Prediction of Properties of Organic Compounds – Empirical Methods

Total Page:16

File Type:pdf, Size:1020Kb

Prediction of Properties of Organic Compounds – Empirical Methods Prediction of Properties of Organic Compounds – Empirical Methods and Management of Property Data Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Thomas Kleinöder aus Marburg/Lahn Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 12.12.2005 Vorsitzender der Promotionskommission: Prof. Dr. D.-P. Häder Erstberichterstatter: Prof. Dr. J. Gasteiger Zweitberichterstatter: Prof. Dr. T. Clark Meinem Doktorvater Herrn Prof. Dr. Johann Gasteiger danke ich für die vielfältige Unterstützung und die wertvollen Anregungenen, ohne die diese Arbeit nicht möglich gewesen wäre. Mein besonderer Dank gilt weiterhin: Dr. Lothar Terfloth für die vielfältigen Diskussionen zu allen Bereichen der in dieser Arbeit behandelten Themen und die stete Hilfsbereitschaft, Dr. Achim Herwig, Jörg Marusczyk und den anderen Entwicklern von MOSES für die gute Zusammenarbeit und die manchmal kontroversen aber immer produktiven Diskussionen, den Administratoren der verschiedenen Betriebssystem-Plattformen und des Netzwer- kes für die Bereitstellung und Aufrechterhaltung einer stabilen Arbeitsumgebung, Dr. Nico van Eikema Hommes und Prof. Dr. Tim Clark für die hilfreichen Diskussio- nen zu Fragen der Berechnung quanten-chemischer Atomladungen, Christoph Schlenker für die hilfreichen Diskussionen und Anregungen zu allen Be- reichen der Software-Entwicklung, Angela Döbler, Ulrike Scholz und Karin Holzke für die Unterstützung bei allen admi- nistrativen Aufgaben, allen nicht genannten Kollegen des Arbeitskreises für die freundliche Aufnahme, viele fruchtbare Diskussionen und die positive und produktive Arbeitsatmosphäre. Mein weiterer Dank gilt dem Bundesministerium für Bildung und Forschung für die finan- zielle Unterstützung im Rahmen der Forschungsprojekte „Suche und Optimierung von Leit- strukturen (SOL)” und „Bioinformatics for the Functional Analysis of Mammalian Genomes (BFAM)”. Insbesondere danke ich meiner Frau, Diana Kleinöder, die mir immer Unterstützung und Verständnis beim Erstellen dieser Arbeit entgegengebracht hat. Für Diana, Karla und meine Eltern . Contents 1 Introduction 1 2 Fundamentals and Methods 5 2.1 Empirical Approaches to the Prediction of Properties . 5 2.1.1 Linear Free–Energy Relationships (LFER) . 5 2.1.2 Quantitative Structure–Property Relationships (QSPR) . 7 2.2 Structure Descriptors . 9 2.3 Multivariate Data Analysis . 12 2.3.1 Multivariate Data . 12 2.3.2 Feature Selection and Transformation . 13 2.4 Learning Methods . 14 2.4.1 Unsupervised Learning . 15 2.4.2 Supervised Learning . 15 2.5 Model Building . 19 2.6 Parametrization . 21 2.7 Charge Calculation by Partial Equalization of Electronegativity . 23 2.7.1 The Concept of Electronegativity and its Equalization . 24 2.7.2 Partial Equalization of Orbital Electronegativity (PEOE) . 27 2.7.3 Partial Equalization of π-Electronegativity (PEPE) . 32 2.8 Software Development . 35 2.8.1 Programming Paradigms . 35 2.8.2 Design Techniques . 40 2.8.3 Techniques for Implementation and Maintenance . 44 3 MOSES 45 i ii CONTENTS 3.1 Introduction . 45 3.2 From Script-based to Integrated Workflows . 47 3.3 Overcoming Limitations of Existing In-house Libraries . 50 3.4 Representation of Chemical Structures . 51 3.4.1 Connection Tables . 