Reinvigorating Oleoresin Collection in the Southeast Usa: Evaluation of Chemical Inducers, Stand Management, Tree Characteristics, and Genetics

Total Page:16

File Type:pdf, Size:1020Kb

Reinvigorating Oleoresin Collection in the Southeast Usa: Evaluation of Chemical Inducers, Stand Management, Tree Characteristics, and Genetics REINVIGORATING OLEORESIN COLLECTION IN THE SOUTHEAST USA: EVALUATION OF CHEMICAL INDUCERS, STAND MANAGEMENT, TREE CHARACTERISTICS, AND GENETICS By MARIE JENNIFER LAUTURE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Marie Jennifer Lauture In memory of Joel Baussan, Sarah Lauture, and Marguerite Marie Yolande Lauture “Mamie” ACKNOWLEDGMENTS I would like to thank my very large family for their unconditional love and support throughout this journey. To my mother, Marie Anne, a woman who sacrificed so much for her children and the strongest person I know. I thank her for teaching me to be resilient, humble, kind, patient, and independent. I thank her for her inspiring me to never give up and accompanying me on all my adventures across rural Haiti. To my father, Jean Marie, for always providing me with motivation throughout my studies and all my endeavors. I thank my sisters, Raquel Aïna, Anne Xavière, Stephanie, and Lya, for your unwavering love, support, and encouragement. I feel very blessed to have three older sisters that inspire me with their intelligence, creativity, love, passion, and hard work. I am immensely grateful to my loving partner and adventure buddy, Cody, who always encouraged me to pursue my dreams, always championed my accomplishments and has supported me through the difficult times. I thank you for your patience and dedication. I would like to share my gratitude with my graduate advisor, Dr. Gary Peter, without whom this research would have been futile. I started working with him as an undergraduate student and without his guidance, support, and dedication, I would have never pursued my graduate studies. I thank Dr. Alan Hodges for his assistance with statistical analysis, expertise and guidance in the field, and for teaching me the borehole tapping technique to collect oleoresin. I would like to acknowledge all other members of my supervisory committee: Dr. Salvador Gezan, Dr. Eric Jokela, and Dr. John Davis, for their advice and expertise. I want to thank Dr. Gezan for his assistance with data analysis and helping me learn ASReml. 4 Many thanks to the faculty and staff at the School of Forest Resources and Conservation (SFRC) and the forest genomics lab. I appreciate the funding support from the Florida Department of Agriculture and Consumer Services Office of Energy and the Department of Energy Advanced Research Projects Agency (ARPA-E). I want to thank Rayonier, Weyerhaeuser (formerly Plum Creek Timber Company), and Roberts Land & Timber Investment Corp. for providing access to the study sites. I would like to express my gratitude to Chris Dervinis for his help in organizing my field experiments, his ability to always make me laugh with his nerdy dad jokes, and for always being available to answer my questions and provide me with advice. I would also like to sincerely thank Greg Powell for constantly motivating me, providing a sympathetic ear and for his help in completing my field work. This research would not have been possible without the hard work from the field technicians and my colleagues. I want to thank Emery Hauser, Justice Diamond, Cody Godwin, Hemant Patel, Wilson Peter, Kari Hurst, Joshua Cucinella, Oliver Fleming, and Tom Pratt for spending hours out in the forest in the Florida heat. Many thanks go to my friends, especially Fayola Kojo, Jessica Mulvey, Soyini Kojo, Daniel Durante, Dan Greene, Erick Larsen, and Melissa Carvalho for your love, support, encouragement, and hospitality throughout my studies. Finally, I thank my uncle Joel Baussan, for taking me to visit the University of Florida and for always encouraging my love and appreciation of the outdoors. 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES .......................................................................................................... 10 LIST OF FIGURES ........................................................................................................ 15 LIST OF ABBREVIATIONS ........................................................................................... 18 ABSTRACT ................................................................................................................... 19 CHAPTER 1 INTRODUCTION .................................................................................................... 21 Background ............................................................................................................. 21 Problem .................................................................................................................. 22 Research Objectives ............................................................................................... 24 2 REVIEW OF LITERATURE .................................................................................... 25 Introduction to Oleoresin ......................................................................................... 25 Historical Production of Oleoresin .................................................................... 25 Species Used Worldwide of Oleoresin Production ........................................... 26 Oleoresin Composition ..................................................................................... 28 Oleoresin and Insect Pests ..................................................................................... 30 Coevolution of Oleoresin and Insect Pests ....................................................... 