The NASA/National Space Science Data Center Trapped Radiation

Total Page:16

File Type:pdf, Size:1020Kb

The NASA/National Space Science Data Center Trapped Radiation NSSDC/WDC-A-R&S 91-29 The NASA/National Space Science Data Center Trapped Radiation Environment Model Program (1964-1991) James I. Vette November 1991 National Space Science Data Center (NSSDC) World Data Center A for Rockets and Satellites (WDC-A-R&S) National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 Contents L Introduction ........................................................................................................................... 1 2. Historical Background and Purpose of Program ................................................................... 3 3. Philosophy and Approach ...................................................................................................... 5 4. Summary of Accomplishments ............................................................................................. 7 5. A View of the Future .............................................................................................................. 11 Knowledge of Trapped Protons .................................................................................... 1] Knowledge of Energetic Electrons ............................................................................... 13 Prospective Data for Near-Term Modeling ................................................................. 16 The Long-Term View .................................................................................................... 18 6. Appendix: Chronology of and Remarks on TREMP Development ..................................... 21 The AE-1 Model ........................................................................................................... 21 The AP- 1, AP-2, and AP-3 Models ............................................................................... 22 The AP-4 Model ........................................................................................................... 23 The AE-2 Model ........................................................................................................... 23 The AE-3 Model ........................................................................................................... 25 The AP-5 Model ........................................................................................................... 26 The AP-6 Model ........................................................................................................... 27 The AP-7 Model ........................................................................................................... 27 The AE-4 Model ........................................................................................................... 28 The AE-5 Model ........................................................................................................... 29 The Starfish Decay Model ........................................................................................... 29 The AE-5 1975 Projected and the AE-6 Models ........................................................... 30 The AP-8 Model ........................................................................................................... 30 The Non-Model AEI-7 ................................................................................. .,.,_.,............ 31 The Inner Zone Electron Study .................................................................... :_._;_i.:._....... 31 The AE-8 Model .................................................................................................. ._-...... 32 Errors in the Models .......................................................................................... ,......... 33 Table 1. Experimental Data Used in the Trapped Radiation Model ...... Environment Program ............................................................................... 34 Table 2. Summary of Data Usage in Trapped Radiation Environment Models ...... 41 7. References ............................................................................................................................. 43 Acronyms and Abbreviations ...................................................................................................... 47 PRECEDI.NG PAGE BLANK NOT RLMED t w m 1 INTRODUCTION cial satellite on October 4, 1957, humankind had opened a new frontier for its activities. It was necessary to understand this new environment to learn how to survive for specific intervals of time, since future endeavors would require the placement of new equipment and, eventually, humans into that environment to successfully pursue these goals. The first satellites of both the U.S.S.I_ and the United States carried instruments capa- ble of measuring energetic charged particles, so by mid-1958 it was established that the geo- magnetic field was capable of trapping particles to produce a radiation belt. Thus, the trapped radiation environment was a reality that became a factor in all space program planning. This document will detail the major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments. In this document the effort will be called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that has been applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the developments of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7. 1t 2 Most of the scientific instruments HISTORICAL that had been flown in space from October 4, 1957, to July 9, 1962, were concerned with energetic pro- tons and electrons. A general un- BACKGROUND derstanding of this environment was available from the results of these measurements. However, there could be large differences, at AND PURPOSE least by a factor of 10, when at- tempting a quantitative compari- son between various measure- ments. This was apparent to the OF PROGRAM National Aeronautics and Space Administration (NASA) and the USAF as they received proposals from contractors in response to requests for proposals (RFPs) concerning new space projects. The engineering responses to such a variance in the radiation environment caused great diffi- culty in evaluating such proposals, This resulted from the fact that spacecraft shielding, power design, orbit selection, and operating lifetime were influenced by the radiation environment. Thus, the need to obtain a "best" and uniform quantitative description of the trapped radiation environment (TRE) from the available measurements was highly desirable to a number of ele- ments of several