53 3.4.2 RAMSES – A Structure Representation Based on σ/π Separation . 54 3.4.3 Extension to Hypervalent Atom Types . 57 3.4.4 Perception of Aromaticity based on RAMSES . 60 3.5 Architecture and Implementation . 64 3.6 Management of Properties . 69 3.6.1 Analysis . 70 3.6.2 Design and Implementation . 71 3.7 Current Status of the Calculator Sublibrary . 81 3.8 Applications . 82 3.8.1 MOSES::WORKFLOWMANAGER . 82 3.8.2 Polarizabilities Through a Zero Order Additivity Scheme . 84 4 Quantification of Atomic Partial Charges 89 4.1 Introduction . 89 4.2 Development of a Combined PEOE/HMO Calculation . 91 4.2.1 Substitution of PEPE by a Modified Hückel MO Treatment . 91 4.2.1.1 Hückel MO Theory . 92 4.2.1.2 Modified HMO: Accounting for the Inductive Effect . 98 4.2.1.3 Hyperconjugation . 101 4.2.2 Datasets . 102 4.2.3 The Problem of Parametrization . 106 4.2.4 Observable Properties . 107 4.2.5 Charges from Quantum Mechanical Calculations . 111 4.2.5.1 Methods . 112 4.2.5.2 Requirements for a Reference Charge Calculation Scheme 115 4.2.6 Analysis and Comparison of QM Charges . 116 4.2.6.1 Rates of Failures for QM Charge Calculation Methods . 116 4.2.6.2 Direct Comparison of Charges from QM Calculations . 117 CONTENTS iii 4.2.6.3 Dipole Moments from QM Charges . 119 4.2.6.4 Distribution of Charges for Various Atom Types . 121 4.2.6.5 Relationship to Electronegativity . 129 4.2.6.6 Shortcomings of the Merz-Kollman Scheme . 132 4.2.6.7 Conclusions of the Analysis . 133 4.2.7 Summary . 135 4.3 Workflow and Procedure for the Parametrization . 136 4.4 Calibration with Molecular Dipole Moments . 138 4.4.1 PEOE . 140 4.4.2 Modified HMO . 144 4.5 Calibration with DFT/NPA Charges . 148 4.5.1 General Considerations . 148 4.5.2 Modified PEOE . 149 4.5.2.1 Revised Electronegativity Parameters . 150 4.5.2.2 Negative Hyperconjugation . 153 4.5.3 Modified HMO . 159 4.5.4 Results of the Parametrization . 166 4.6 Evaluation . 177 4.6.1 C-1s ESCA Shifts . 177 4.6.2 π-Charges . 178 4.7 Summary . 181 5 Summary 183 6 Zusammenfassung 185 A Supplementary Material 189 A.1 To Section 4 . 189 B Datasets 195 B.1 To Section 3 . 195 B.2 To Section 4 . 202 Bibliography 217 . Table of Symbols and Abbreviations Abbreviations and Acronyms QSPR Quantitative Structure–Property Relationships QSAR Quantitative Structure–Activity Relationships LFER Linear Free–Energy Relationships PEOE Partial Equalization of Orbital Electronegativities MPEOE Modified Partial Equalization of Orbital Electronegativities PEPE Partial Equalization of Pi-Electronegativities HMO Hückel Molecular Orbital (theory) MHMO Modified Hückel Molecular Orbital (method) PEOE/MHMO(µ) combined PEOE/MHMO procedure fitted to molecular dipole moments MPEOE/MHMO(NPA) combined MPEOE/MHMO procedure fitted to DFT/NPA charges DFT Density Functional Theory NPA Natural Population Analysis MPA Mulliken Population Analysis AIM Atoms In Molecules (method) MK-ESP Merz-Kollman-Electrostatic-Potential (derived charges) RICOS Representation of Inorganic, Coordinative, and Organic Structures MOSES Molecular Structure Encoding System RAMSES Representation Architecture for Molecular Structures by Electron Systems CORINA Coordinates CACTVS Chemical Algorithms Construction, Threading, and Verification System UML Unified Modeling Language OOP Object Oriented Programming SP Structured Programming GP Generic Programming SA Simulated Annealing GA Genetic Algorithm Physicochemical Quantities and Units