Yunnan Discovery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 5 Sinicization and Indigenization: the Emergence of the Yunnanese
Between Winds and Clouds Bin Yang Chapter 5 Sinicization and Indigenization: The Emergence of the Yunnanese Introduction As the state began sending soldiers and their families, predominantly Han Chinese, to Yunnan, 1 the Ming military presence there became part of a project of colonization. Soldiers were joined by land-hungry farmers, exiled officials, and profit-driven merchants so that, by the end of the Ming period, the Han Chinese had become the largest ethnic population in Yunnan. Dramatically changing local demography, and consequently economic and cultural patterns, this massive and diverse influx laid the foundations for the social makeup of contemporary Yunnan. The interaction of the large numbers of Han immigrants with the indigenous peoples created a 2 new hybrid society, some members of which began to identify themselves as Yunnanese (yunnanren) for the first time. Previously, there had been no such concept of unity, since the indigenous peoples differentiated themselves by ethnicity or clan and tribal affiliations. This chapter will explore the process that led to this new identity and its reciprocal impact on the concept of Chineseness. Using primary sources, I will first introduce the indigenous peoples and their social customs 3 during the Yuan and early Ming period before the massive influx of Chinese immigrants. Second, I will review the migration waves during the Ming Dynasty and examine interactions between Han Chinese and the indigenous population. The giant and far-reaching impact of Han migrations on local society, or the process of sinicization, that has drawn a lot of scholarly attention, will be further examined here; the influence of the indigenous culture on Chinese migrants—a process that has won little attention—will also be scrutinized. -
Ecological Risk Assessment of Typical Plateau Lakes
E3S Web of Conferences 267, 01028 (2021) https://doi.org/10.1051/e3sconf/202126701028 ICESCE 2021 Ecological Risk Assessment of Typical Plateau Lakes Yuyadong1.2*, Yankun2 1.School of Ecology and Environmental Science Yunnan University, China 2.The Ecological and Environmental Monitoring Station of DEEY in Kunming, China Abstract. Plateau lakes have significant ecological value. With economic development, lake pollution and ecological degradation have become increasingly prominent. There are many ecological risk assessment methods. This article combines four different ecological risk assessment methods including single-factor pollution index, geological accumulation index method, potential risk index method, and pollution load index method to analyze the heavy metal pollution in Yangzong seabed mud as comprehensively as possible. It shows that the results obtained by different ecological risk assessment methods are slightly different. The overall trends of the geological pollution index and the single-factor pollution index are similar. In terms of time, except for the two elements of mercury and cadmium, the contents of other heavy metals in 2019 are lower than in 2018, indicating that heavy metal pollution has decreased in 2019; from the perspective of spatial distribution, In 2018, the overall pollution level on the south side of Yangzonghai was higher than that in the central and northern regions of Yangzonghai . On the whole, whether it is the potential risk index or the appropriate pollution load index, the pollution level on the south side of Yangzonghai is higher than that in the central and northern areas of Yangzonghai, and the northern area has the least pollution. ecosystems is relatively reduced, which makes the economic development of plateau lake basins face severe 1 Introduction challenges. -
A Symbol of Global Protec- 7 1 5 4 5 10 10 17 5 4 8 4 7 1 1213 6 JAPAN 3 14 1 6 16 CHINA 33 2 6 18 AF Tion for the Heritage of All Humankind
4 T rom the vast plains of the Serengeti to historic cities such T 7 ICELAND as Vienna, Lima and Kyoto; from the prehistoric rock art 1 5 on the Iberian Peninsula to the Statue of Liberty; from the 2 8 Kasbah of Algiers to the Imperial Palace in Beijing — all 5 2 of these places, as varied as they are, have one thing in common. FINLAND O 3 All are World Heritage sites of outstanding cultural or natural 3 T 15 6 SWEDEN 13 4 value to humanity and are worthy of protection for future 1 5 1 1 14 T 24 NORWAY 11 2 20 generations to know and enjoy. 2 RUSSIAN 23 NIO M O UN IM D 1 R I 3 4 T A FEDERATION A L T • P 7 • W L 1 O 17 A 2 I 5 ESTONIA 6 R D L D N 7 O 7 H E M R 4 I E 3 T IN AG O 18 E • IM 8 PATR Key LATVIA 6 United Nations World 1 Cultural property The designations employed and the presentation 1 T Educational, Scientific and Heritage of material on this map do not imply the expres- 12 Cultural Organization Convention 1 Natural property 28 T sion of any opinion whatsoever on the part of 14 10 1 1 22 DENMARK 9 LITHUANIA Mixed property (cultural and natural) 7 3 N UNESCO and National Geographic Society con- G 1 A UNITED 2 2 Transnational property cerning the legal status of any country, territory, 2 6 5 1 30 X BELARUS 1 city or area or of its authorities, or concerning 1 Property currently inscribed on the KINGDOM 4 1 the delimitation of its frontiers or boundaries. -
