Evolutionary History of the Mating System in Amsinckia (Boraginaceae) Author(S): Daniel J

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary History of the Mating System in Amsinckia (Boraginaceae) Author(S): Daniel J Evolutionary History of the Mating System in Amsinckia (Boraginaceae) Author(s): Daniel J. Schoen, Mark O. Johnston, Anne-Marie L'Heureux, Joyce V. Marsolais Source: Evolution, Vol. 51, No. 4 (Aug., 1997), pp. 1090-1099 Published by: Society for the Study of Evolution Stable URL: http://www.jstor.org/stable/2411038 . Accessed: 19/07/2011 14:22 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=ssevol. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Society for the Study of Evolution is collaborating with JSTOR to digitize, preserve and extend access to Evolution. http://www.jstor.org Evolution, 51(4), 1997, pp. 1090-1099 EVOLUTIONARY HISTORY OF THE MATING SYSTEM IN AMSINCKIA (BORAGINACEAE) DANIEL J. SCHOEN,1 MARK 0. JOHNSTON,2 ANNE-MARIE L'HEUREUX,3 AND JOYCE V. MARSOLAIS4 lDepartment of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec H3A IBI, Canada E-mail: schoen @maclan. mcgill. ca 2Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4JI Canada 3Faculty of Agricultural Sciences, Universidad de Oriente, San Miguel, El Salvador 4Department of Biology, McMaster University, Hamilton, Ontario L8S 4KI, Canada Abstract.-A survey of restriction site variation in the chloroplast genome of the annual plant genus Amsinckia, together with estimation of outcrossing rates, was conducted to analyze the evolutionary history of the mating system. Species, and in some cases populations within species, differ markedly in their mating system. Five taxa are distylous and predominantly outcrossing, or show mixed mating systems, while the remaining taxa are homostylous and pre- dominantly self-fertilizing. Reconstruction of the molecular phylogeny of the group places different distylous and homostylous taxa at four separate branch tips. When distyly is treated as ancestral in the group, or when the loss of distyly is assumed to be more common than its gain, the results of the phylogenetic analysis support the hypothesis that the self-fertilizing taxa are of recent origin from outcrossing relatives. These findings are discussed with respect to theory for the evolution and breakdown of distyly and the probability of extinction of selfing lineages. Key words.-cpDNA, distyly, homostyly, phylogeny, self-fertilization. Received August 15, 1996. Accepted April 14, 1997. The majority of outcrossing angiosperms have bisexual of these species are distylous. Distyly is a complex morpho- flowers, a condition from which self-pollination can evolve logical and physiological polymorphism-the two floral directly through the modification of self-incompatibility or morphs of a distylous species produce flowers that differ other floral traits that prevent self-pollination. Indeed, the- reciprocally in style and stamen lengths, and both self- and oretical models for the selection of mating system modifiers intramorph fertilizations are partially or completely pre- indicate that traits promoting self-pollination are selectively vented by self-incompatibility (Ganders 1979; Barrett 1990). advantageous under a wide variety of circumstances (Fisher The remaining species of Amsinckia lack distyly and show 1941; Lloyd 1979; Lande and Schemske 1985). Moreover, various degrees of floral size reduction (Fig. 1). patterns of floral variation among the angiosperms suggest Distyly in Amsinckia conforms to the classic one-locus that characters that prevent self-pollination have been lost genetic model (Ganders 1979) in which the short style-long independently in many widely separated evolutionary lin- stamen floral morph (thrum) is dominant to the long style- eages (Stebbins 1974). The apparent ease by which floral short stamen morph (pin). Unlike the case in many distylous modifications can bring about increases in the rate of self- species, distyly in Amsinckia is not coupled with a marked fertilization in angiosperms, together with the often lenient sporophytic incompatibility reaction, though there is evi- conditions for their selection (Schoen et al. 1996), raises dence of cryptic self-incompatibility (i.e., preferentialfertil- questions about how frequently predominantselfing has aris- ization by pin pollen when on thrum stigmas, and vice versa) en in the history of the