“Classification, Nomenclature, Isomerism of Bioorganic Compounds

Total Page:16

File Type:pdf, Size:1020Kb

“Classification, Nomenclature, Isomerism of Bioorganic Compounds ODESSA NATIONAL MEDICAL UNIVERSITY Department of Clinical Chemistry and Laboratory Diagnostics Bioorganic chemistry Information block for first-year students of medical and dental faculties (Second semester) “Classification, nomenclature, isomerism of bioorganic compounds. The nature of chemical bonds” Control questions: 1. Classification of organic compounds. 2. Nomenclature system of organic chemistry (trivial system, common system, international substituent nomenclature system IUPAC) 3. Type of isomerism of organic compounds: a) Structural isomerism (chain isomerism, isomerisme of functional group position, isomerism between classes of organic compounds, dynamic tautomerism). b) Spatial isomerism. Configuration and conformation conception. Geometrical or cis-trans isomerism. Optical isomerism. 1 Theoretical matter of the topic Organic compounds are classified according to the following features: • a structure of molecular framework (sometimes called a molecular skeleton); • the presence of functional groups in a molecule. 1.1. Classification According to the Molecular Framework Organic compounds are subdivided into the following groups. Acyclic compounds. They have unbranched or branched carbon chain, but no rings. In the examples below, the first two represent compounds with unbranched carbon chain, whereas the third one is a compound with a branched chain: Carbocyclic compounds. They contain a ring (or rings) of carbon atoms only. The ring may contain multiple bonds and may have side carbon chains. Heterocyclic compounds. They contain a cyclic skeleton having at least one heteroatom, an atom that is not carbon. The most common heteroatoms are nitrogen, oxygen, or sulfur. More than one heteroatom may be present and these atoms may be identical or different. The structures of some natural heterocyclic compounds are presented below: 2 1.2. Classification According to Functional Groups Hydrocarbons are parent compounds in organic chemistry, which, according to their name, consist of only carbon and hydrogen atoms. Most organic molecules involve functional groups, i. e. an atom or a group of atoms of non-hydrocarbon origin that determine chemical properties of a compound. Indeed, chemical changes occur in most reactions at the functional group whereas the molecular framework remains unchanged. Thus, the knowledge of properties of the functional groups will greatly help in the study of organic chemistry. Organic compounds are divided into classes depending on the functional groups present. Some of the main functional groups and classes are listed in Table 1. Table 1. Some of the functional groups and the corresponding classes of organic compounds * The symbol R is usually used for any hydrocarbon radical, the symbol Ar - for an aromatic radical only. ** Multiple bonds in unsaturated compounds are sometimes related to the functional groups. *** Only primary ones are shown. 3 Molecules with one functional group belong to monofunctional compounds. Polyfunctional compounds contain several identical functional groups, for example, chloroform and glycerol. Molecules with different functional groups are considered as heterofunctional compounds, they may be related to several classes. For example, lactic acid is both an alcohol and a carboxylic acid. Similarly, taurine belongs both to amines and sulfonic acids. Classification characteristics form a foundation of the systematic chemical nomenclature of organic compounds. NOMENCLATURE At the earliest stage of organic chemistry, each new compound was usually named on the basis of its source (caffeine – from coffee-beans, urea – from urine) or its evident properties (glycerol and glucose – from the Greek glykys, sweet). Such names are known as trivial or common names. Trade names are widely used in pharmacy and medicine indicating some pharmaceutical effect (anesthesin, sarcolysin). Trivial and trade names are very convenient because of their brevity, but they give no information about the structure of a compound and cannot be systematized. Some trivial names went out of use with time; others have shown their viability and are used now in the systematic nomenclature. Systematic nomenclature is an arrangement of terms that describes complete structure of organic molecules. The first systematic nomenclature appeared as far back as 1892 (Geneva Rules). It was then perfected by a commission of the International Union of Pure and Applied Chemistry (IUPAC) and is known now as the IUPAC rules or the IUPAC nomenclature. 