30 Host Selection and Colonization Behavior of Insect Pests ............................... 31 Conifer Defenses Against Insect Pests ............................................................ 34 Climate Change and Pine Beetles .................................................................... 35 Genetic Variation in Oleoresin ................................................................................ 37 Variation of Oleoresin Composition Among Species ........................................ 37 Variation of Oleoresin Canal Occurrence, Size and Density ............................ 41 Variation of Oleoresin Yield and Flow Rate Among Species ............................ 45 Oleoresin Viscosity and Crystallization Rate Among Species .......................... 49 Oleoresin Production in Planted Versus Natural Forests.................................. 51 Inducing Oleoresin Flow and Yield ......................................................................... 52 Chemical Inducers ............................................................................................ 52 Physical Inducers ............................................................................................. 57 Morphological Effects ....................................................................................... 59 Exudation Pressure .......................................................................................... 60 Environmental Inducers .................................................................................... 61 Climate and seasons ................................................................................. 61 Water availability ........................................................................................ 64 6 Stand density management ....................................................................... 67 Fertilization................................................................................................. 68 Fire ............................................................................................................. 70 Oleoresin tapping techniques ........................................................................... 73 Application .............................................................................................................. 77 Genetic Control and Breeding for Increased Terpene Production .................... 77 Global Uses for Oleoresin ................................................................................ 80 Pine terpenes for commercial products ...................................................... 80 Pine terpenes for biofuels .......................................................................... 81 Distillation ......................................................................................................... 84 Economics of Oleoresin Production ........................................................................ 84 Non-Timber Forest Products ............................................................................ 84 Oleoresin Tapping and Timber Production ....................................................... 86 Global Supply and Demand .............................................................................. 87 Market requirements .................................................................................. 87 Global production ....................................................................................... 87 What Drives the Production Cost? ................................................................... 89 Labor .......................................................................................................... 89 Equipment .................................................................................................. 90 Cost Compared to other Biofuels ..............................................................
Recommended publications
  • Latex Free Claims: a White Paper on the Risks Associated with Latex Allergies and Latex in Healthcare
    Latex Free Claims: A White Paper on the Risks Associated with Latex Allergies and Latex in Healthcare Brought to you by: Allergy and Asthma Network: Sue Lockwood and Robert Hamilton, M.S., Ph.D. Avella Specialty Pharmacy: Eric Sredzinski, Pharm.D., AAHIVP and Jenna Vaughn, Pharm.D., PGY1 Executive Summary There is significant confusion as to the meaning of “latex free” in healthcare. The FDA has urged manufacturers to drop the term “latex free” or a ”does not contain latex” claim from labels because of the challenge to ensure a product is completely devoid of natural rubber latex proteins which cause the allergic reactions. While there are no regulations requiring the On December 2, labeling of a medical product to state natural rubber latex was not used as a material in the manufacturing process, the terms “latex free” or 2014, the FDA “does not contain latex” are used too broadly. According to the FDA, these labeling techniques are not sufficiently specific, not necessarily scientifically released the accurate, and may be misunderstood and applied too widely. final latex guidance On December 2, 2014, the FDA released the final latex guidance document document advising [https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/ GuidanceDocuments/UCM342872.pdf] advising firms to use “not made with firms to use natural rubber latex” if no natural (Hevea brasiliensis) rubber latex was used in the "not made manufacturing process. Not all types of latex are from natural rubber latex; for example, products that contain nitrile and polyvinyl chloride, will not cause a with natural natural rubber latex allergy because these are synthetic formulations.
