Rubber Tapping Machine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Strategy of Shifting Cultivators in West Kalimantan in Adapting to the Market Economy: Empirical Evidence Behind Gaps in Interdisciplinary Communication
The strategy of shifting cultivators in West Kalimantan in adapting to the market economy: empirical evidence behind gaps in interdisciplinary communication Prudensius Maring1 Budi Luhur University, Indonesia Abstract Issues of climate change and expansion of large-scale land acquisition for industrial plantations continue to ravage the shifting cultivation system that 300–500 million subsistence farmer households depend on. In Indonesia, particularly in Kalimantan and Sumatera, village communities continue to practice shifting cultivation amidst the conversion of lands into industrial plantations. The rampant conversion of farmer's land by large scale companies based in the market economy has resulted in the decline of the shifting cultivation system, and compelled them to enter commercial production. I employed qualitative methods, conducting in- depth interviews and observations in West Kalimantan in 2018. Shifting cultivation today is not just for subsistence, but it is also a strategy to maintain claims to land that has been handed over to companies. Concurrently, people have been developing community plantations using industrial commodities such as rubber and oil palm, which still incorporate subsistence features. The changes occurring in villages have led to conflict since land availability has reduced, while the alternative of working for forestry and plantation companies is hampered by their lack of skills and knowledge. Theoretically, this study indicates the need for communication and synergy between the perspectives of political ecology and cultural ecology in order to understand the socio-politico-economic complexities haunting the village community's alterations in subsistence strategies. The practical implications are that land-based village development should open up communication among stakeholders and position village communities as the key beneficiary in the long run. -
The Miracle Resource Eco-Link
Since 1989 Eco-Link Linking Social, Economic, and Ecological Issues The Miracle Resource Volume 14, Number 1 In the children’s book “The Giving Tree” by Shel Silverstein the main character is shown to beneÞ t in several ways from the generosity of one tree. The tree is a source of recreation, commodities, and solace. In this parable of giving, one is impressed by the wealth that a simple tree has to offer people: shade, food, lumber, comfort. And if we look beyond the wealth of a single tree to the benefits that we derive from entire forests one cannot help but be impressed by the bounty unmatched by any other natural resource in the world. That’s why trees are called the miracle resource. The forest is a factory where trees manufacture wood using energy from the sun, water and nutrients from the soil, and carbon dioxide from the atmosphere. In healthy growing forests, trees produce pure oxygen for us to breathe. Forests also provide clean air and water, wildlife habitat, and recreation opportunities to renew our spirits. Forests, trees, and wood have always been essential to civilization. In ancient Mesopotamia (now Iraq), the value of wood was equal to that of precious gems, stones, and metals. In Mycenaean Greece, wood was used to feed the great bronze furnaces that forged Greek culture. Rome’s monetary system was based on silver which required huge quantities of wood to convert ore into metal. For thousands of years, wood has been used for weapons and ships of war. Nations rose and fell based on their use and misuse of the forest resource. -
LATEX for Beginners
LATEX for Beginners Workbook Edition 5, March 2014 Document Reference: 3722-2014 Preface This is an absolute beginners guide to writing documents in LATEX using TeXworks. It assumes no prior knowledge of LATEX, or any other computing language. This workbook is designed to be used at the `LATEX for Beginners' student iSkills seminar, and also for self-paced study. Its aim is to introduce an absolute beginner to LATEX and teach the basic commands, so that they can create a simple document and find out whether LATEX will be useful to them. If you require this document in an alternative format, such as large print, please email [email protected]. Copyright c IS 2014 Permission is granted to any individual or institution to use, copy or redis- tribute this document whole or in part, so long as it is not sold for profit and provided that the above copyright notice and this permission notice appear in all copies. Where any part of this document is included in another document, due ac- knowledgement is required. i ii Contents 1 Introduction 1 1.1 What is LATEX?..........................1 1.2 Before You Start . .2 2 Document Structure 3 2.1 Essentials . .3 2.2 Troubleshooting . .5 2.3 Creating a Title . .5 2.4 Sections . .6 2.5 Labelling . .7 2.6 Table of Contents . .8 3 Typesetting Text 11 3.1 Font Effects . 11 3.2 Coloured Text . 11 3.3 Font Sizes . 12 3.4 Lists . 13 3.5 Comments & Spacing . 14 3.6 Special Characters . 15 4 Tables 17 4.1 Practical . -