flowering plants, and why more plant in two taxa (Weller and Ornduff 1977, 1989; Casper et al. taxa do not reproducevia this mechanism. One way to address 1988). Because they are only cryptically self-incompatible, such questions is with the tools of phylogenetic analysis, for however, these distylous species need not be complete out- example, by examining the number of times that selfing has crossers. Indeed, genetic estimates of the mating system in arisen in a clade, the relative evolutionary longevity of selfing a few distylous species of Amsinckia indicate that they are lineages, and whether selfing lineages have speciated as often predominantly, but not exclusively, outcrossing (Ganders as outcrossing lineages. But despite the potential utility of 1975b, 1976; Ganders et al. 1985; Johnston and Schoen the phylogenetic approachfor examining mating system evo- 1996). Less is known about the mating system of the hom- lution, population-level analysis has dominated this topic, ostylous species, though these taxa often have flowers of and only recently have researchersbegun to use phylogenetic reduced size, and they generally self-pollinate spontaneously. methods to help interpretpatterns of mating system diversity Genetic estimates of the mating system in a few homostylous in light of evolutionary theory (e.g., Wyatt 1988; Donoghue populations indicate that they are predominant to extreme 1989; Armbruster1993; Grahamand Barrett 1995; Weller et selfers (Ganders et al. 1985; Johnston and Schoen 1995, al. 1995a,b; Barrett et al. 1996; Kohn et al. 1996; Soltis et 1996). al. 1996). On the basis of morphological and chromosomal evidence, Here we report results from a phylogenetic analysis of the Ray and Chisaki (1957a) suggested that distyly has been lost genus Amsinckia, a group of western North American annual independently in at least four lineages of Amsinckia. The plants that has apparently undergone frequent evolutionary distylous species typically occur in natural habitats such as shifts in the mating system (Ray and Chisaki 1957a,b). The chaparral borders, serpentine soils, and Pleistocene sand genus Amsinckia comprises approximately 20 species. Five dunes, whereas many homostylous species of Amsinckia are 1090 C) 1997 The Society for the Study of Evolution. All rights reserved. EVOLUTION OF SELF-POLLINATION 1091 In this paper, we focus on estimates of the mating system and on the results of a phylogenetic analysis of mating system evolution aimed at addressing: (1) the number of times that selfing has evolved in the genus; and (2) the relative ages of the selfing taxa. MATERIALS AND METHODS Study Species and Populations The species and populations studied include members of all four sections of the genus in California, the apparentcenter of diversity of the group (Ray and Chisaki 1957a; Table 1). One population of each distylous species was studied. Many of the distylous species are rare due to habitat destruction, and in some cases only a single population could be located (e.g., A. grandiflora). One or more of the putative homos- tylous relatives of each distylous species, as hypothesized by Ray and Chisaki (1957a), were also included in the analysis. We concentrated our efforts in the three sections of the genus where there are the fewest difficulties associated with species identification (sections Tessellatae, Microcarpae, and Dis- junctae). Species in the fourth section, Muricatae, often have similar and overlapping morphology, possibly the result of FIG. 1. Flower from the thrum form of distylous Amsinckiafurcata hybridization in the past (Ray and Chisaki 1957c). This last (left) and its homostylous relative A. vernicosa (right) showing the section does not contain any distylous species. Only one reduction of flower size characteristic of many of the homostylous taxa of the genus. member of it (A. intermedia) was included in the present analysis (Table 1). most abundant as colonizing plants of roadsides, grazed pas- Mating System Estimation tures, and agricultural fields. All distylous species are diploid, while many homostylous species are polyploid (Table 1; Ray The mating systems of several species included in the phy- and Chisaki 1957a). Some populations contain both hom- logenetic analysis have not been estimated before. Starch gel ostylous and distylous
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • The Flora of Guadalupe Island, Mexico
