National Investment Profile. Water for Agriculture and Energy: Egypt

Total Page:16

File Type:pdf, Size:1020Kb

National Investment Profile. Water for Agriculture and Energy: Egypt National Investment Profile Water for Agriculture and Energy Egypt 1 National Investment Profile. Water for Agriculture and Energy: Egypt. EXECUTIVE SUMMARY This analysis has been conducted within the TCP/INT/3404 "Support to the pre- and post-CAADP compact process for improved agricultural water management" project that covers four countries in Africa: Egypt, Malawi, the Sudan, and Swaziland. The project aims at assisting these countries to foster sustainable agricultural water management (AWM) through the effective implementation of the Comprehensive Africa Agriculture Development Programme (CAADP) compact and post-compact process, the refinement of national agricultural water development strategies and the alignment to national strategies for food security strategies and programmes. The Egyptian economy traditionally relied on agriculture as one of the main sectors. The agricultural sector currently contributes about 13.3 percent of the total Gross Domestic Product (GDP) of Egypt (CAPMAS, 2015). Industries related to agriculture, (e.g. processing, marketing, and supplies) account for a further 20 percent of the total GDP (CAPMAS, 2015). The agricultural sector provides formal and informal employment for about 6.70 million persons (CAPMAS, 2015) and about 8.25 million persons respectively (ILO, 2011). It furthermore accounts for 10 percent of the total national exports (CAPMAS, 2015). The majority of agricultural holdings were of small size. More than 62 percent of the agricultural output comes from agricultural holdings with less than one to three hectares under cropping. Typical farm sizes range from one to two hectares (MALR, 2014 b). Egypt has achieved good progress in agricultural productivity, reflecting the success of horizontal expansion by the expansion of reclaimed areas and vertical expansion by improving productivity. Egypt ranked third in terms of dietary energy supply1 top 20 countries in 2015 reaching about 3550 kcal/cap/day and exceeding the average global calorie availability of 2870 kcal/cap/day as estimated by (FAO, 2015). 1 The dietary energy supply (DES) is the food available for human consumption, expressed in kilocalories per person per day. At the country level, it is calculated as a measure of food available for human use after taking out all non-food utilization, including exports, industrial use, animal feed, seed, wastage and changes in stocks. 2 National Investment Profile. Water for Agriculture and Energy: Egypt. Over the past decade, Egypt has faced a series of shocks that have triggered a decline in food security and nutrition trends. Egypt is self-sufficient in rice, vegetables, fruits, dairy products, poultry, eggs and fresh milk. However, increased food supplies are needed not only to meet nutritional needs of the population, but also to enhance the food self-sufficiency and security position. According to (MOP, 2015 a), the percentage of the population below the poverty line in Egypt declined from about 24.3 percent (12.9 million out of 53.0 million) in 1990/1991 to about 19.6 percent (13.9 million out of 70.7 million) in 2004/2005. However, a recent increase of this percentage was reported to reach about 26.3 percent (22.0 million out of 83.7 million) in 2012/2013 (MOP, 2015 a). Egypt’s irrigation potential is estimated at 4.42 million hectares. The total actual renewable surface water resources are estimated at 56 km3/year (of which 55.5 km3/yr from the River Nile and 0.5 km3/yr from internal renewable surface water resources). Internal renewable groundwater resources are estimated at 1.3 km3/yr. The overlap between surface water and groundwater are considered negligible, the total actual renewable water resources of the country are thus 58.3 km3/yr (FAO-Aquastat, 2015). According to (EEHC, 2014), most of Egypt's economic hydropower potential has been exploited. This can be easily noticed by the declining percentage contribution of generated hydro-electricity into the total electricity generated on the national level, where the 70 percent of the generated electric energy in 1970 decreased to reach 11.3 percent in 2007 then to about 8 percent in 2014 (MOP, 2015 b). The (EEHC, 2014) estimated Egypt’s technically and economically feasible hydropower potential at about 50,000 GWh/year. According to (EEHC, 2014), Egypt has eight hydropower plants in operation. Climate change impact studies predicted a reduction in the productivity of the major crops in Egypt such as wheat, rice, maize, soybeans and barley (MSEA, 2010). The Strategic Framework for Economic and Social Development Plan (SFESDP 2022) aims at poverty reduction (MOP, 2012). Under the framework of overall development policies and the CAADP, Egypt has prepared different policy documents and investment plans regarding agriculture and food security. The National Water Resources Plan (NWRP) (MWRI, 2005) aims at improving overall water use efficiency in agriculture, improving water allocation and distribution of Nile water, preventing or reducing emissions, and treatment of wastewater. 