property symbol unit mean molecular polarizabilities α¯ [Å3] atomic partial charges q [e] electronegativities χ [eV] dipole moments µ [debyes] ([D]) ESCA shifts – [eV] Chapter 1 Introduction Organic chemistry deals with understanding the mechanisms of organic reactions and with planning and performing the synthesis of organic compounds. The chemical structure of a compound is under consideration, its construction from simple structural building blocks by a synthesis strategy or its modification through the application of given reaction types. Tightly related to the chemical structure of a compound are its properties. As has been stated by George S. HAMMOND "the most fundamental and lasting objective of synthesis is not production of new compounds, but production of properties" (Norris Award Lecture, 1968). Thus, even though we deal with the chemical structure as a necessary abstract representa- tion, the fundamental physicochemical properties of a compound are of central concern and determine its behavior in chemical, biochemical or environmental processes. Having a compound or a set of compounds at hand, the property of interest can be mea- sured experimentally if an appropriate analytical method is available. However, experimental measurements are often tedious and time-consuming and may fail. With some fortune, an experimental value might be found in one of the available data bases (e.g., [1, 2]). Yet, one is likely to fail in finding the requested property considering the number of compounds available and the number of entries in a typical data base. For in- stance, the octanol-water partition coefficient is the property having the most entries (13250) in the PHYSPROP data base [2]. Compared with the number of compounds currently reg- istered in the CAS data base [3], about 26 million, it becomes obvious that the chance of finding an experimental value of a property for a given compound is quite low. The demand for computational methods for the prediction of properties of compounds is therefore evident. 1 Chapter 1 The basic approach to the problem of predicting properties can be written in a very simple form that states that a molecular property P can be expressed as a function of the molecular structure C P = f(C) (1.1) The function f(C) may have a very simple form, as is the case for the calculation of the molecular mass from the relative atomic masses. In most cases, however, f(C) will become more complicated, for instance, when it comes to describe the structure by quantum mechan- ical means and the property of interest may be derived from the wavefunction; for example the dipole moment may be obtained by applying the dipole moment operator. If we can describe the system of interest by first principles based on the theory of quan- tum mechanics no other information is required and if the level of theory is sufficient we can calculate the property of interest ab initio with good accuracy [4]. This approach to predicting properties is called deductive learning. It is only limited by the ability to handle the underlying mathematics in order to solve the Schrödinger equation and to find a way to derive the property of interest from the wavefunction. Even though the computational power of current hardware has increased dramatically over the last decades, ab initio calculations on a high level of accuracy are still restricted to medium-sized molecules and small datasets.