    qQ 11 C17X NH THE FLORA OF GUADALUPE ISLAND, MEXICO By Reid Moran Published by the California Academy of Sciences San Francisco, California Memoirs of the California Academy of Sciences, Number 19 The pride of Guadalupe Island, the endemic Cisfuiillw giiailulupensis. flowering on a small islet off the southwest coast, with cliffs of the main island as a background; 19 April 1957. This plant is rare on the main island, surviving only on cliffs out of reach of goats, but common here on sjoatless Islote Nccro. THE FLORA OF GUADALUPE ISLAND, MEXICO Q ^ THE FLORA OF GUADALUPE ISLAND, MEXICO By Reid Moran y Published by the California Academy of Sciences San Francisco, California Memoirs of the California Academy of Sciences, Number 19 San Francisco July 26, 1996 SCIENTIFIC PUBLICATIONS COMMITTEE: Alan E. Lcviton. Ediinr Katie Martin, Managing Editor Thomas F. Daniel Michael Ghiselin Robert C. Diewes Wojciech .1. Pulawski Adam Schift" Gary C. Williams © 1906 by the California Academy of Sciences, Golden (iate Park. San Francisco, California 94118 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any infcMination storage or retrieval system, without permission in writing from the publisher. Library of Congress Catalog Card Number: 96-084362 ISBN 0-940228-40-8 TABLE OF CONTENTS Abstract vii Resumen viii Introduction 1 Guadalupe Island Description I Place names 9 Climate 13 History 15 Other Biota 15 The Vascular Plants Native
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Edible Seeds and Grains of California Tribes
    National Plant Data Team August 2012 Edible Seeds and Grains of California Tribes and the Klamath Tribe of Oregon in the Phoebe Apperson Hearst Museum of Anthropology Collections, University of California, Berkeley August 2012 Cover photos: Left: Maidu woman harvesting tarweed seeds. Courtesy, The Field Museum, CSA1835 Right: Thick patch of elegant madia (Madia elegans) in a blue oak woodland in the Sierra foothills The U.S. Department of Agriculture (USDA) prohibits discrimination in all its pro- grams and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sex- ual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250–9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Acknowledgments This report was authored by M. Kat Anderson, ethnoecologist, U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) and Jim Effenberger, Don Joley, and Deborah J. Lionakis Meyer, senior seed bota- nists, California Department of Food and Agriculture Plant Pest Diagnostics Center. Special thanks to the Phoebe Apperson Hearst Museum staff, especially Joan Knudsen, Natasha Johnson, Ira Jacknis, and Thusa Chu for approving the project, helping to locate catalogue cards, and lending us seed samples from their collections.
    [Show full text]
  • (Dr. Sc. Nat.) Vorgelegt Der Mathematisch-Naturwissenschaftl
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae de Vos, Jurriaan Michiel Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-88785 Dissertation Originally published at: de Vos, Jurriaan Michiel. Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae. 2012, University of Zurich, Facultyof Science. FLOWERS, SEX, AND DIVERSITY. REPRODUCTIVE-ECOLOGICAL AND MACRO-EVOLUTIONARY ASPECTS OF FLORAL VARIATION IN THE PRIMROSE FAMILY, PRIMULACEAE Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftliche Fakultät der Universität Zürich von Jurriaan Michiel de Vos aus den Niederlanden Promotionskomitee Prof. Dr. Elena Conti (Vorsitz) Prof. Dr. Antony B. Wilson Dr. Colin E. Hughes Zürich, 2013 !!"#$"#%! "#$%&$%'! (! )*'+,,&$-+''*$.! /! '0$#1'2'! 3! "4+1%&5!26!!"#"$%&'(#)$*+,-)(*#! 77! "4+1%&5!226!-*#)$%.)(#!'&*#!/'%#+'.0*$)/)"$1'(12%-).'*3'0")"$*.)4&4'*#' "5*&,)(*#%$4'+(5"$.(3(-%)(*#'$%)".'(#'+%$6(#7.'2$(1$*.".! 89! "4+1%&5!2226!.1%&&'%#+',!&48'%'9,%#)()%)(5":'-*12%$%)(5"'"5%&,%)(*#'*3' )0"';."&3(#!'.4#+$*1"<'(#'0")"$*.)4&*,.'%#+'0*1*.)4&*,.'2$(1$*.".! 93! "4+1%&5!2:6!$"2$*+,-)(5"'(12&(-%)(*#.'*3'0"$=*!%14'(#'0*1*.)4&*,.' 2$(1$*.".>'5%$(%)(*#'+,$(#!'%#)0".(.'%#+'$"2$*+,-)(5"'%..,$%#-"'(#' %&2(#"'"#5($*#1"#).! 7;7! "4+1%&5!:6!204&*!"#")(-'%#%&4.(.'*3'!"#$%&''."-)(*#'!"#$%&''$"5"%&.' $%12%#)'#*#/1*#*204&4'%1*#!'1*2$0*&*!(-%&&4'+(.)(#-)'.2"-(".! 773! "4+1%&5!:26!-*#-&,+(#!'$"1%$=.! 7<(! +"=$#>?&@.&,&$%'! 7<9! "*552"*?*,!:2%+&! 7<3! !!"#$$%&'#""!&(! Es ist ein zentrales Ziel in der Evolutionsbiologie, die Muster der Vielfalt und die Prozesse, die sie erzeugen, zu verstehen.