countries' space programs. In 1958 the U.S. began the testing of one kiloton nuclear detonations at altitudes above 200 kin. Three such explosions produced short lived artificial radiation belts. Hess {1968) has pro- vided an unclassified history of these and the additional four artificial belts produced by the U.S.S.R. and the U.S. in 1962. By far the most dramatic of the seven was the U.S. Starfish det- onation on July 9, 1962. This 1.4 MT bomb, detonated at 400 Mn above Johnston Island in the Pacific Ocean, injected enough fission spectrum electrons {energies up to about 7 MeV) to increase the fluxes in the inner Van Alien belt by at least a factor of 100, and effects out to 5 Earth radii were observed. These electrons would dominate the inner zone for five years and would be detectable, in specific energy-space pockets, for about eight years. Shortly after Star- fish ten satellites were affected by the radiation damage. For example, Ariel I went out of oper- ation one week after Starfish, and TRAAC ceased shortly thereafter. The Orbiting Solar Obser- vatory (OSO) 1 suffered power degradation but was able to operate at least another year. Telstar 1, which was launched on July 10, 1962, lasted less than one year because of radiation damage, although it was planned to last for several years. Starfish had thrust the radiation problem to the forefront. There was now an extreme interest in understanding the radiation belts from a quantitative standpoint as well as from the phys- ics. Besides the satellites mentioned above, InJun 1 and Cosmos V were in orbit prior to Star- fish. Using the data from these five or six satellites, Wilmot Hess, then chief of the Theoretical Division at Goddard Space Flight Center (GSFC), began making models of the inner belt, both for electrons and protons. These models were denoted as E I, E2, etc., and P 1, P2, etc., and were distributed informally by letter. 9- 3 PRECEDfNG P_GE BLANK NOT FILMED mEMP Two satellites were launched specifically to study Starfish as soon as possible following the initial results; these were Explorer 15 (October 27, 1962) by NASA
Recommended publications
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • ESWW7 Abstract Book.Pdf
    2 Table of Contents Committees ......................................................................................................................................................4 Sponsors ...........................................................................................................................................................5 Programme Monday, 15 November 2010...............................................................................................................6 Tuesday, 16 November 2010...............................................................................................................9 Wednesday, 17 November 2010 .......................................................................................................11 Thursday, 18 November 2010 ...........................................................................................................13 Friday, 19 November 2010 ................................................................................................................15 Poster Sessions ..................................................................................................................................17 Abstracts.........................................................................................................................................................25 3 Committees Programme Committee A. Belehaki (Co‐Chair, NOA & COST ES0803) A. Glover (Co‐Chair, ESA) M. Hapgood (RAL/STFC, SWWT) J.‐P. Luntama (ESA) R. Van der Linden (SIDC‐STCE) P. Vanlommel (STCE) T.
    [Show full text]
  • Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)
    Space Sci Rev DOI 10.1007/s11214-013-9965-x Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) D.G. Mitchell · L.J. Lanzerotti · C.K. Kim · M. Stokes · G. Ho · S. Cooper · A. Ukhorskiy · J.W. Manweiler · S. Jaskulek · D.K. Haggerty · P. Brandt · M. Sitnov · K. Keika · J.R. Hayes · L.E. Brown · R.S. Gurnee · J.C. Hutcheson · K.S. Nelson · N. Paschalidis · E. Rossano · S. Kerem Received: 30 June 2012 / Accepted: 1 February 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Pro- gram: RBSPICE will determine “how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,” and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter. Keywords Magnetosphere · Ring current · Time-of-flight · Radiation belt · Space weather 1 Introduction The idea, or concept, of a “ring current” around Earth and its association with geomagnetic storms began in the early days of the twentieth century.
    [Show full text]
  • ESRO SP-72 European Space Research Organisation
    ESRO SP-72 I. Proc. ESRO-GRI ESRO SP-72 I. Proc ESRO-GRI European Space Research Organisation Colloquium March 1971 European Space Research Organisation Colloquium March 1971 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 ACTIONS IN THE MAGNETOSPHERE HI. Texts in English ACTIONS IN THE MAGNETOSPHERE III. Texts in English September 1971 September 1971 iv + 284 pages iv + 284 pages The Colloquium on wave-particle interactions in the magnetosphere held in The Colloquium on wave-particle interactions in the magnetosphere held in Orleans (March 17-19,1971) intended to review the outstanding problems still unsolved Orleans (March 17-19, 1971) intended to review the outstanding problems still unsolved in this field : in this field : — large-scale dynamics of the magnetosphere; — large-scale dynamics of the magnetosphere; — distribution of 'Oasma parameters; — distribution of plasma parameters; — decoupling of n..gnetospheric from ionospheric plasma; — decoupling of magnetospheric from ionospheric plasma; — acceleration and convection mechanisms; — acceleration and convection mechanisms; — substorms; — substorms; — polar wind..., — polar wind..., as well as the theoretical and experimental work needed to solve these problems in the as well as the theoretical and experimental work needed to solve these problems in the light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) and of technical achievements (onboard computers, new sensors...). and of technical achievements (onboard computers, new sensors...). Ensuing discussions attempted to define types of missions which could be carried Ensuing discussions attempted to define types of missions which could be carried out in the future by the Small Scientific Satellites now being considered by ESRO.