Latex Free Claims: a White Paper on the Risks Associated with Latex Allergies and Latex in Healthcare
Latex Free Claims: A White Paper on the Risks Associated with Latex Allergies and Latex in Healthcare Brought to you by: Allergy and Asthma Network: Sue Lockwood and Robert Hamilton, M.S., Ph.D. Avella Specialty Pharmacy: Eric Sredzinski, Pharm.D., AAHIVP and Jenna Vaughn, Pharm.D., PGY1 Executive Summary There is significant confusion as to the meaning of “latex free” in healthcare. The FDA has urged manufacturers to drop the term “latex free” or a ”does not contain latex” claim from labels because of the challenge to ensure a product is completely devoid of natural rubber latex proteins which cause the allergic reactions. While there are no regulations requiring the On December 2, labeling of a medical product to state natural rubber latex was not used as a material in the manufacturing process, the terms “latex free” or 2014, the FDA “does not contain latex” are used too broadly. According to the FDA, these labeling techniques are not sufficiently specific, not necessarily scientifically released the accurate, and may be misunderstood and applied too widely. final latex guidance On December 2, 2014, the FDA released the final latex guidance document document advising [https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/ GuidanceDocuments/UCM342872.pdf] advising firms to use “not made with firms to use natural rubber latex” if no natural (Hevea brasiliensis) rubber latex was used in the "not made manufacturing process. Not all types of latex are from natural rubber latex; for example, products that contain nitrile and polyvinyl chloride, will not cause a with natural natural rubber latex allergy because these are synthetic formulations. -
“Growth and Production of Rubber”
biblio.ugent.be The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access. This item is the archived peer-reviewed author-version of: Growth and production of rubber Verheye, W. In: Verheye, W. (ed.), Land Use, Land Cover and Soil Sciences. Encyclopedia of Life Support Systems (EOLSS), UNESCO-EOLSS Publishers, Oxford, UK. http://www.eolss.net To refer to or to cite this work, please use the citation to the published version: Verheye, W. (2010). Growth and Production of Rubber . In: Verheye, W. (ed.), Land Use, Land Cover and Soil Sciences . Encyclopedia of Life Support Systems (EOLSS), UNESCO-EOLSS Publishers, Oxford, UK . http://www.eolss.net GROWTH AND PRODUCTION OF RUBBER Willy Verheye, National Science Foundation Flanders and Geography Department, University of Gent, Belgium Keywords : Agro-chemicals, estate, Hevea, industrial plantations, land clearing, land management, latex, rubber. Contents 1. Introduction 2. Origin and distribution 3 Botany 3.1 Cultivars and Classification 3.2 Structure 3.3 Pollination and Propagation 4. Ecology and Growing Conditions 4.1 Climate Requirements 4.2 Soil Requirements 5. Land and Crop Husbandry 5.1 Planting and Land Management 5.2 Plantation Maintenance 6. Tapping and Processing 6.1 Tapping 6.2 Collection of Tapped Latex 6.3 Processing 7. Utilization and Use 8. Production and Trade 9. Environmental and Social Constraints of Plantation Crops 9.1 Land Tenure 9.2 Land Clearing 9.3 Use of Agrochemicals 9.4 Social and Rural Development 9.5 Biodiversity Glossary Bibliography Biographical Sketch Summary Rubber is a tropical tree crop which is mainly grown for the industrial production of latex. -
Biodiversity in Locally Managed Lands
land Biodiversity in Locally Managed Lands Edited by Jeffrey Sayer and Chris Margules Printed Edition of the Special Issue Published in Land www.mdpi.com/journal/land Biodiversity in Locally Managed Lands Special Issue Editors Jeffrey Sayer Chris Margules MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Jeffrey Sayer Chris Margules James Cook University, Australia James Cook University, Australia Tanah Air Beta, Indonesia University of Indonesia, Indonesia Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Land (ISSN 2073-445X) from 2016–2017 (available at: http://www.mdpi.com/journal/land/special_issues/biodiversity_managed). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Author 1; Author 2. Article title. Journal Name Year, Article number, page range. First Edition 2017 ISBN 978-3-03842-454-3 (Pbk) ISBN 978-3-03842-455-0 (PDF) Artic les in this vo lume are Open Access and distributed under the Creative Co mmo ns Attributio n license (CC BY), whic h allows users to download, copy and build upon published artic les even for commercial purposes, as long as the author and publisher are properly credited, which ensures maxi mum disse minatio n and a wide r impac t of our public atio ns. The boo k taken as a who le is © 2017 MDPI, Base l, Switze rland, distribute d unde r the te rms and co nditio ns of the Creative Commons license CC BY-NC-ND (http://c reativeco mmons.o rg/licenses/by -nc -nd/4.0/). -