    [Show full text]
  • Spice Oleoresins
    Institute of Medicine Food and Nutrition Board Committee on Food Chemicals Codex Revised Monograph - Spice Oleoresins Please send comments to the Committee on Food Chemicals Codex, National Academy of Sciences, FO 3042, 2101 Constitution Avenue, N.W., Washington, DC 20418 or email them to [email protected]. All comments must be received by December 15, 1996, for consideration for the First Supplement. ____________________________________________________________________________________ May 31, 1996 Spice Oleoresins DESCRIPTION Spice Oleoresins used in foods are derived from spices and contain the total sapid, odorous, and related characterizing principles normally associated with the respective spices. The oleoresins are produced by one of the following processes: (1) by extraction of the spice with any suitable solvent or solvents, in combination or sequence, followed by removal of the solvent or solvents in conformance with applicable residual solvent regulations (see General Requirements below), or (2) by removal of the volatile portion of the spice by distillation, followed by extraction of the nonvolatile portion, which after solvent removal is combined with the total volatile portion. Spice Oleoresins are frequently used in commerce with added suitable food-grade diluents, preservatives, antioxidants, and other substances consistent with good manufacturing practice, as provided for under Added Substances (see General Provisions). When added substances are used, they must be declared on the label in accordance with current U.S. regulations or with the regulations of other countries that recognize the Food Chemicals Codex. The Spice Oleoresins covered by this monograph are Oleoresin Angelica Seed Obtained by the solvent extraction of the dried seed of Angelica archangelica Linnaeus as a dark brown or green liquid.
    [Show full text]
  • Essential Oils and Oleoresins Part 1
    ABSTRACT This profile explores the production of oleoresins by Supercritical Fluid Extraction (SFE) in Trinidad. Oleoresins are non-volatile extracts which may be used for food flavours, aromatherapy products, nutraceuticals/ MANUFACTURING pharmaceuticals, perfumes and various other PROFILE 3A: ESSENTIAL uses such as security sprays, insecticides, dyes OILS AND OLEORESINS etc. PART 1 The Development of Project Profiles for the ENGINEERING INSTITUTE 2016 Manufacturing Sector of T&T The research contained within this document was commissioned by InvesTT Limited and conducted by the UWI, St. Augustine Campus Manufacturing Profile 3a: Essential Oils and Oleoresins Part 1 Table of Contents List of Tables .......................................................................................................................... iv List of Figures .......................................................................................................................... v 1 Description of the Opportunity ............................................................................................. 1 1.1 Summary ........................................................................................................................ 2 1.2 Product Mix.................................................................................................................... 4 1.3 Description of Activities ................................................................................................ 5 2 Industry Overview ...............................................................................................................
    [Show full text]
  • Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus Officinalis, L.): a Review
    medicines Review Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review Gema Nieto 1 ID , Gaspar Ros 1 ID and Julián Castillo 2,* 1 Department of Food Technology and Human Nutrition, Veterinary Faculty, University of Murcia, Espinardo, 30071 Murcia, Spain; [email protected] (G.N.); [email protected] (G.R.) 2 Research and Development Department of Nutrafur-Frutarom Group, Camino Viejo de Pliego s/n, Alcantarilla, 80320 Murcia, Spain * Correspondence: [email protected] Received: 1 June 2018; Accepted: 31 August 2018; Published: 4 September 2018 Abstract: Nowadays, there is an interest in the consumption of food without synthetic additives and rather with the use of natural preservatives. In this regard, natural extracts of the Lamiaceae family, such as rosemary, have been studied because of its bioactive properties. Several studies have reported that rosemary extracts show biological bioactivities such as hepatoprotective, antifungal, insecticide, antioxidant and antibacterial. It is well known that the biological properties in rosemary are mainly due to phenolic compounds. However, it is essential to take into account that these biological properties depend on different aspects. Their use in foods is limited because of their odour, colour and taste. For that reason, commercial methods have been developed for the preparation of odourless and colourless antioxidant compounds from rosemary. Owing to the new applications of natural extracts in preservatives, this review gives a view on the use of natural extract from rosemary in foods and its effect on preservative activities. Specifically, the relationship between the structure and activity (antimicrobial and antioxidant) of the active components in rosemary are being reviewed.