    [Show full text]
  • Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S
    Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S. Fish and Wildlife Service G. Leppig and A. Pickart and California Department of Fish Game Release 4.0 June 2014* www.fws.gov/refuge/humboldt_bay/ Habitat- Habitat - Occurs on Species Status Occurs within Synonyms Common name specific broad Lanphere- Jepson Manual (2012) (see codes at end) refuge (see codes at end) (see codes at end) Ma-le'l Units UD PW EW Adoxaceae Sambucus racemosa L. red elderberry RF, CDF, FS X X N X X Aizoaceae Carpobrotus chilensis (Molina) sea fig DM X E X X N.E. Br. Carpobrotus edulis ( L.) N.E. Br. Iceplant DM X E, I X Alismataceae lanceleaf water Alisma lanceolatum With. FM X E plantain northern water Alisma triviale Pursh FM X N plantain Alliaceae three-cornered Allium triquetrum L. FS, FM, DM X X E leek Allium unifolium Kellogg one-leaf onion CDF X N X X Amaryllidaceae Amaryllis belladonna L. belladonna lily DS, AW X X E Narcissus pseudonarcissus L. daffodil AW, DS, SW X X E X Anacardiaceae Toxicodendron diversilobum Torrey poison oak CDF, RF X X N X X & A. Gray (E. Greene) Apiaceae Angelica lucida L. seacoast angelica BM X X N, C X X Anthriscus caucalis M. Bieb bur chevril DM X E Cicuta douglasii (DC.) J. Coulter & western water FM X N Rose hemlock Conium maculatum L. poison hemlock RF, AW X I X Daucus carota L. Queen Anne's lace AW, DM X X I X American wild Daucus pusillus Michaux DM, SW X X N X X carrot Foeniculum vulgare Miller sweet fennel AW, FM, SW X X I X Glehnia littoralis (A.
    [Show full text]
  • Vascular Plants of Santa Cruz County, California
    ANNOTATED CHECKLIST of the VASCULAR PLANTS of SANTA CRUZ COUNTY, CALIFORNIA SECOND EDITION Dylan Neubauer Artwork by Tim Hyland & Maps by Ben Pease CALIFORNIA NATIVE PLANT SOCIETY, SANTA CRUZ COUNTY CHAPTER Copyright © 2013 by Dylan Neubauer All rights reserved. No part of this publication may be reproduced without written permission from the author. Design & Production by Dylan Neubauer Artwork by Tim Hyland Maps by Ben Pease, Pease Press Cartography (peasepress.com) Cover photos (Eschscholzia californica & Big Willow Gulch, Swanton) by Dylan Neubauer California Native Plant Society Santa Cruz County Chapter P.O. Box 1622 Santa Cruz, CA 95061 To order, please go to www.cruzcps.org For other correspondence, write to Dylan Neubauer [email protected] ISBN: 978-0-615-85493-9 Printed on recycled paper by Community Printers, Santa Cruz, CA For Tim Forsell, who appreciates the tiny ones ... Nobody sees a flower, really— it is so small— we haven’t time, and to see takes time, like to have a friend takes time. —GEORGIA O’KEEFFE CONTENTS ~ u Acknowledgments / 1 u Santa Cruz County Map / 2–3 u Introduction / 4 u Checklist Conventions / 8 u Floristic Regions Map / 12 u Checklist Format, Checklist Symbols, & Region Codes / 13 u Checklist Lycophytes / 14 Ferns / 14 Gymnosperms / 15 Nymphaeales / 16 Magnoliids / 16 Ceratophyllales / 16 Eudicots / 16 Monocots / 61 u Appendices 1. Listed Taxa / 76 2. Endemic Taxa / 78 3. Taxa Extirpated in County / 79 4. Taxa Not Currently Recognized / 80 5. Undescribed Taxa / 82 6. Most Invasive Non-native Taxa / 83 7. Rejected Taxa / 84 8. Notes / 86 u References / 152 u Index to Families & Genera / 154 u Floristic Regions Map with USGS Quad Overlay / 166 “True science teaches, above all, to doubt and be ignorant.” —MIGUEL DE UNAMUNO 1 ~ACKNOWLEDGMENTS ~ ANY THANKS TO THE GENEROUS DONORS without whom this publication would not M have been possible—and to the numerous individuals, organizations, insti- tutions, and agencies that so willingly gave of their time and expertise.