3 National Investment Profile. Water for Agriculture and Energy: Egypt. The SADS 2030 focuses on achieving sustainable use of agricultural natural resources, and improving agricultural productivity (MALR, 2009). Besides, the Sustainable Agricultural Development Strategy (SADS) aims to attain food security by promoting self-sufficiency in strategic food commodities, rationalizing local demand and consumption, improving consumption patterns in order to improve nutritional standards, reducing pre- and post-harvest food losses, improving food quality and safety, and improving social safety nets (MALR, 2009). Egypt has a national energy strategy that covers the diversification of the energy mix, higher energy efficiency, and a reform of the electricity, oil and natural gas markets as well as a reduction of energy subsidies. Based on (NREA, 2014), wind, hydro and solar energies contribute for about 12 percent, 4 percent and 4 percent of the total energy generated by 2020, respectively. To translate these goals into reality, Egypt is currently implementing and planning to implement a number of irrigation and hydropower projects at an average investment costs of US$43 million and US$92 million for the on-going and pipeline projects respectively. The vast majority (91 percent) of these projects is focusing on irrigation categories whereas hydropower categories represent only 1 percent of the envelope; indicating a lack of diversity of investment in this envelope. However, the New and Renewable Energy Authority is pursuing other types of renewable projects, primarily solar and wind power, to diversify the country's energy mix. Investment in the rehabilitation and modernization of irrigation is predominant in the envelope (74 percent). The financial analysis of projects also illustrated that the investment in irrigation within this country is focused on short and medium term projects; investment in the long term is insufficient. Besides, investment is mostly executed by international donors and public funding partners. It is important to mention that Egypt enacted a new Investment Law to attract private sector investors to foster sustainability of funding. It would be important for the country to ensure that the institutional and political environment is adequate for the success of these investments. In addition to this, it is recommended that mechanisms are put in place to encourage the participation of the public and private sectors in developing water resources and to support project formulation in the longer term. 4 National Investment Profile. Water for Agriculture and Energy: Egypt. TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................................................... 2 TABLE OF CONTENTS....................................................................................................................... 5 TABLE OF FIGURES .......................................................................................................................... 6 ABBREVIATIONS .............................................................................................................................. 7 1. CONTEXT ................................................................................................................................. 9 1.1 AGRICULTURE AND FOOD SECURITY ................................................................................ 9 Agriculture .............................................................................................................................. 9 Irrigation and Water Control ................................................................................................ 13 Food security ......................................................................................................................... 14 Food self sufficiency .............................................................................................................. 16 1.2 WATER RESOURCES AND HYDROPOWER ...................................................................... 17 1.3 CLIMATE CHANGE .......................................................................................................... 20 2 NATIONAL STRATEGIES FOR WATER, AGRICULTURE AND ENERGY ..................................... 21 3 INVESTMENT ENVELOPE ....................................................................................................... 27 4 CONCLUSIONS ......................................................................................................................