4 1.3. General Principles of the IUPAC Nomenclature To minimize confusion the following terms are used in the present rules. Parent name: a part of the name used for the formation of a particular name according to the appointed rules. For example, the name ethanol is derived from ethane. The parent name may be both systematic. Characteristic group: this term is practically equal to the term functional group, for example, the amino group -NH2, the carbonyl group >C=O, the oxo group =O, the carboxyl group -COOH. Principal (senior) group: the characteristic group chosen for expression as a suffix in a particular name. This group has no other advantages over remainder groups. Substituent: any atom or group replacing hydrogen of a parent compound. Radical: a part of a molecule that remains after removal of one or more hydrogen atoms from it. For example, the radicals, such as methyl, CH3-, and methylene, -CH2-, are derived from methane, CH4. Locant: a numeral or a letter showing a position of a substituent or a multiple bond in a parent structure. Multiplying affix: syllables di-, tri-, tetra-, etc., which are used to indicate a set of identical substituents or multiple bonds. Nomenclature Systems. There are eight basic nomenclature systems from which the most versatile and common therefore is the substitutive nomenclature. The next in prevalence is the radicofunctional nomenclature. These two nomenclatures, especially the former, will be considered in greater detail. Substitutive nomenclature. The particular name of a polyfunctional compound represents a complex word that consists of a root (parent name), a suffix (principal group), and prefixes (other substituents). Fig.1 demonstrates this approach. 5 Figure 1. The scheme for constructing the IUPAC substitutive name. The symbol × represents multiplying affix(es). There are two types of characteristic groups. One type is designated in a name only as prefixes. Nitro group, halogens, and some other groups belong to this type; they are listed in the lower part of Table 2. Most of characteristic groups (the upper part of Table 2, beyond the coloured line) may be cited either as suffixes or as prefixes. But only one kind of group (principal group) is to be cited as a suffix. Within these groups, a conventional order of priority has been established (Table 2). It means the principal group is that which characterizes the class occurring as high as possible in Table 2. All other characteristic groups are then cited as prefixes. Multiplying affixes and locants are added as necessary. Radicofunctional nomenclature. The principles of the radicofunctional nomenclature are identical with those of the substitutive nomenclature except that suffixes are never used. Instead of the principal group being named as a suffix, the class name of a compound is expressed as one word and the remainder of the molecule as another. Provided that the characteristic group is univalent (for example, an OH group of alcohols or a halogen atom of halogen derivatives) the remainder of the molecule attached to that group is expressed in its radical form as another word, which precedes the class name. When the class name refers to a characteristic group that is bivalent (for example, the fragment -Oof ethers), the two radicals attached to it are each named as separate words in alphabetic order. Table 2. Suffixes and prefixes used for some important groups in the substitutive nomenclature IUPAC (in order of decreasing priority) 6 * Coloured carbon atoms are included in the name of parent structure and not in the suffix or prefix. ** Should be added in front of the name. *** Phenols have usually common names. **** Used only with the name of radical R, e. g. ROalkoxy- or RSalkylthio-. This type of nomenclature is the most convenient one for such classes as ethers, sulfides, amines, and halogen compounds, especially for the compounds with simple radicals. 1.4. General Principles of Forming a Systematic Name The formation of a name for a chemical compound usually involves the following steps in the order given below. Step 1. From the nature of the compound determine the most pertinent type of nomenclature (substitutive, radicofunctional, or else). 7 Step 2. Determine the kind of characteristic group for use as the principal group, if any. It is this group that stipulates then the choice of a parent structure and its numbering. Step 3. Determine the parent structure (principal chain or parent ring system2). When in an acyclic compound there is a choice for principal chain, the following criteria are applied successively, in the order listed, until a decision is reached: a) the maximum number of substituents of the highest priority from Table 2.2; b) the maximum number of double and triple bonds considered together; c) the maximum length of the chain; d) the maximum number of substituents cited as prefixes. Step 4. Name the parent structure and the principal group(s). Step 5. Determine and name prefixes. Step 6. Complete the numbering. The starting point and direction of