Changes of Water Clarity in Large Lakes and Reservoirs Across China
Remote Sensing of Environment 247 (2020) 111949 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Changes of water clarity in large lakes and reservoirs across China observed T from long-term MODIS ⁎ Shenglei Wanga,b, Junsheng Lib,c, Bing Zhangb,c, , Zhongping Leed, Evangelos Spyrakose, Lian Fengf, Chong Liug, Hongli Zhaoh, Yanhong Wub, Liping Zhug, Liming Jiai, Wei Wana, Fangfang Zhangb, Qian Shenb, Andrew N. Tylere, Xianfeng Zhanga a School of Earth and Space Sciences, Peking University, Beijing, China b Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China c University of Chinese Academy of Sciences, Beijing, China d School for the Environment, University of Massachusetts Boston, Boston, MA, USA e Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK f State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China g Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China h China Institute of Water Resources and Hydropower Research, Beijing, China i Environmental Monitoring Central Station of Heilongjiang Province, Harbin, China ARTICLE INFO ABSTRACT Keywords: Water clarity is a well-established first-order indicator of water quality and has been used globally bywater Secchi disk depth regulators in their monitoring and management programs. Assessments of water clarity in lakes over large Lakes and reservoirs temporal and spatial scales, however, are rare, limiting our understanding of its variability and the driven forces. -
Supplement of a Systematic Examination of the Relationships Between CDOM and DOC in Inland Waters in China
Supplement of Hydrol. Earth Syst. Sci., 21, 5127–5141, 2017 https://doi.org/10.5194/hess-21-5127-2017-supplement © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Supplement of A systematic examination of the relationships between CDOM and DOC in inland waters in China Kaishan Song et al. Correspondence to: Kaishan Song ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 3.0 License. Figure S1. Sampling location at three rivers for tracing the temporal variation of CDOM and DOC. The average widths at sampling stations are about 1020 m, 206m and 152 m for the Songhua River, Hunjiang River and Yalu River, respectively. Table S1 the sampling information for fresh and saline water lakes, the location information shows the central positions of the lakes. Res. is the abbreviation for reservoir; N, numbers of samples collected; Lat., latitude; Long., longitude; A, area; L, maximum length in kilometer; W, maximum width in kilometer. Water body type Sampling date N Lat. Long. A(km2) L (km) W (km) Fresh water lake Shitoukou Res. 2009.08.28 10 43.9319 125.7472 59 17 6 Songhua Lake 2015.04.29 8 43.6146 126.9492 185 55 6 Erlong Lake 2011.06.24 6 43.1785 124.8264 98 29 8 Xinlicheng Res. 2011.06.13 7 43.6300 125.3400 43 22 6 Yueliang Lake 2011.09.01 6 45.7250 123.8667 116 15 15 Nierji Res. 2015.09.16 8 48.6073 124.5693 436 83 26 Shankou Res. -
Yunnan: a Province Wrong Tendency in Art Opposed
Vol. 26, No. 29 July 18,'1983 BEIJIN A CHINESE WEEKLY OF EVIEW NEWS AND VIEWS II~ ~ ~. ._-~--~---~ Yunnan: A Multinational Province Wrong Tendency In Art Opposed Women Win Volleyball Tournament tures on China, so the series is resentative of the hopes and LETTERS useful to me. When people ask aspirations of the Chinese people me "What does the modernization as well as a vehicle of friendship process mean in China?" it's much for those abroad who are interest- easier to answer these questions. ed in the path the Chinese people have embarked upon. Articles on Chinese-Type. Pertti Laine Modernization Helsinki, Finland Philip T. Johnson Arlington, VA, USA Your series of articles on Chi- The series "Chinese-Type Mod- ernization" has been excellent. nese-type modernization deeply I think it safe to say that your Your articles on Chinese-type analysed the nature and charac- readers and all friends of the Chi- modernization are very interest- teristics of socialist China's mod- nese people are vitally interested ing. After reading them, I under- ernization, its emphases in con- in the modernization of Chinese stood why the leaders and the struction and plans for the future. industry, agriculture, science and masses should unite in your The articles also gave reasons why technology. Your series devoted modernization drive. However, in the gross annual value of indus- to this topic has been the most my humble opinion, if you are not trial and agricultural output can complete and cogent explanation. patient in your work, many be quadrupled towards the end defects and social problems will of the century. -
Shangrila Discovery Is Your Opportunity for a Breathtaking, Picturesque Day 3 Guilin – Kunming (AB, L, D) Adventure Through China’S Yunnan Province