Recommended publications
  • Morphological Study of the Nile River Fourth Reach
    Cairo University Faculty of Engineering Irrigation and Hydraulics Department MORPHOLOGICAL STUDY OF THE NILE RIVER FOURTH REACH By Dalia Ahmed Fouad Mostafa A Thesis Submitted to Irrigation and Hydraulics Department Faculty of Engineering - Cairo University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Irrigation and Hydraulics FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2012 Cairo University Faculty of Engineering Irrigation and Hydraulics Department MORPHOLOGICAL STUDY OF THE NILE RIVER FOURTH REACH By Dalia Ahmed Fouad Mostafa A Thesis Submitted to Irrigation and Hydraulics Department Faculty of Engineering - Cairo University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Irrigation and Hydraulics Under the Supervision of Prof. Dr. Mohamed Sherif El Prof. Dr. Medhat Said Aziz Manadely Director of the Professor of Hydraulics Irrigation and Hydraulics Department Nile Research Institute Faculty of Engineering National Water Research Center FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2012 Cairo University Faculty of Engineering Irrigation and Hydraulics Department MORPHOLOGICAL STUDY OF THE NILE RIVER FOURTH REACH By Dalia Ahmed Fouad Mostafa A Thesis Submitted to Irrigation and Hydraulics Department Faculty of Engineering - Cairo University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Irrigation and Hydraulics Approved by the Examining Committee Prof. Dr. Mohamed Sherif El Manadely Thesis Main Advisor Professor
    [Show full text]
  • 2-D Modeling of Flow Dynamics Downstream New Assuit Barrage
    INTERNATIONAL JOURNAL of ACADEMIC RESEARCH Vol. 4. No. 3. May, 2012 2-D MODELING OF FLOW DYNAMICS DOWNSTREAM NEW ASSUIT BARRAGE M. B. Ezzat, R. A. Rady, F. S. Fahmy Researcher, National Water Research Center (EGYPT) E-mails: [email protected], [email protected], [email protected] ABSTRACT To make optimum use of the River Nile water, a decision to construct a new barrage downstream the old Assuit Barrage was taken based on a detailed feasibility study. The impacts of constructing the new Barrage were assessed using the 2-D capabilities of a three-dimensional hydrodynamic model “Delft-3D”. The model was calibrated against measured data, precisely velocity distributions from field survey at the Barrage site. The impact of constructing the Barrage on the flow distribution and velocities was then investigated using this model. Model predicted hydrodynamic parameters, without and with the Barrage, were analyzed in detail. The model revealed that the best flow distribution between the left and right branches of Bani-Murr Island is 60% and 40% respectively. In the same context, the velocity comparison between baseline tests and the Barrage’s different operating schemes indicates that the proposed alternatives has almost no effect on the velocity magnitudes or flow distribution at the downstream reach, except for the case of passing 1000 m3/s through the powerhouse with equal flow distribution between Bani-Murr Island branches. Key words: Barrage; 2-D Modeling; Velocity Distribution 1. INTRODUCTION Water resources management in Egypt depends on a complex set of infrastructure along the entire length of the river. The key element of this infrastructure is the High Aswan Dam (HAD) that forms Lake Nasser.
    [Show full text]
  • The Nile Basin and the Grand Ethiopian Renaissance Dam
    Water Urbanism in Transboundary Regions: The Nile Basin and the Grand Ethiopian Renaissance Dam Irina Grcheva Thesis submitted to obtain the degree of Master of Science in Human Settlements Supervisor: Prof. dr. Bruno De Meulder Academic Year 2015 - 2016 © Copyright by KU Leuven Zonder voorafgaande schriftelijke toestemming van zowel de promoter(en) als de auteur(s) is overnemen, kopiëren, gebruiken of realiseren van deze uitgave of gedeelten ervan verboden. Voor aanvragen tot of informatie i.v.m. het overnemen en/of gebruik en/of realisatie van gedeelten uit deze publicatie, wend u tot de KU Leuven, Faculteit Ingenieurswetenschappen - Kasteelpark Arenberg 1, B-3001 Heverlee (België). Telefoon +32-16-32 13 50 & Fax. +32- 16-32 19 88. Voorafgaande schriftelijke toestemming van de promoter(en) is eveneens vereist voor het aanwenden van de in dit afstudeerwerk beschreven (originele) methoden, producten, schakelingen en programma’s voor industrieel of commercieel nut en voor de inzending van deze publicatie ter deelname aan wetenschappelijke prijzen of wedstrijden. © Copyright by KU Leuven Without written permission of the supervisor(s) and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculty of Engineering Science - Kasteelpark Arenberg 1, B-3001 Heverlee (Belgium). Telephone +32-16-32 13 50 & Fax. +32-16-32 19 88. A written permission of the supervisor(s) is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests.
