Osmosis Law and Theory: the New Formula that Replaces van’t Hoff Osmotic Pressure Equation Hung-Chung Huang, Rongqing Xie* Department of Neurosciences, University of Texas Southwestern Medical Center, Dallas, TX *Chemistry Department, Zhengzhou Normal College, University of Zhengzhou City in Henan Province Cheng Beiqu excellence Street, Zip code: 450044 E-mail: [email protected] (for English communication) or [email protected] (for Chinese communication) Preamble van't Hoff, a world-renowned scientist, studied and worked on the osmotic pressure and chemical dynamics research to win the first Nobel Prize in Chemistry. For more than a century, his osmotic pressure formula has been written in the physical chemistry textbooks around the world and has been generally considered to be "impeccable" classical theory. But after years of research authors found that van’t Hoff osmotic pressure formula cannot correctly and perfectly explain the osmosis process. Because of this, the authors abstract a new concept for the osmotic force and osmotic law, and theoretically derived an equation of a curve to describe the osmotic pressure formula. The data curve from this formula is consistent with and matches the empirical figure plotted linearly based on large amounts of experimental values. This new formula (equation for a curved relationship) can overcome the drawback and incompleteness of the traditional osmotic pressure formula that can only describe a straight-line relationship. 1 Abstract This article derived a new abstract concept from the osmotic process and concluded it via "osmotic force" with a new law -- "osmotic law". The "osmotic law" describes that, in an osmotic system, osmolyte moves osmotically from the side with higher "osmotic force" to the side with lower "osmotic force".
    [Show full text]