Stone Forest EXOTIC TRIP Itinerary AB: American Breakfast, L: Lunch, D: Dinner, SD: Specialty Dinner Day 1 Guilin g You arrive in Guilin. Once we escort you to your hotel, the rest of the day Shan rila Discovery is free for you to explore. Tour Code: TQ Day 2 Guilin (AB, D) 12 days, 11 nights | Guilin, Kunming, Dali, Lijiang, Shangrila, Chengdu Cruise down the Li River and arrive at Yangshuo free market for local crafts and artworks. The Shangrila Discovery is your opportunity for a breathtaking, picturesque Day 3 Guilin – Kunming (AB, L, D) adventure through China’s Yunnan Province. Depart on a sparkling Li River In the morning, explore Elephant Trunk Hill. Later, marvel at the Cruise and venture to the Kunming Stone Forest with immense, colorful stalagmites in the Reed Flute Cave before catching a flight to Kunming, “The Spring City.” limestone structures. View China from atop the sacred Jade Dragon Mountain Day 4 Kunming (AB, L, D) near Lijiang and experience the mighty Yangtze River passing through the Visit the Stone Forest, created by ancient winds and water erosion. fantastic Tiger Leaping Gorge. Afterwards, visit the bustling economy of The Stone Forest is filled with limestone cliffs and peaks. On the way Three Pagodas Shanghai, home of the 2010 World Expo. You will be inspired by “The Land of back, visit Dragon’s Gate and Huating Temple. Sacredness and Peace” throughout your Shangrila Discovery. Day 5 Kunming – Dali (AB, L, D) Catch a flight to Dali, home of the Bai minority, where you will visit the Three Pagodas and the Dali Museum. -
Thai-Burmese Warfare During the Sixteenth Century and the Growth of the First Toungoo Empire1
Thai-Burmese warfare during the sixteenth century 69 THAI-BURMESE WARFARE DURING THE SIXTEENTH CENTURY AND THE GROWTH OF THE FIRST TOUNGOO EMPIRE1 Pamaree Surakiat Abstract A new historical interpretation of the pre-modern relations between Thailand and Burma is proposed here by analyzing these relations within the wider historical context of the formation of mainland Southeast Asian states. The focus is on how Thai- Burmese warfare during the sixteenth century was connected to the growth and development of the first Toungoo empire. An attempt is made to answer the questions: how and why sixteenth century Thai-Burmese warfare is distinguished from previous warfare, and which fundamental factors and conditions made possible the invasion of Ayutthaya by the first Toungoo empire. Introduction As neighbouring countries, Thailand and Burma not only share a long border but also have a profoundly interrelated history. During the first Toungoo empire in the mid-sixteenth century and during the early Konbaung empire from the mid-eighteenth to early nineteenth centuries, the two major kingdoms of mainland Southeast Asia waged wars against each other numerous times. This warfare was very important to the growth and development of both kingdoms and to other mainland Southeast Asian polities as well. 1 This article is a revision of the presentations in the 18th IAHA Conference, Academia Sinica (December 2004, Taipei) and The Golden Jubilee International Conference (January 2005, Yangon). A great debt of gratitude is owed to Dr. Sunait Chutintaranond, Professor John Okell, Sarah Rooney, Dr. Michael W. Charney, Saya U Myint Thein, Dr. Dhiravat na Pombejra and Professor Michael Smithies. -
Beijing Essence Tour 【Tour Code:OBD4(Wed./Fri./Sun.) 、OBD5(Tues./Thur./Sun.)】
Beijing Essence Tour 【Tour Code:OBD4(Wed./Fri./Sun.) 、OBD5(Tues./Thur./Sun.)】 【OBD】Beijing Essence Tour Price List US $ per person Itinerary 1: Beijing 3N4D Tour Itinerary 2: Beijing 4N5D Tour Tour Fare Itinerary 1 3N4D Itinerary 2 4N5D O Level A Level B Level A Level B B OBD4A OBD4B OBD5A OBD5B D Valid Date WED/FRI WED/FRI/SUN TUE/THU TUE/THU/SUN 2011.3.1-2011.8.31 208 178 238 198 Beijing 2011.9.1-2011. 11.30 218 188 258 208 2011.12.1-2012. 2.29 188 168 218 188 Single Room Supp. 160 130 200 150 Tips 32 32 40 40 1) Price excludes tips. The tips are for tour guide, driver and bell boys in hotel. Children should pay as much as adults. 2) Specified items(self-financed): Remarks Beijing/Kung Fu Show (US $28/P); [Half price (no seat) for child below 1.0m; full price for child over 1.0m. Only one child without seat is allowed for two adults.] 3) Total Fare: tour fare + specified self-financed fee(US $28/P) The price is based on adults; the price for children can be found on Page 87 Detailed Start Dates (The Local Date in China) Date Every Tues. Every Wed. Every Thur. Every Fri. Every Sun. Month OBD5A/5B OBD4A/4B OBD5A/5B OBD4A/4B OBD4B/OBD5B 2011. 3. 01, 08, 15, 22, 29 02, 09, 16, 23, 30 03, 10, 17, 24, 31 04, 11, 18, 25 06, 13, 20, 27 2011. 4. 05, 12, 19, 26 06, 13, 20, 27 07, 14, 21, 28 01, 08, 15, 22, 29 03, 10, 17, 24 Tour Highlights Tour Code:OBD4A/B Wall】 of China. -
2D Hydrodynamic Modelling for Erhai Lake Applying TELEMAC Modelling System1