    [Show full text]
  • Nile Water and Agriculture: Past Present and Future
    :he need tor a much better under­ ld productive development of Nile e realization of the need for coop­ 2 lificant progress in this regard. An las, and is, given to water and agri­ eeds to be better consideration for Nile water and agriculture institutions involved in water and man and institutional capacity to Past, present and future Karen Conniff, David Molden, Don Peden and Seleshi B. Awulachew ie, and Source of livelihood of the :ient attentions and investment in momic growth, food security and the NBI programmes. ;Vater availability for food produc­ Key messages Jeneficial' water to managed land has been a dominant feature of Nile Basin countries for centuries. Irrigated expansion over the last hundred years, often driven by foreign powers, has 1 expansion.There is ample scope Lake Nasser. Further addition in caused change in the use of the Nile water, and continues to be a major intlu­ >peration and integrated manage­ ence on the decisions around the Nile River use today. • Use of Nile River water is a cause for transboundary cooperation and conflict. More than ty gains, fisheries and small-scale ever, the Nile Basin countries teel the pressure of expanding population requirements for food production and energy to develop their economies. However, historical treaties and , improve productivity and Sif,'l1if... nr~,rhr,>< continue to significantly shape directions of future Nile water use. 1e landscape is high and can be • Power development is changing the Nile River. Many dams are planned and several are under construction. The dam projects will have direct consequences for local populations lensive agreement and the Nile and governments as they negotiate for water resources, land and power.
    [Show full text]
  • Impacts of Grand Ethiopian Renaissance Dam on Different Water Usages in Upper Egypt
    British Journal of Applied Science & Technology 8(5): 461-483, 2015, Article no.BJAST.2015.225 ISSN: 2231-0843 SCIENCEDOMAIN international www.sciencedomain.org Impacts of Grand Ethiopian Renaissance Dam on Different Water Usages in Upper Egypt Fahmy S. Abdelhaleem1* and Esam Y. Helal2 1Department of Civil Engineering, Benha Faculty of Engineering, Benha University, Benha, Egypt. 2Department of Civil Engineering, Faculty of Engineering, Menoufia University, Shebin Elkom, Egypt. Authors’ contributions This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/BJAST/2015/17252 Editor(s): (1) Rares Halbac-Cotoara-Zamfir, Hydrotechnical Engineering Department, “Politehnica” University of Timisoara, Romania. Reviewers: (1) Abdel Razik Ahmed Zidan, Irrigation and Hydraulics Department, Mansoura University, Egypt. (2) Anonymous, China. Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=1073&id=5&aid=8970 Received 4th March 2015 th Original Research Article Accepted 11 April 2015 Published 27th April 2015 ABSTRACT A Large scale dam named as Grand Ethiopian Renaissance Dam (GERD) is currently under construction on the Blue Nile River in Ethiopia. The final report of the International Panel of Experts (IPoE) on the GERD project which was submitted to the governments of Ethiopia, Sudan and Egypt, reported that the Aswan High Dam (AHD) will reach the minimum operational level during 4 consecutive years. Consequently, this project could significantly affect the water supply to Egypt, in case if the first impounding of the GERD occurs during dry years. The present paper assesses the potential impact of the shortage of Egypt water resources that will reduce the releases from AHD due to the construction of the GERD on the Nile water in Egypt.