Recommended publications
  • Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
    Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • T a B L E O F C O N T E N
    T A B L E O F C O N T E N T S Page PREFACE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ v EXPLANATORY NOTES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vii Terminology ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vii Use of specific terms and characters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vii Glossary on chemical terms ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ix Abbreviations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x Sample Monograph (PART ONE) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xi Chemical information and regime of control ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xii Other common names ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xiii Salts and derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xiv Cross-Index (PART TWO) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xv Bilingual Lists (PART THREE) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xv International Regime of Control (PART FOUR) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xvi Scheduling History and Current Control Status ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xvi Scope and Regime of Control of Substances, their Salts, Isomers, Esters and Ethers ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xvii PART ONE Monographs on Narcotic Drugs and Psychotropic
    [Show full text]
  • Structure / Nomenclature Guide
    Structure / Nomenclature Guide A Guide to the Graphic Representation and Nomenclature of Chemical Formulae in the European Pharmacopoeia European Pharmacopoeia European Directorate for the Quality of Medicines & HealthCare 2011 2nd Edition © Council of Europe, 67075 Strasbourg Cedex, France - 2011 All rights reserved Making copies of this fi le for commercial purposes or posting this fi le on a website that is open to public consultation is strictly prohibited. S/N GUIDE 2011, European Pharmacopoeia 2011:2nd Edition NOMENCLATURE AND GRAPHIC REPRESENTATION OF CHEMICAL FORMULAE CONTENTS PREAMBLE SECTION A – General rules for graphic representation SECTION B – Graphic rules specific to the Ph. Eur. SECTION C – Main structural classes SECTION D – Nomenclature and application of IUPAC rules SECTION E – Frequently asked questions (FAQ) REFERENCES PREAMBLE The guide on nomenclature and graphic representation of chemical formulae has been prepared to reply to a number of questions from the European Pharmacopoeia Commission and users of the Ph. Eur. I. CHEMICAL NAME OR GRAPHIC REPRESENTATION? In principle, a chemical structure or name alone can be used to define a chemical compound. However, the Ph. Eur. uses both to facilitate checking and to remove ambiguities. Each system has its advantages and disadvantages, which are summarised below. 1. STRUCTURES Advantages: molecules are immediately recognisable and their structures are easily compared. Limits: there is a risk of some inaccuracy with any representation of a chemical structure because it involves drawing a molecule with a 3–dimensional structure in 2 dimensions; bond angles and lengths are not necessarily depicted accurately. 2. NAMES Advantages: stereochemistry is specified directly with no need to interpret the structure.
    [Show full text]
  • Nomenclature of Tetrapyrroles
    Pure & Appi. Chem. Vol.51, pp.2251—2304. 0033-4545/79/1101—2251 $02.00/0 Pergamon Press Ltd. 1979. Printed in Great Britain. PROVISIONAL INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE*t NOMENCLATURE OF TETRAPYRROLES (Recommendations, 1978) Prepared for publication by J. E. MERRITT and K. L. LOENING Comments on these proposals should be sent within 8 months of publication to the Secretary of the Commission: Dr. H. B. F. DIXON, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK. Comments from the viewpoint of languages other than English are encouraged. These may have special significance regarding the eventual publication in various countries of translations of the nomenclature finally approved by IUPAC-IUB. PROVISIONAL IUPAC—ITJB Joint Commission on Biochemical Nomenclature (JCBN), NOMENCLATUREOF TETRAPYRROLES (Recommendations 1978) CONTENTS Preface 2253 Introduction 2254 TP—O General considerations 2256 TP—l Fundamental Porphyrin Systems 1.1 Porphyrin ring system 1.2 Numbering 2257 1.3 Additional fused rings 1.4 Skeletal replacement 2258 1.5 Skeletal replacement of nitrogen atoms 2259 1.6Fused porphyrin replacement analogs 2260 1.7Systematic names for substituted porphyrins 2261 TP—2 Trivial names and locants for certain substituted porphyrins 2263 2.1 Trivial names and locants 2.2 Roman numeral type notation 2265 TP—3 Semisystematic porphyrin names 2266 3.1 Semisystematic names in substituted porphyrins 3.2 Subtractive nomenclature 2269 3.3 Combinations of substitutive and subtractive operations 3.4 Additional ring formation 2270 3.5 Skeletal replacement of substituted porphyrins 2271 TP—4 Reduced porphyrins including chlorins 4.1 Unsubstituted reduced porphyrins 4.2 Substituted reduced porphyrins.