http://www.paper.edu.cn 2D Hydrodynamic Modelling for Erhai Lake Applying TELEMAC Modelling 1 System ZHANG Cheng* Claude GUILBAUD School of Ocean LHF Hohai University Sogreah Consultants Nanjing, P. R. China 210098 Echirolles, France 38130 [email protected] [email protected] TONG Chaofeng State Key Laboratory of Hydrology-Water Resources and Hydaulic Engineering Hohai University Nanjing, P.R.China 210098 [email protected] Abstract Numerical modelling is being used extensively to assist decision making in hydraulic and environmental field. TELEMAC System is a numerical modelling system for free surface hydrodynamics, water quality and sedimentology etc, popular in Europe but not introduced in China. The construction of 2D hydrodynamic model for Erhai Lake applies TELEMAC System for an interesting and important study. From the modeled results, lake hydrodynamics are well reproduced, the tracer’s behavior can also be seen. For the modelling itself, TELEMAC shows a good convenience and capability of reproducing reality. Keywords: numerical modelling, FEM model, TELEMAC System, Erhai Lake 1 Introduction Erhai Lake lies in the middle of Dali Prefecture, Yunnan Province, southwest China. The position is 25°16'~25°25'N, 99°32'~100°27'E. In terms of hydrology it is in the upriver part of the Lancang-Mekong River Basin which extends across 6 countries in the Southeast Asia. The Erhai Lake Basin extends across over 16 towns of Dali City and Eryuan County with a total area of 2565 square km, which accounts for 8.7% of the area of whole Prefecture. While the whole Erhai Lake surface lies in Dali city, which is the capital and political, economic and cultural centre of the Dali Prefecture. -
Lake Status Records from China: Data Base Documentation
Lake status records from China: Data Base Documentation G. Yu 1,2, S.P. Harrison 1, and B. Xue 2 1 Max Planck Institute for Biogeochemistry, Postfach 10 01 64, D-07701 Jena, Germany 2 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Nanjing 210008, China MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 ii MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 Table of Contents Table of Contents ............................................................................................................ iii 1. Introduction ...............................................................................................................1 1.1. Lakes as Indicators of Past Climate Changes........................................................1 1.2. Chinese Lakes as Indicators of Asian Monsoonal Climate Changes ....................1 1.3. Previous Work on Palaeohydrological Changes in China.....................................3 1.4. Data and Methods .................................................................................................6 1.4.1. The Data Set..................................................................................................6 1.4.2. Sources of Evidence for Changes in Lake Status..........................................7 1.4.3. Standardisation: Lake Status Coding ..........................................................11 1.4.4. Chronology and Dating Control..................................................................11 1.5. Structure of this Report .......................................................................................13 -
Yunnan Provincial Highway Bureau
IPP740 REV World Bank-financed Yunnan Highway Assets management Project Public Disclosure Authorized Ethnic Minority Development Plan of the Yunnan Highway Assets Management Project Public Disclosure Authorized Public Disclosure Authorized Yunnan Provincial Highway Bureau July 2014 Public Disclosure Authorized EMDP of the Yunnan Highway Assets management Project Summary of the EMDP A. Introduction 1. According to the Feasibility Study Report and RF, the Project involves neither land acquisition nor house demolition, and involves temporary land occupation only. This report aims to strengthen the development of ethnic minorities in the project area, and includes mitigation and benefit enhancing measures, and funding sources. The project area involves a number of ethnic minorities, including Yi, Hani and Lisu. B. Socioeconomic profile of ethnic minorities 2. Poverty and income: The Project involves 16 cities/prefectures in Yunnan Province. In 2013, there were 6.61 million poor population in Yunnan Province, which accounting for 17.54% of total population. In 2013, the per capita net income of rural residents in Yunnan Province was 6,141 yuan. 3. Gender Heads of households are usually men, reflecting the superior status of men. Both men and women do farm work, where men usually do more physically demanding farm work, such as fertilization, cultivation, pesticide application, watering, harvesting and transport, while women usually do housework or less physically demanding farm work, such as washing clothes, cooking, taking care of old people and children, feeding livestock, and field management. In Lijiang and Dali, Bai and Naxi women also do physically demanding labor, which is related to ethnic customs. Means of production are usually purchased by men, while daily necessities usually by women.