    [Show full text]
  • Developments in Water Dams and Water Harvesting Systems Throughout History in Different Civilizations
    International Journal of Hydrology Book Review Open Access Developments in water dams and water harvesting systems throughout history in different civilizations Abstract Volume 2 Issue 2 - 2018 The use of water for domestic and agricultural purpose is not a new phenomenon. It has been used throughout centuries all over the world. After food, water is the basic Alper Baba,1 Chr Tsatsanifos,2 Fatma El component of human life and their settlement. This paper considers developments in Gohary,3 Jacinta Palerm,4 Saifullah Khan,5 S water dams and water harvesting systems throughout history in different civilisations. Ali Mahmoudian,6 Abdelkader T Ahmed,7 The major component of this review consists of hydraulic dams during Pre-Historical 8,9 Time, Bronze Ages (Minoan Era, Indus Valley Civilization, Early Ancient Egyptian Gökmen Tayfur,1 Yannis G Dialynas, 10 Era, Hittites in Anatolia, and Mycenaean Civilization), Historical Period, (Pre- Andreas N Angelakis 1 Columbian, Archaic Period, Classical Greek and Hellenistic Civilizations, Gandahara Department of Civil Engineering, Izmir Institute of Technology, and Mauryan Empire, Roman Period, and early Chinese dynasties), Medieval times Engineering Faculty, Turkey 2Pangaea Consulting Engineers Ltd, Greece (Byzantine Period, Sui, Tang and Song Dynasties in China, Venetian Period, Aztec 3Department of Water Pollution Research, National Research Civilization, and Incas) and Modern Time (Ottoman Period and Present Time). The Centre, Egypt main aim of the review is to present advances in design and construction of water 4Colegio de Posgraduados de Chapingo, Mexico dams and water harvesting systems of the past civilizations with reference to its use 5Institute of Social Sciences and Directorate of Distance for domestic as well as agricultural purposes, its impact on different civilizations Education, Bahauddin Zakariya University, Pakistan 6 and its comparison to the modern technological era.
    [Show full text]
  • The Grand Renaissance Dam and Prospects for Cooperation on the Nile
    The Grand Renaissance Dam and Prospects for Cooperation on the Eastern Nile By Dale Whittington 1 John Waterbury 2 Marc Jeuland 3 February 10, 2014 1 University of North Carolina at Chapel Hill (USA), and the Manchester Business School (UK) Email: [email protected] 2 Global Professor, New York University Abu Dhabi 3 Sanford School of Public Policy and Duke Global Health Institute, Duke University 1 I. Introduction Throughout recorded history, Egypt has been the dominant and sometimes the sole significant user of Nile water. Since the pharaohs, it has developed a sophisticated infrastructure for irrigation and flood control. Until the colonial era none of the other peoples or riparian countries in the basin (which today include Sudan, South Sudan, Ethiopia, Uganda, Kenya, Tanzania, Rwanda, Burundi, Central African Republic, and Eritrea) had any water resources infrastructure on the Nile, and even now the value of Egyptian infrastructure far exceeds that of all the others. And it is a simple but stark fact that Egypt receives virtually all of its surface water from the Nile and that these Nile flows come entirely from outside its borders. No other Nile riparian exhibits anything close to that level of dependency on the river. It is on the basis of these facts that Egypt has laid claim to “acquired rights” to most of the annual flow of the Nile. In most water law regimes, demonstrated use over time has bestowed powerful rights (“first in time, first in right”) against which other claims have been futile. Yet in 1997 the International Law Commission completed a draft convention on the non-navigational uses of international watercourses that enshrined the concept of “equitable use” (McCaffrey and Sinjela 1998, UN 1997).