    [Show full text]
  • <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
    1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Distribution of Earth's Radiation Belts Protons Over the Drift Frequency Of
    1 Distribution of Earth's radiation belts protons over the drift 2 frequency of particles 3 Alexander S. Kovtyukh 4 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, 119234, Russia 5 Correspondence: Alexander S. Kovtyukh ([email protected]) 6 Abstract. On the data for the proton fluxes of the Earth's radiation belts (ERB) with energy 7 ranging from 0.2 to 100 MeV on the drift L shells ranging from 1 to 8, the quasi-stationary 8 distributions over the drift frequency fd of protons around the Earth are constructed. For this 9 purpose, direct measurements of proton fluxes of the ERB in the period 1961–2017 near the 10 geomagnetic equator were employed. The main physical processes in the ERB manifested more 11 clearly in these distributions, and for protons with fd > 0.5 mHz at L > 3 their distributions in the 12 space {fd, L} have a more regular shape than in the space {E, L}. It has been found also that the 13 quantity of the ERB protons with fd 1–10 mHz at L 2 does not decrease, as for protons with 14 E > 10–20 MeV (with fd > 10 mHz), but increases with an increase in solar activity. This means 15 that the balance of radial transport and losses of the ERB low-energy protons at L 2 is 16 disrupted in advantage of transport for these protons: the effect of an increase in the radial 17 diffusion rates with increasing solar activity, overpowers the effect of an increase in the density 18 of the dissipative medium.
    [Show full text]
  • L-G-0003855083-0002286116.Pdf
    Geophysical Monograph Series Including IUGG Volumes Maurice Ewing Volumes Mineral Physics Volumes Geophysical Monograph Series 164 Archean Geodynamics and Environments Keith Benn, 182 The Stromboli Volcano: An Integrated Study of Jean-Claude Mareschal, and Kent C. Condie (Eds.) the 2002–2003 Eruption Sonia Calvari, Salvatore 165 Solar Eruptions and Energetic Particles Inguaggiato, Giuseppe Puglisi, Maurizio Ripepe, Natchimuthukonar Gopalswamy, Richard Mewaldt, and Mauro Rosi (Eds.) and Jarmo Torsti (Eds.) 183 Carbon Sequestration and Its Role in the Global 166 Back-Arc Spreading Systems: Geological, Biological, Carbon Cycle Brian J. McPherson and Chemical, and Physical Interactions David M. Christie, Eric T. Sundquist (Eds.) Charles Fisher, Sang-Mook Lee, and Sharon Givens (Eds.) 184 Carbon Cycling in Northern Peatlands Andrew J. Baird, 167 Recurrent Magnetic Storms: Corotating Solar Lisa R. Belyea, Xavier Comas, A. S. Reeve, and Wind Streams Bruce Tsurutani, Robert McPherron, Lee D. Slater (Eds.) Walter Gonzalez, Gang Lu, José H. A. Sobral, and 185 Indian Ocean Biogeochemical Processes and Natchimuthukonar Gopalswamy (Eds.) Ecological Variability Jerry D. Wiggert, 168 Earth’s Deep Water Cycle Steven D. Jacobsen and Raleigh R. Hood, S. Wajih A. Naqvi, Kenneth H. Brink, Suzan van der Lee (Eds.) and Sharon L. Smith (Eds.) 169 Magnetospheric ULF Waves: Synthesis and 186 Amazonia and Global Change Michael Keller, New Directions Kazue Takahashi, Peter J. Chi, Mercedes Bustamante, John Gash, and Pedro Silva Dias Richard E. Denton, and Robert L. Lysak (Eds.) (Eds.) 170 Earthquakes: Radiated Energy and the Physics 187 Surface Ocean–Lower Atmosphere Processes of Faulting Rachel Abercrombie, Art McGarr, Corinne Le Quèrè and Eric S. Saltzman (Eds.) Hiroo Kanamori, and Giulio Di Toro (Eds.) 188 Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges Peter A.