    [Show full text]
  • Appendix 13 Trivial Names Still in Common Use for Selected Inorganic and Organic Compounds, Inorganic Ions and Organic Substituents
    Appendix 13 Trivial names still in common use for selected inorganic and organic compounds, inorganic ions and organic substituents Many of the trivial names are accepted by the IUPAC. The list is selective but includes many chemicals used in routine laboratory work. Trivial name IUPAC namea Formula or structure Acetamide Ethanamide O Me NH2 Acetic acid Ethanoic acid O Me OH Acetone Propanone Me Me O Acetonitrile Ethanenitrile Me C N Acetylacetone (Hacac) Pentane-2,4-dione OO Acetyl chloride Ethanoyl chloride O Me Cl Acetylene Ethyne HH Allene Propadiene H2CCHC 2 Aniline Phenylamine NH2 Anisole Methoxybenzene OMe # Pearson Education Limited, 2002 2 APPENDIX 13 . Trivial names still in common use Trivial name IUPAC namea Formula or structure Arsine Arsane As H H H Bicarbonate Hydrogentrioxocarbonate(IV) O O C OH Boric acid (orthoboric acid, boracic acid) Trioxoboric acid OH HO B OH Borohydride Tetrahydroborate(1±) H B H H H tButyl (tert-butyl) (substituent) 1,1-Dimethylethyl CMe3 Carbon tetrachloride Tetrachloromethane Cl C Cl Cl Cl Carbonate Trioxocarbonate(IV) O O C O Chloroform Trichloromethane H C Cl Cl Cl 18-Crown-6 1,4,7,10,13,16- Hexaoxacyclooctadecane O O O O O O Cumene Isopropylbenzene Dimethylacetylene But-2-yne Me Me Ethylene Ethene HH H H # Pearson Education Limited, 2002 APPENDIX 13 . Trivial names still in common use 3 Trivial name IUPAC namea Formula or structure Ethylenediamine (en) 1,2-Ethanediamine H2NNH2 Ethylene glycol Ethane-1,2-diol HO OH Formaldehyde Methanal O H H Formamide Methanamide O H NH2 Formic acid Methanoic acid O H OH Hydrogen sul®de Sulfane S H H Isopropyl (substituent) 2-Methylethyl CHMe2 Mesitylene 1,3,5-Trimethylbenzene Me Me Me Methylene chloride Dichloromethane H C H Cl Cl Nitrate Trioxonitrate(V) O ON O Nitrite Dioxonitrate(III) N O O Nitronium Nitryl OON Perchlorate Tetraoxochlorate(VII) O Cl O O O Permanganate Tetraoxomanganate(VII) O Mn O O O # Pearson Education Limited, 2002 4 APPENDIX 13 .
    [Show full text]
  • IUPAC. Natural Products and Related Compounds
    Pure Appl. Chem., Vol. 71, No. 4, pp. 587–643, 1999. Printed in Great Britain. ᭧ 1999 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DIVISION COMMISSION ON NOMENCLATURE OF ORGANIC CHEMISTRY (III.1) REVISED SECTION F: NATURAL PRODUCTS AND RELATED COMPOUNDS (IUPACRecommendations1999) Prepared for publication by P. M. GILES, Jr Chemical Abstracts Service, Columbus, OH 43210, USA Membership of the Working Party (1982–1997): J. R. Bull (Republic of South Africa), H. A. Favre (Canada), M. A. C. Kaplan (Brazil), L. Maat (Netherlands), A. D. McNaught (UK), G. P. Moss (UK), W. H. Powell (USA), R. Schoenfeld† (Australia), O. Weissbach (Federal Republic of Germany). Membership of the Commission on Nomenclature of Organic Chemistry during the preparation of this document was as follows: Titular Members: O. Achmatowicz (Poland) 1979–1987; J. Blackwood (USA) 1996–1998; H, J. T. Bos (Netherlands) 1987– 1995, Vice-Chairman, 1991–1995; J. R. Bull (Republic of South Africa) 1987–1993; F. Cozzi (Italy) 1996–; H. A. Favre (Canada) 1989–, Chairman, 1991–; P. M. Giles, Jr. (USA) 1989–1995; E. W. Godly (UK) 1987–1993, Secretary, 1989–1993; D. Hellwinkel (Federal Republic of Germany) 1979–1987, Vice-Chairman, 1981–1987; B. J. Herold (Portugal) 1994–; K. Hirayama (Japan) 1975–1983; M. V. Kisaku¨rek (Switzerland) 1994–, Vice-Chairman, 1996–; A. D. McNaught (UK) 1979– 1987; G. P. Moss (UK) 1977–1987, Chairman, 1981–1987, Vice-Chairman, 1979–1981; R. Panico (France) 1981–1991, Vice- Chairman, 1989–1991; W. H. Powell (USA), Secretary, 1979–1989; J. C. Richer (Canada) 1979–1989, Vice-Chairman, 1987–1989; P.