    [Show full text]
  • Cordiaceae, Boraginales) in the Brazilian Semi-Arid Caatinga: Generalist in C
    “main” — 2010/11/4 — 13:46 — page 881 — #1 Anais da Academia Brasileira de Ciências (2010) 82(4): 881-891 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Contrasting bee pollination in two co-occurring distylic species of Cordia (Cordiaceae, Boraginales) in the Brazilian semi-arid Caatinga: generalist in C. globosa vs. specialist in C. leucocephala ISABEL C. MACHADO1, ARIADNA V. LOPES1 and MARLIES SAZIMA2 1Departamento de Botânica, CCB, Universidade Federal de Pernambuco Rua Prof. Nelson Chaves s/n, Cidade Universitária, 50372-970 Recife, PE, Brasil 2Departamento de Botânica, Instituto de Biologia, Universidade Estadual de Campinas Rua Monteiro Lobato, 970, Cidade Universitária “Zeferino Vaz”, 13083-970 Campinas, SP, Brasil Manuscript received on June 4, 2009; accepted for publication on March 31, 2010 ABSTRACT In this study we compare the reproductive biology of Cordia globosa and C. leucocephala (Cordiaceae, Boraginales; formerly referred to Boraginaceae) to understand the functioning of the floral morphs and the relations with their effective pollinators. The species are synchronopatric, distylic, and self-incompatible. Though they share melittophilous traits, the main visitor and pollinator of C. globosa was the generalist and exotic bee Apis mellifera, while the only one of C. leucocephala was the oligoletic bee Ceblurgus longipalpis. These two latter species are restricted to the Caatinga of NE Brazil, contrasting with the wide distribution of Cordia globosa. While the fruit-set for C. globosa was high, independently if the pollen donor/stigma receptor was a pin (long-styled) or thrum (short-styled) individual, in C. leucocephala the fruit-set was low and occurred only when a thrum individual was the pollen donor.
    [Show full text]
  • Technical Notes
    TECHNICAL NOTES U.S. Department of Agriculture Natural Resources Conservation Service TN – PLANT MATERIALS - CA - 83 December, 2015 Big Pine Paiute Tribe Conservation Field Trial Study The Edible Corm Plant, Nahavita, Dichelostemma capitatum (Benth.) Alph. Wood: Source Population Adaptation and Vegetative Reproduction Response Project Principal Investigators Ken Lair, Ph.D. Lair Restoration Consulting Restoration Ecologist / former NRCS-ACES Plant Materials Specialist Hesperia, CA 559-476-9335 [email protected] Rob Pearce, Ph.D. District Conservationist Natural Resources Conservation Service, USDA Bishop, CA 760-872-6111 [email protected] Bill Helmer Director, Tribal Historic Preservation Office Big Pine Paiute Tribe of the Owens Valley Big Pine, CA 760-938-2003, ext. 228 [email protected] 2 Background and Objectives C. Background The underground plant parts harvested historically by the Big Pine Paiute Tribe for foods include bulbs, tubers, and corms (aka “geophytes”). These are often termed “root crops” or “Indian potatoes” in the local vernacular. These underground plant structures provide an important starch and protein component of the Indian diet. “Indian potatoes” gathered by the Big Pine Paiute Tribe include Nahavita (aka bluedicks) (Dichelostemma capitatum (Benth.) Alph. Wood ssp. capitatum) (Figure 1), and taboose (aka yellow nutsedge) (Cyperus esculentus L. var. esculentus L.). B. A. Figure 1. A. Nahavita plants harvested by a traditional tribal digging stick. B. Floral display of Nahavita. C. Nahavita corms. Photos by M. Kat Anderson (A and C), and USDA- PLANTS database (B). Some traditional subsistence geophytic plant foods for California Indians from archaeological time to the recent past are declining in abundance in the areas where Indians used to gather them.