    [Show full text]
  • CORALITE MUSCLE JOINT- Camphor Menthol Menthyl Salicylate Patch United Exchange Corp
    CORALITE MUSCLE JOINT- camphor menthol menthyl salicylate patch United Exchange Corp. Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- Active ingredients Purpose Camphor 1.2%...........................................Topical analgesic Menthol 5.7%.............................................Topical analgesic Methyl Salicylate 6.3%.................................Topical analgesic Uses For temporary relief of minor aches and pains of muscles and joints associated with: arthritis simple backache strains bruises sprains Warnings For external use only Allergy alert: If prone to allergic reaction from aspirin or salicylates, consult a doctor before use. Do not use on wounds or damaged skin with a heating pad if you are allergic to any ingredients of this product When using this product do not use other than directed avoid contact with the eyes, mucous membranes or rashes do not bandage tightly Stop use and ask a doctor if: rash, itching, or excessive skin irritation develops conditions worsen symptoms persist for more than 7 days symptoms clear up and occur again within a few days If pregnant or breast-feeding, ask a health professional before use. Keep out of reach of children. If swallowed, get medical help or contact a Poision Control Center right away. Directions Adults and children 12 years of age and over: clean and dry affected area remove patch from film apply to affected area not more than 3 to 4 times daily remove patch from skin after at most 8 hours of application Children under 12 years of age: consult with a doctor Other information avoid storing product in direct sunlight protect from excessive moisture Inactive ingredients butylated hydroxytoluene, glyceryl rosinate, natural rubber, polybutene, polyisobutylene, precipitated calcium carbonate, quinton, sorbitan stearate, tocopherol acetate, YS resin, zinc oxide DISTRIBUTED BY: UNITED EXCHAGE CORP.
    [Show full text]
  • Rubber Tapping Machine
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 06 | June 2020 www.irjet.net p-ISSN: 2395-0072 Rubber Tapping Machine Mr. Raghavendra Prasad S.A Assistant Professor, Dept. of Mechanical Engineering, St. Joseph Engineering College, Mangalore, Karnataka, India ----------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - A labour has to apply force many times on each 89% of area and 92% of production came from small holding tree to get the desired path for the harvesting of rubber so, this with an average size of 0.50 ha. The total area of natural makes the labour tired and they to do this job for so many rubber cultivation is sub-grouped into traditional (0.53 Mha) trees in a short duration at early morning on every day. This and nontraditional regions, where the traditional regions leads shortage in labour for rubber tapping in India. Hence a have the lion share. The state of Kerala and Kanyakumari motorized concept of tapping knife is needed to reduce their district of Tamil Nadu are the traditional NR cultivating effort. Our proposed machine will satisfy and full fill the above regions, whereas the non-traditional region are in the states problem. The main aim of this project is to rubber tapping in of Maharashtra, Karnataka, Goa , Andhra Pradesh and rubber trees. This equipment is having rack and pinion, Odisha, as classified by RBI [3]. battery, motor arrangement, in the rubber tapping machine. In this project the components are modeled by CREO Software 1.1 Uses & Importance of Rubber and animation also done by CREO software.
    [Show full text]
  • United States National Museum
    SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM BULLETIN 2 30 WASHINGTON, D.C. 1964 MUSEUM OF HISTORY AND TECHNOLOGY The Bark Canoes and Skin Boats of North America Edwin Tappan Adney and Howard I. Chapelle Curator of Transportation SMITHSONIAN INSTITUTION, WASHINGTON, D.C. 1964 — Publications of the United States National Aiuseum The scholarly and scientific publications of the United States National Museum include two series, Proceedings of the United States National Museum and United States National Museum Bulletin. In these series the Museum publishes original articles and monographs dealing with the collections and work of its constituent museums—The Museum of Natural History and the Museum of History and Technology setting forth newly acquired facts in the fields of Anthropology, Biology, History, Geology, and Technology. Copies of each publication are distributed to libraries, to cultural and scientific organizations, and to specialists and others interested in the different subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers from the Museum of Natural History. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902 papers relating to the botanical collections of the Museum of Natural History have been published in the Bulletin series under the heading Contributions Jrom the United States National Herbarium, and since 1959, in Bulletins titled "Contributions from the Museum of History and Technology," have been gathered shorter papers relating to the collections and research of that Museum.