    [Show full text]
  • Nomenclature IUPAC Nomenclature for Organic Chemistry What Is IUPAC Nomenclature?
    Nomenclature IUPAC nomenclature for organic chemistry What is IUPAC nomenclature? • A systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). • It provides an unambiguous structure. • Official IUPAC naming recommendations are not always followed in practice, and the common or trivial name may be used. rules for alkane nomenclature • Find and name the longest carbon chain • Name the groups attached to the longest carbon chain • Number the chain consecutively, starting at the end nearest a substituted group • Designate the location of each substituent group • Assemble the name by listing groups in alphabetical order and the main chain last Main chain and alkyl group names # of # of Name Name Main chain names AlkylCarbons group names Carbons methyl 1 butyl 4 Name # of Carbons Name # of Carbons ethyl 2 pentyl 5 methane 1 hexane 6 propyl 3 Hexyl 6 ethane 2 heptane 7 propane 3 octane 8 (CH3)2CH butane 4 nonane 9 Group (CH3)2CH– CH3CH2CH(CH3)– (CH3)3C– CH2– Name Isopropyl Isobutyl sec-Butyl tert-Butyl pentane 5 decane 10 Example • Longest chain/main chain: • 7 carbons (circled) • Name: heptane • Side chain groups: • 1-carbon group at position 3 Answer: • Name: 3-methyl 4-ethyl-3• -methylheptane2-carbon group at position 4 • Name: 4-methyl Naming ring compounds • Same rules as alkane nomenclature except: • A cyclo- prefix is added to the root name • Groups are numbered to give multiple substituents the lowest possible numbers • When there is only one substituent, it
    [Show full text]
  • Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS
    Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS G.J. LEIGH OBE TheSchool of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, UK H.A. FAVRE Université de Montréal Montréal, Canada W.V. METANOMSKI Chemical Abstracts Service Columbus, Ohio, USA Edited by G.J. Leigh b Blackwell Science © 1998 by DISTRIBUTORS BlackweilScience Ltd Marston Book Services Ltd Editorial Offices: P0 Box 269 Osney Mead, Oxford 0X2 0EL Abingdon 25 John Street, London WC1N 2BL Oxon 0X14 4YN 23 Ainslie Place, Edinburgh EH3 6AJ (Orders:Tel:01235 465500 350 Main Street, Maiden Fax: MA 02 148-5018, USA 01235 465555) 54 University Street, Carlton USA Victoria 3053, Australia BlackwellScience, Inc. 10, Rue Casmir Delavigne Commerce Place 75006 Paris, France 350 Main Street Malden, MA 02 148-5018 Other Editorial Offices: (Orders:Tel:800 759 6102 Blackwell Wissenschafts-Verlag GmbH 781 388 8250 KurfUrstendamm 57 Fax:781 388 8255) 10707 Berlin, Germany Canada Blackwell Science KK Copp Clark Professional MG Kodenmacho Building 200Adelaide St West, 3rd Floor 7—10 Kodenmacho Nihombashi Toronto, Ontario M5H 1W7 Chuo-ku, Tokyo 104, Japan (Orders:Tel:416 597-1616 800 815-9417 All rights reserved. No part of Fax:416 597-1617) this publication may be reproduced, stored in a retrieval system, or Australia BlackwellScience Pty Ltd transmitted, in any form or by any 54 University Street means, electronic, mechanical, Carlton, Victoria 3053 photocopying, recording or otherwise, (Orders:Tel:39347 0300 except as permitted by the UK Fax:3 9347 5001) Copyright, Designs and Patents Act 1988, without the prior permission of the copyright owner.