    [Show full text]
  • The Effect of the High Aswan Dam on the Hydrological Regime of the River Nile
    The influence of man on the hydrological regime with special reference to representative and experimental basins — L'influence de l'homme sur le régime hydrologique avec référence particulière aux études sur les bassins représentatifs et expérimentaux (Proceedings of the Helsinki Symposium, June 1980; Actes du Colloque d'Helsinki, juin 1980): IAHS-AISHPubl.no. 130. The effect of the High Aswan Dam on the hydrological regime of the River Nile S. SHALASH Research Institute of High Dam Side Effects, Cairo, Egypt Abstract. Results from the many theoretical studies undertaken since 1954 to determine the magnitude and rate of degradation, and the effect of the degradation on hydraulic structures on the Nile below the High Aswan Dam, have varied widely. In this paper four methods are used to find the actual degradation, and drop in water levels and bed levels between 1964 and 1978, to assess the effect of the High Aswan Dam on the hydrological regime and the hydraulic structures. Effet du grand barrage d'Assouan sur le régime hydrologique du NU Résumé. De nombreuses études théoriques ont été entreprises depuis 1954 pour déterminer l'ampleur et la vitesse de dégradation ainsi que les effets de la dégradation sur les structures hydrauliques du Nil à l'aval du grand barrage d*Assouan et les résultats de ces études varient largement. Dans cette communication quatre méthodes ont été utilisées pour déterminer la dégradation actuelle ainsi que la baisse des niveaux de l'eau et du niveau du Ut entre 1964 et 1968, pour déterminer l'effet du grand barrage d'Assouan sur le régime hydrologique et les aménagements hydrauliques.
    [Show full text]
  • Assiut Barrage in Egypt: Past, Present and Future Ayman F
    ge Syst Batisha, Irrigat Drainage Sys Eng 2012, 1:2 ina em a s r D E n DOI: 10.4172/2168-9768.1000e104 & g i n n o e i t e a r i g n i r g r Irrigation & Drainage Systems Engineering I ISSN: 2168-9768 Editorial Open Access Assiut Barrage in Egypt: Past, Present and Future Ayman F. Batisha* Environment and Climate Research Institute, National Water Research Center, Ministry of Water Resources and Irrigation, Cairo, Egypt, Tel. 20-2-0100-6443210, Email: [email protected]. Water Resources is becoming increasingly scarce due to construction of 2 navigation locks of 150m x 17m according to the latest unsustainable consumption and use behavior such as overexploitation international technologies to accommodate the increase in the river and pollution in Egypt. In Irrigation sector, the extraction and use and tourism transport units; the construction of a 4-lanes upper bridge of water by landowners is not sufficiently regulated to protect nation over the new barrage with capacity 70 tons to link the East and West and local communities from the depletion and pollution of the water banks of the River Nile in Assiut. The Barrage Project components are: resources. In practice, groundwater can be extracted and Nile river Sluiceway with 8 radial gates 17 m wide and Road Bridge; Hydropower water can be diverted to irrigate fields at will. The impact of climate plant: Low-head hydropower plant with 4 bulb units of 8 MW, total change also poses a further threat to food security. Assiut Barrage capacity 32 MW; new navigation lock: 120 x 17m chamber in addition plays a key role in both Egypt’s food self sufficiency and secures the to the refurbished 80 x 16 m existing navigation lock; Closure dam: livelihood of nearly 6.0 million people.
    [Show full text]
  • The Hydrology of the Nile
    The Hydrology of the Nile by J. V. Sutcliffe Gibb Ltd, Gibb House, London Road, Reading RG6 1BL, UK Y. P. Parks Institute of Hydrology, Wallingford, Oxfordshire 0X10 8BB, UK This publication was financially sponsored by: IWMI The International Water ManagemenI%t IftM Institute , Colombo. Sri Lanka and GIBB1 Water LAWGIBB Group Member Ja Gibb Water, Reading, UK IAHS Special Publication no. 5 (February 1999) IAHS Special Publication no. 5 ISBN 1-910502-75-9 Published by the International Association of Hydrological Sciences 1999 IAHS Press, Institute of Hydrology, Wallingford, Oxfordshire OX10 8BB, UK British Library Cataloguing-in-Publication Data. A catalogue record for this book is available from the British Library. Editors for the Series of IAHS Special Publications: H. Salz The International Institute for Infrastructural, Hydraulic and Environmental Engineering, Delft, The Netherlands Zbigniew W. Kundzewicz Editor Hydrological Sciences Journal, Research Centre of Agricultural and Forest Environment, Polish Academy of Sciences, Poznan, Poland The designations employed and the presentation of material throughout the publication do not imply the expression of any opinion whatsoever on the part of IAHS concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The use of trade, firm, or corporate names in the publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by IAHS of any product or service to the exclusion of others that may be suitable. ® IAHS Press and the authors 1999 This publication may be reproduced in whole or in part in any form for education or nonprofit uses, without special permission from the copyright holders, provided acknowledgement of the source is made.