    [Show full text]
  • Herbs, Spices and Essential Oils
    Printed in Austria V.05-91153—March 2006—300 Herbs, spices and essential oils Post-harvest operations in developing countries UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Telephone: (+43-1) 26026-0, Fax: (+43-1) 26926-69 UNITED NATIONS FOOD AND AGRICULTURE E-mail: [email protected], Internet: http://www.unido.org INDUSTRIAL DEVELOPMENT ORGANIZATION OF THE ORGANIZATION UNITED NATIONS © UNIDO and FAO 2005 — First published 2005 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: - the Director, Agro-Industries and Sectoral Support Branch, UNIDO, Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria or by e-mail to [email protected] - the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the United Nations Industrial Development Organization or of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Recipes for Success – Innovating the Pepper Oleoresin Production at Synthite
    Recipes for success – innovating the pepper oleoresin production at Synthite Summary This case examines the operations at Synthite oleoresin plant in Kerala, India. It discusses the problems that company faced in production of pepper oleoresin, one of its flagship products. The case traces the problems to the Make-to-stock production strategy and to several material flow practices at the plant. The case provides quantitative data to analyze Synthite’s inventory management, material flow and order lead times. The case outlines in brief the company approach to addressing the problems it faced and encourages student to think critically about issues and other solutions. Students are encouraged to use the accompanying Excel data sheets to calculate and analyze different production parameters. 1 Recipes for success – innovating the pepper oleoresin production at Synthite On a hot summer day, Aju Jacob wondered how best to deal with the high levels of inventory and the constant need to expedite orders at Synthite, a medium size spice business that his family founded. He was attending the executive MBA program at the Indian School of Business and wanted to bring in new ideas into his operation. The large variety of products and unpredictable demand made it very difficult for the spice plant to fulfill customer orders on time despite carrying high levels of inventory. Often they could not fill a 100-kilo order on time despite having 40-50 tons of stock because the precise product requested was not available. Almost daily, they had to open up packaged finished product from stock, re-blend it to specs of an incoming customer order before shipping.
    [Show full text]
  • (AMEO) As a Coupling Agent on Curing and Mechanical Properties of Natural Rubber/Palm Kernel Shell Powder Composites
    Available online at www.sciencedirect.com ScienceDirect Procedia Chemistry 19 ( 2016 ) 327 – 334 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Mineral and Polymer (MAMIP), 4-6 August 2015 The Effect of 3-aminopropyltrimethyoxysilane (AMEO) as a Coupling Agent on Curing and Mechanical Properties of Natural Rubber/Palm Kernel Shell Powder Composites Shuhairiah Daud, Hanafi Ismail*, Azhar Abu Bakar aSchool of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia *Corresponding author:[email protected] Abstract This research is conducted using palm kernel shell powder (PKS) as filler in natural rubber. The effect of 3- aminopropyltrimethoxysilane as coupling agent on composites were studied at different palm kernel shell loading i.e, 0. 5, 10, 15 and 20 phr. The palm kernel shell was crushed and sieved to an average particle size of 5.53 µm. The palm kernel shell filled natural rubber composites were prepared using laboratory size two roll mill. The curing characteristics such as scorch time, cure time and maximum torque were obtained from rheometer. The palm kernel shell powder filled natural rubber composites were cured at 150oC using hot press according to their cure time. Curing characteristics, tensile properties, rubber-filler interaction and morphological properties of palm kernel shell powder filled natural rubber were studied. Scorch time and cure time show reduction but tensile strength, elongation at break, modulus at 100% (M100) and modulus at 300% (M300) increased with the presence of 3-aminopropyltrimethyloxysilane. Rubber-filler interaction studies showed that rubber filler interaction in natural rubber filled with palm kernel shell powder improved with incorporation of 3-aminopropyltrimethyoxysilane.