    [Show full text]
  • L This Thesis Comes Within Category D. Lj
    REFERENCE ONLY 2 8 0 9 5 8 5 6 8 7 UNIVERSITY OF LONDON THESIS Degree Year S . o o ' l Name of Author £.»e£Y)/0 COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOAN Theses may not be lent to individuals, but the University Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: The Theses Section, University of London Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration.
    [Show full text]
  • The Periodic Table
    The Periodic Table 7. Families of the Periodic Table Some of these include: A. Alkali Metals B. Alkaline Earth Metals C. Halogens D. Noble Gases Definition of a Family: a group of elements with similar chemical and (often) physical properties. These groups are found in vertical columns in the periodic table, and note that these patterns emerge by listing the elements in order of atomic number. (This is sometimes referred to as the Periodic Law.) A The Alkali Metals Alkali is derived from an Arabic word alqaliy, meaning ashes of saltwort. Soon you'll understand the connection. 1. Physical Properties 3Li a) Do they have a common appearance?__________ 11Na b) Are they conductors of electricity?______________ K c) What can you generalize about their melting points?___________ 19 37Rb 2. Chemical Properties 55Cs a) What common ion is formed by alkali metals?__________ b) Outline the electron arrangement for the first three members of the family. 87Fr 36 Module 1: Matter: An Introduction to Chemistry c) What happens when one electron is removed from each of the above to form their common ion? d) Sodium is found in oceans, neurons and in minerals but always in the Na+1 form. Na would destroy living cells and cause explosive reactions in the ocean. To make neutral sodium, we pass electricity through molten NaCl, thus forcing Na+1 to take back its electron. What do you infer from the above? e) Specific Reactions of the Alkali Metals The members of this family react vigorously with acids, water, oxygen and halogens. The reaction with water generates hydrogen gas and a base.
    [Show full text]
  • IUPAC's 1996 Recommendations on Nomenclature of Carbohydrates
    IUPAC's 1996 Recommendations on Nomenclature of Carbohydrates INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE" NOMENCLATURE OF CARBOHYDRATES (Recommendations 1996) Preparedfor publication by ALAN D. McNAUGHT The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 4WF. UK "Members of the Commission (JCBN) at various times during the work on this document (1983-1996) were as follows; Chnirmen: H.B.F. Oilton (UK), J.F.G. Vliegenthart (Netherlands), A. Comish-Bowden (France); Sure· lariu: A. Cornish-Bowden (France), M.A. Chester (Sweden), AJ. Barrett (UK), J .C. Rigg (Netherlands); Membus: J.R. Bull (RSA), R. Cammack (UK), D. Coucouvanis (USA), D. Horton (USA). M.A.C. Kaplan (Brazil), P. Karlson (Germany), C. Liebecq (Belgium). K.L. Loening (USA), G.P. Moss (UK). J. Reedijk (Netherlands), K.F. Tipton (Ireland), S. Velick (USA). P. Venetianer (Hungary). Additional contributors to the formulation of these recommendations: Expert Panel: D. Horton (USA)(Convener), O. Achmatowicz (Poland), L. Anderson (USA), S.J. Angyal (Australia), R. Gigg (UK), B. Lindberg (Sweden). DJ. Manners (UK), H. Paulsen (Germany), R. Schauer (Germany). Nomenciarllre CommitreeoflUBMB (NC-lUBMB) (those additional tolCBN): A. Bairoch (Switzerland), H. Berman (USA), H. Bielka (Germany), C.R. Cantor (USA), W. Saenger (Germany). N. Sharon (Israel), E. van Lenten (USA). E.C. Webb (Australia). American Chemical Society Commillee for Carbohydrare Nomenciarure: D. Horton (Chairman), L. Anderson. D.C. Baker, H.H. Baer, J.N. BeMiller, B. Bossenbroek, R. W. Jeanloz, K.L. Loening. W. A. Szarek. R.S. Tipson.
    [Show full text]