Latex-Producing Trees and Plants Grow Naturally in Many Regions of the World
A Glimpse into the History of Rubber Latex-producing trees and plants grow naturally in many regions of the world. Yet the making of rubber products got its start among the primitive inhabitants of the Americas long before the first Europeans caught sight of the New World. Moreover, it would be centuries after their "discovery" of America and subsequently becoming aware of rubber's existence before Europeans and others in the so-called "civilized" world awakened to the possibilities offered by such a unique substance. Long before the arrival of Spanish and Portuguese explorers and conquerors, native Americans in warmer regions near the equator collected the sap of latex- producing trees and plants and, after treating it with greasy smoke, fashioned it into useful rubber items. Among the objects they produced were rubber boots, hollow balls and water jars. Finished rubber products of the New World's Indians were observed by Europeans possibly within the first two or three years after their discovery of America and certainly within the first 30 years. Yet most of civilized Europe continued to view rubber as a mere novelty with little commercial importance until well into the 18th century. It's possible that Christopher Columbus himself may have seen rubber being used by the Indian natives of Hispaniola (now Haiti and the Dominican Republic). Columbus, on his second voyage, dated sometime between 1493 and 1496, was rumored to have brought back balls "made from the gum of a tree" that he presented to his financial sponsors, King Ferdinand and Queen Isabella of Spain. The accuracy of that report is in question, however. -
Elementary School Food Gardens and Mini-Forests
Green Club Manual Elementary School Food Gardens and Mini-forests Acknowledgements: The Ministry of Education gratefully acknowledges the generous assistance of the following individuals and institutions that have helped in the development of these materials: • Members of the Curriculum Core Team • Participants of the workshop for review of the Environmental Education materials • Directors, teachers, Parent Teacher Association members and students from the following schools: Weki, Zagir, Godaif, Selemuna, Kehawta, Adi Segudo, Selam, Semaetat, Dekemhare, Emberami, Tsada Christian and Foro Elementary Schools, and Fithi Junior School • Ministries and organisations of the Government of the State of Eritrea (Ministry of Agriculture, Ministry of Land, Water and Environment, Energy Research Training Centre) • Members of the Quality Review Committee from the Ministry of Education • Consultants from Live & Learn Environmental Education - www.livelearn.org • Translators • Illustrators • Photographers • Graphic Designers & Desktop Publishers • Members of the Pre-press Unit, Ministry of Education The materials contained in this book were developed for the Ministry of Education by Live & Learn Environmental Education through UNICEF with assistance from the Government of Japan and the UK Department for International Development (DFID). Copyright © Ministry of Education and UNICEF 2010 English edition printed January 2010 Printed on recycled paper Contents How To Use This Manual ������������������������������������������������������������������������������������������������������ -
Research Article Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres
Hindawi Publishing Corporation Journal of Nanomaterials Volume 2012, Article ID 980541, 15 pages doi:10.1155/2012/980541 Research Article Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres Katia Sparnacci,1 Diego Antonioli,1 Simone Deregibus,1 Michele Laus,1 Giampaolo Zuccheri,2 Luca Boarino,3 Natascia De Leo,3 and Davide Comoretto4 1 Dipartimento di Scienze dell’ Ambiente e della Vita, Universita` del Piemonte Orientale “A. Avogadro”, INSTM, UdR Alessandria, Via G. Bellini 25 g, 15100 Alessandria, Italy 2 Dipartimento di Biochimica “G. Moruzzi”, Universita` di Bologna, INSTM, CNRNANO-S3, Via Irnerio 48, 40126 Bologna, Italy 3 NanoFacility Piemonte, Electromagnetism Division, Istituto Nazionale di Ricerca Metrologica Strada delle Cacce 91, 10135 Torino, Italy 4 Dipartimento di Chimica e Chimica Industriale, Universita` degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy Correspondence should be addressed to Michele Laus, [email protected] Received 2 August 2011; Revised 17 October 2011; Accepted 24 October 2011 Academic Editor: Hai-Sheng Qian Copyright © 2012 Katia Sparnacci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Nanosized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. -
Peat Swamp and Lowland Forests of Sumatra (Indonesia)