    [Show full text]
  • Natural Rubber Systems and Climate Change Proceedings and Extended Abstracts from the Online Workshop, 23–25 June 2020
    May 2021 FTA WORKING PAPER • 9 Natural rubber systems and climate change Proceedings and extended abstracts from the online workshop, 23–25 June 2020 Salvatore Pinizzotto, Datuk Dr Abdul Aziz b S A Kadir, Vincent Gitz, Jérôme Sainte-Beuve, Lekshmi Nair, Eric Gohet, Eric Penot, Alexandre Meybeck Natural rubber systems and climate change Proceedings and extended abstracts from the online workshop, 23–25 June 2020 The CGIAR Research Program on Forests, Trees and Agroforestry (FTA) Working Paper 9 © 2021 The CGIAR Research Program on Forests, Trees and Agroforestry (FTA) Content in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0), http://creativecommons.org/licenses/by/4.0/ DOI: 10.17528/cifor/008029 Pinizzotto S, Aziz A, Gitz V, Sainte-Beuve J, Nair L, Gohet E, Penot E and Meybeck A. 2021. Natural rubber systems and climate change: Proceedings and extended abstracts from the online workshop, 23–25 June 2020. Working Paper 9. Bogor, Indonesia: The CGIAR Research Program on Forests, Trees and Agroforestry (FTA). CGIAR Research Program on Forests, Trees and Agroforestry CIFOR Headquarters Jalan CIFOR Situ Gede, Sindang Barang Bogor Barat 16115 Indonesia T +62-251-8622-622 E [email protected] foreststreesagroforestry.org We would like to thank all funding partners who supported this research through their contributions to the CGIAR Fund. For a full list of the ‘CGIAR Fund’ funding partners please see: http://www.cgiar.org/our-funders/ Any views expressed in this publication are those of the authors. They do not necessarily represent the views of The CGIAR Research Program on Forests, Trees and Agroforestry (FTA), the editors, the authors’ institutions, the financial sponsors or the reviewers.
    [Show full text]
  • Effects of Coconut Coir Powders on the Properties of Natural Rubber Composites
    International Jounal of Science and Innovative Technology Volume3 Issue1 January - June 2020 53 Effects of Coconut Coir Powders on the properties of Natural Rubber Composites Teerakorn Kongkaew1,Sureeporn Kumneadklang1, Jate Panichpakdee1 and Siriporn Larpkiattaworn1, * Received May 18, 2020; Revised, June 10, 2020; Accepted June 29 2020 Abstract In this work, the coconut coir powders (CCP)/natural rubber (NR) composites were successfully prepared. The CCP acts as a reinforcing filler with two different sizes of fine powders (39 um) and coarse powders (101 um). The coconut coir powders added to the natural rubber matrix at the filler content of 25, 50, 75, and 100 phr. The effect of CCP contents on physical and mechanical properties was studied. The result revealed that the increase in CCP content has decreased the tensile strength, elongation at break and toughness of composites but increased the modulus of elasticity. The CCP/NR composite at 25 phr of filler loading shows better mechanical properties. For different sizes of fillers, the F-CCP exhibit the better mechanical properties and hardness compare to C-CCP. These properties of composites indicate that it can develop and possible apply in rubber mats. Keywords: Coconut coir powders, Natural rubber, Mechanical properties, Composites Introduction al., 2002; Luz et al., 2007; Panthapulakkal et al., 2006). Polymer composites are a combination of a The natural fibers act as reinforcing natural fillers with polymer matrix with fillers. They have been attractive- biodegradable and renewable properties. The proba- ly applied in industrial and academic researches due bility of natural fibers such as kenaf, sisal, pineapple to the control of the material properties.
    [Show full text]