    [Show full text]
  • Our First Quarter Century of Achievement ... Just the Beginning I
    NASA Press Kit National Aeronautics and 251hAnniversary October 1983 Space Administration 1958-1983 >\ Our First Quarter Century of Achievement ... Just the Beginning i RELEASE ND: 83-132 September 1983 NOTE TO EDITORS : NASA is observing its 25th anniversary. The space agency opened for business on Oct. 1, 1958. The information attached sumnarizes what has been achieved in these 25 years. It was prepared as an aid to broadcasters, writers and editors who need historical, statistical and chronological material. Those needing further information may call or write: NASA Headquarters, Code LFD-10, News and Information Branch, Washington, D. C. 20546; 202/755-8370. Photographs to illustrate any of this material may be obtained by calling or writing: NASA Headquarters, Code LFD-10, Photo and Motion Pictures, Washington, D. C. 20546; 202/755-8366. bQy#qt&*&Mary G. itzpatrick Acting Chief, News and Information Branch Public Affairs Division Cover Art Top row, left to right: ffComnandDestruct Center," 1967, Artist Paul Calle, left; ?'View from Mimas," 1981, features on a Saturnian satellite, by Artist Ron Miller, center; ftP1umes,*tSTS- 4 launch, Artist Chet Jezierski,right; aeronautical research mural, Artist Bob McCall, 1977, on display at the Visitors Center at Dryden Flight Research Facility, Edwards, Calif. iii OUR FIRST QUARTER CENTER OF ACHIEVEMENT A-1 -3 SPACE FLIGHT B-1 - 19 SPACE SCIENCE c-1 - 20 SPACE APPLICATIQNS D-1 - 12 AERONAUTICS E-1 - 10 TRACKING AND DATA ACQUISITION F-1 - 5 INTERNATIONAL PROGRAMS G-1 - 5 TECHNOLOGY UTILIZATION H-1 - 5 NASA INSTALLATIONS 1-1 - 9 NASA LAUNCH RECORD J-1 - 49 ASTRONAUTS K-1 - 13 FINE ARTS PRQGRAM L-1 - 7 S IGN I F ICANT QUOTAT IONS frl-1 - 4 NASA ADvIINISTRATORS N-1 - 7 SELECTED NASA PHOTOGRAPHS 0-1 - 12 National Aeronautics and Space Administration Washington, D.C.
    [Show full text]
  • NASA Is Not Archiving All Potentially Valuable Data
    ‘“L, United States General Acchunting Office \ Report to the Chairman, Committee on Science, Space and Technology, House of Representatives November 1990 SPACE OPERATIONS NASA Is Not Archiving All Potentially Valuable Data GAO/IMTEC-91-3 Information Management and Technology Division B-240427 November 2,199O The Honorable Robert A. Roe Chairman, Committee on Science, Space, and Technology House of Representatives Dear Mr. Chairman: On March 2, 1990, we reported on how well the National Aeronautics and Space Administration (NASA) managed, stored, and archived space science data from past missions. This present report, as agreed with your office, discusses other data management issues, including (1) whether NASA is archiving its most valuable data, and (2) the extent to which a mechanism exists for obtaining input from the scientific community on what types of space science data should be archived. As arranged with your office, unless you publicly announce the contents of this report earlier, we plan no further distribution until 30 days from the date of this letter. We will then give copies to appropriate congressional committees, the Administrator of NASA, and other interested parties upon request. This work was performed under the direction of Samuel W. Howlin, Director for Defense and Security Information Systems, who can be reached at (202) 275-4649. Other major contributors are listed in appendix IX. Sincerely yours, Ralph V. Carlone Assistant Comptroller General Executive Summary The National Aeronautics and Space Administration (NASA) is respon- Purpose sible for space exploration and for managing, archiving, and dissemi- nating space science data. Since 1958, NASA has spent billions on its space science programs and successfully launched over 260 scientific missions.
    [Show full text]
  • Observations of Magnetars: from Outburst to Quiescence
    Observations of Magnetars: From Outburst to Quiescence Paul Andrew Scholz Department of Physics McGill University Montréal, Québec Canada November 2016 A Thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy © Paul Andrew Scholz, 2016 Dedicated to my parents, who made all this possible. Abstract Magnetars are pulsars, rotating neutron stars, that display extreme activity and typically have X- ray luminosities that are in excess of their rotational energy loss. The cause of both the activity and excess luminosity is thought to be the large energy reservoir provided by their high magnetic fields. We present studies of three different magnetars, 1E 1547−5408, Swift J1822.3−1606, and 1RXS J170849.0−400910. Using detailed spectral and timing observations of these three magne- tars from the Swift, Rossi X-ray Timing Explorer, Chandra, and XMM-Newton X-ray telescopes, we test several different aspects of the magnetar model. Specifically, we study the correlation between the hardness and flux of the X-ray emission following magnetar outbursts, the relation between timing and radiative activity, and whether a magnetic field in excess of ∼ 1014 G is required to power magnetar activity. We first present Swift observations of 1E 1547−5408 following its 2009 January outburst. We show the X-ray radiative evolution following the outburst as well as a statistical study of the short X-ray bursts emitted during the event. We find that the X-ray flux increased by a factor of ∼>500 and hardened significantly. We present the hardness-flux evolution of the persistent emission of the 2008 and 2009 outbursts of 1E 1547−5408 and compare it to those from other magnetars and find that although an overall trend does exist, the degree of hardening for a given increase in flux is not uniform from source to source.
    [Show full text]