    [Show full text]
  • BORAGINACEAE Christine Pang, Darla Chenin, and Amber M
    Comparative Seed Manual: BORAGINACEAE Christine Pang, Darla Chenin, and Amber M. VanDerwarker (Completed, April 29, 2019) This seed manual consists of photos and relevant information on plant species housed in the Integrative Subsistence Laboratory at the Anthropology Department, University of California, Santa Barbara. The impetus for the creation of this manual was to enable UCSB graduate students to have access to comparative materials when making in-field identifications. Most of the plant species included in the manual come from New World locales with an emphasis on Eastern North America, California, Mexico, Central America, and the South American Andes. Published references consulted1: 1998. Moerman, Daniel E. Native American ethnobotany. Vol. 879. Portland, OR: Timber press. 2009. Moerman, Daniel E. Native American medicinal plants: an ethnobotanical dictionary. OR: Timber Press. 2010. Moerman, Daniel E. Native American food plants: an ethnobotanical dictionary. OR: Timber Press. 2007. Timbrook, Jan. Chumash Ethnobotany: Plant Knowledge among the Chumash People of Southern California. OR: Santa Barbara Museum of Natural history. Species included herein: Amsinckia menziesii Borago officinalis Eriodictyon angustifolium Phacelia cicutaria 1 Disclaimer: Information on relevant edible and medicinal uses comes from a variety of sources, both published and internet-based; this manual does NOT recommend using any plants as food or medicine without first consulting a medical professional. Amsinckia menziesii Family: Boraginaceae Common Names: Common fiddleneck, Menzies’ fiddleneck, Small flowered fiddleneck, Rancher’s fiddleneck Habitat and Growth Habit: This annual herb is native to California. It can be found in Western North America from Alaska to Baja California. Often growing in dry open places, meadows, forests, and shrubs.
    [Show full text]
  • Insights from a Rare Hemiparasitic Plant, Swamp Lousewort (Pedicularis Lanceolata Michx.)
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2010 Conservation While Under Invasion: Insights from a rare Hemiparasitic Plant, Swamp Lousewort (Pedicularis lanceolata Michx.) Sydne Record University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Plant Biology Commons Recommended Citation Record, Sydne, "Conservation While Under Invasion: Insights from a rare Hemiparasitic Plant, Swamp Lousewort (Pedicularis lanceolata Michx.)" (2010). Open Access Dissertations. 317. https://scholarworks.umass.edu/open_access_dissertations/317 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CONSERVATION WHILE UNDER INVASION: INSIGHTS FROM A RARE HEMIPARASITIC PLANT, SWAMP LOUSEWORT (Pedicularis lanceolata Michx.) A Dissertation Presented by SYDNE RECORD Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2010 Plant Biology Graduate Program © Copyright by Sydne Record 2010 All Rights Reserved CONSERVATION WHILE UNDER INVASION: INSIGHTS FROM A RARE HEMIPARASITIC PLANT, SWAMP LOUSEWORT (Pedicularis lanceolata Michx.) A Dissertation Presented by
    [Show full text]
  • Toxic Plants in the San Joaquin Valley and Surrounding Area Julie Finzel (Theresa Becchetti Presenting) July 10, 2013 Catheys Valley, CA
    Toxic Plants in the San Joaquin Valley and surrounding area Julie Finzel (Theresa Becchetti presenting) July 10, 2013 Catheys Valley, CA Special thanks go to: Larry Forero, Glenn Nader, Art Craigmill, and Joe DiTomaso for critical input during the preparation of this presentation. Grazing Behavior • How do livestock learn what to eat? • Most animals avoid toxic plants • Usually, an animal must be very hungry before it will eat a toxic plant • There are exceptions to every rule. Some animals get curious Overview of Plant Toxins • Toxic plants contain a number of different toxins that can affect an animal including: – Nitrates/Nitrites – Pyrrolizidine Alkaloids and other Alkaloids – Tannins – Cyanide – Oxalates – Thiaminase – and more… • Each toxin produces a different response in the animal – Varies by species – Can vary based on plant consumed, plant parts, amount consumed, weight of individual and time of year Recorded Livestock Poisonings (17+ years) Vet School Lab Data Chokecherry (Prunus virginiana) • Toxin – Cyanide • Species affected – Cattle, Sheep, Horses, Goats and Humans • Habitat – Along streams, in damp places and in woody, brushy areas • Symptoms – Sudden death – Salivation – Heavy Breathing • Wilted leaves are toxic and any plant cuttings should be removed from areas where livestock graze J. E.(Jed) and Bonnie McClellan © California Academy of Sciences © Br. Alfred Brousseau, Saint Mary's College © Dr. Mark S. Brunell Cocklebur (Xanthium© Kai Palenscar strumarium and spinosum) • Toxin – Glycosides • Species affected – Cattle,
    [Show full text]