Forest Area Key Facts & Peat Swamp and Lowland Carbon Emissions Forests of Sumatra (Indonesia) from Deforestation Forest location and brief description With an area of some 470,000 km2, Sumatra is Indonesia’s largest island, and the world’s sixth largest, supporting 40 million people. The lowland forests cover approximately 118,300 km2 of the eastern part of the island. These rainforests are characterized by large, buttressed trees dominated by the Dipterocarpaceae family, woody climbers and epiphytes. Figs are also common in the lowland forests. There are more than 100 fig species in Sumatra. According to the SPOT Vegetation 2006 data, the Sumatran peat swamp forests total approximately 33,600 km2. These forests are located on Sumatra’s eastern coast and boast the deepest peat in Indonesia. Over 30 per cent of Sumatra’s peat are over 4 metres deep. Most of the peat are in the Sumatran province of Riau (56.1 per cent of its total provincial area). Unique qualities of forest area Sumatra’s lowland forests are home to a range of species including: Sumatran pine, Rafflesia arnoldii (the world’s largest individual flower, measuring up to 1 metre wide), Amorphophallus spp. (world’s tallest and largest inflorescence flower measuring up to 2 metres tall), Sumatran tiger, orang utan, Sumatran rhinoceros, Sumatran elephant, Malayan tapir, Malayan sun bear, Bornean clouded leopard, and many birds and butterflies. Although Sumatra’s peat swamp forests do not support an abundant terrestrial wildlife, they do support some of the island’s biggest and • The forest sector accounts rarest animals, such as the critically endangered Sumatran tiger, and the for 85 per cent of Indonesia’s endangered Sumatran rhinoceros and Asian elephant. -
Method: Analysis 1
Method: 1. The experiment was set up with correct equipment and materials. 2. Nine petri dishes with nutrient agar set in them were gathered. 3. A PIPETMAN Classic and a spreader was used to apply E. coli to nutrient agar petri dishes. 4. Each disk was numbered to be able to recognize each substances. 5. Testing solutions were made up in a ceramic dish with a dropper and correct amount of water Aim: for dilution. The aim of the experiment is to investigate the effectiveness of half and full dilutions of Dettol, Beta- 6. A whole puncher was used to make paper disks. dine and Tea Tree Oil as Anti-Microbial agents. 7. Paper disks were then placed in substance to soak up liquid. 8. Sterile forceps were used to get paper disks out of the substance and placed onto the petri Hypothesis: dishes. It is predicted that Dettol will be the most effective Anti-Microbial agent due to it containing an OH 9. Steps one to eight were repeated three times for each substances- Dettol, Betadine and Tea group that is able to bind to cell surfaces and kill them. Tea tree oil is expected to be the second Tree Oil. most effective anti-microbial agent, as it also contains an OH group, and betadine is expected to be 10. Each dish were sealed shut with sticky tape to contain bacteria. the least effective because it does not contain an OH group. Furthermore, it is expected that the substances that have zero dilution will have the most anti-microbial action due to the strength of the 11. -
CORALITE MUSCLE JOINT- Camphor Menthol Menthyl Salicylate Patch United Exchange Corp
CORALITE MUSCLE JOINT- camphor menthol menthyl salicylate patch United Exchange Corp. Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- Active ingredients Purpose Camphor 1.2%...........................................Topical analgesic Menthol 5.7%.............................................Topical analgesic Methyl Salicylate 6.3%.................................Topical analgesic Uses For temporary relief of minor aches and pains of muscles and joints associated with: arthritis simple backache strains bruises sprains Warnings For external use only Allergy alert: If prone to allergic reaction from aspirin or salicylates, consult a doctor before use. Do not use on wounds or damaged skin with a heating pad if you are allergic to any ingredients of this product When using this product do not use other than directed avoid contact with the eyes, mucous membranes or rashes do not bandage tightly Stop use and ask a doctor if: rash, itching, or excessive skin irritation develops conditions worsen symptoms persist for more than 7 days symptoms clear up and occur again within a few days If pregnant or breast-feeding, ask a health professional before use. Keep out of reach of children. If swallowed, get medical help or contact a Poision Control Center right away. Directions Adults and children 12 years of age and over: clean and dry affected area remove patch from film apply to affected area not more than 3 to 4 times daily remove patch from skin after at most 8 hours of application Children under 12 years of age: consult with a doctor Other information avoid storing product in direct sunlight protect from excessive moisture Inactive ingredients butylated hydroxytoluene, glyceryl rosinate, natural rubber, polybutene, polyisobutylene, precipitated calcium carbonate, quinton, sorbitan stearate, tocopherol acetate, YS resin, zinc oxide DISTRIBUTED BY: UNITED EXCHAGE CORP.