    [Show full text]
  • Assiut Barrage, to Rehabilitate Or to Rebuild
    Assiut Barrage, to rehabilitate or to rebuild T.J.F. HILL, Mott MacDonald Ltd, Cambridge, UK SYNOPSIS. Assiut barrage, 400 km upstream of Cairo, is the last barrage downstream of the High Aswan Dam (HAD) before the Nile reaches Cairo. It was built between 1898 and 1902 in order to divert Nile river flows to the Ibrahimia canal. The barrage was remodelled extensively between 1934 and 1938, increasing the annual discharge to the Ibrahimia canal which, in its present form, has a length of about 350 km and irrigates an area of 690,000 ha. The barrage was designed as an arched viaduct founded on a mass concrete floor, with a 16 m wide lock positioned on the extreme left bank. The overall length of the structure is 820 m with a water-way capable of discharging 14,000 m3/s provided by 110 individual openings of 5 m width. Each opening contains a double leaf vertical lift roller gate designed for a maximum head difference of 4.2 m. This paper describes the results and conclusions of a feasibility study carried out by Mott MacDonald in association with CES Salzgitter, Fichtner and Inros Lackner, all of Germany, and Hamza Associates of Egypt, to investigate the present structural and operational conditions at the barrage and to outline options for the future. The principal conclusion of this feasibility phase, completed in December 2005, was a recommendation to construct a new barrage downstream of the existing one rather than rehabilitating the existing barrage. A HISTORY OF THE BARRAGE Original Construction, 1898-1902 The Ibrahimia canal was excavated in 1873 to serve the cultivated area on the left bank of the Nile as far as Giza to the north, and Fayum to the West.
    [Show full text]
  • Debt, Markets, and the Science of Prices in Colonial Egypt, 1882
    Calculating Futures: Calculating Futures: Debt, Markets, and the Science of Prices in Colonial Egypt, 1882-1912 Casey Primel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2016 Casey Primel All rights reserved ABSTRACT Calculating Futures: Calculating Futures: Debt, Markets, and the Science of Prices in Colonial Egypt, 1882-1912 Casey Primel This dissertation explores the social and material arrangements in which the cotton market emerged as an object of social scientific inquiry and liberal government in Egypt during the first three decades of the British occupation (1882-1912). This new figuration of the cotton market did not emerge as the natural unfolding of a universal modernity, economic rationality or the inherent logic of capital. Instead, as this study demonstrates, it was a much more earthly affair. In the wake of financial and ecological crises, the colonial elite allied themselves with economists to embed new technologies of calculation into the Egyptian countryside. In the process, they reconfigured what a market was. CONTENTS ACKNOWLEDGMENTS iii INTRODUCTION 1 PART I. FINANCE Chapter 1. Paper Landscapes 27 Chapter 2. Collateral Flows 62 Chapter 3. Subjects of Finance 98 PART II. THE MARKET Chapter 4. Through a Camera Obscura 129 Chapter 5. Engineering Markets 157 CONCLUSION 186 BIBLIOGRAPHY 191 i ILLUSTRATIONS Figures 1. Detail from village map of Kafr Ellem (1881) 54 2. Detail from village map in Sohag (1908) 55 3. Columns from a village land-register 56 4. Columns from a village tax-register 56 5.
    [Show full text]