Recommended publications
  • Mesomeric Effect
    Mesomeric effect +M effect of a methoxy group in an ether The mesomeric effect in chemistry is a property of substituents or functional groups in a chemical compound. It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone –M effect of a carbonyl group in acrolein pair of electrons present on an adjacent atom. The effect is used in a qualitative way and describes the electron withdrawing or releasing properties of substituents based on relevant resonance structures and is symbolized by the letter M. The mesomeric effect is negative (–M) when the substituent is an electron-withdrawing group and the effect is positive (+M) when the substituent is an electron donating group. +M EFFECT ORDER : − –O > –NH2 > –NHCOR > –OR > –OCOR > –Ph > –CH3 > –F > –Cl > –Br > –I -M EFFECT ORDER : − –NO2 > –CN > –SO3H > –CHO > –COR > –COOCOR > –COOR > –COOH > –CONH2 > –COO The net electron flow from or to the substituent is determined also by the inductive effect. The mesomeric effect as a result of p-orbital overlap (resonance) has absolutely no effect on this inductive effect, as the inductive effect has purely to do with the electronegativity of the atoms and their topology in the molecule (which atoms are connected to which). The concepts of mesomeric effect, mesomerism and mesomer were introduced by Ingold in 1938 as an alternative to Pauling's synonymous concept of resonance.[1] "Mesomerism" in this context is often encountered in German and French literature, but in English literature the term "resonance" dominates. Contents Mesomerism in conjugated systems See also References External links Mesomerism in conjugated systems Mesomeric effect can be transmitted along any number of carbon atoms in a conjugated system.
    [Show full text]
  • Topological Model on the Inductive Effect in Alkyl Halides Using Local Quantum Similarity and Reactivity Descriptors in the Density Functional Theory
    Hindawi Publishing Corporation Journal of Quantum Chemistry Volume 2014, Article ID 850163, 12 pages http://dx.doi.org/10.1155/2014/850163 Research Article Topological Model on the Inductive Effect in Alkyl Halides Using Local Quantum Similarity and Reactivity Descriptors in the Density Functional Theory Alejandro Morales-Bayuelo1,2 and Ricardo Vivas-Reyes1 1 Grupo de Qu´ımica Cuantica´ y Teorica,´ Universidad de Cartagena, Programa de Qu´ımica, Facultad de Ciencias Exactas y Naturales, Cartagena de Indias, Colombia 2 Departamento de Ciencias Qu´ımicas, Universidad Nacional Andres Bello, Republica 275, Santiago, Chile Correspondence should be addressed to Alejandro Morales-Bayuelo; [email protected] and Ricardo Vivas-Reyes; [email protected] Received 19 September 2013; Revised 16 December 2013; Accepted 16 December 2013; Published 19 February 2014 Academic Editor: Daniel Glossman-Mitnik Copyright © 2014 A. Morales-Bayuelo and R. Vivas-Reyes. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present a topological analysis to the inductive effect through steric and electrostatic scales of quantitative convergence. Using the molecular similarity field based in the local guantum similarity (LQS) with the Topo-Geometrical Superposition Algorithm (TGSA) alignment method and the chemical reactivity in the density function theory (DFT) context, all calculations were carried out with Amsterdam Density Functional (ADF) code, using the gradient generalized approximation (GGA) and local exchange correlations PW91, in order to characterize the electronic effect by atomic size in the halogens group using a standard Slater-type- orbital basis set.
    [Show full text]
  • Understanding Nonplanarity in Metallabenzene Complexes
    1986 Organometallics 2007, 26, 1986-1995 Understanding Nonplanarity in Metallabenzene Complexes Jun Zhu, Guochen Jia,* and Zhenyang Lin* Department of Chemistry, The Hong Kong UniVersity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China ReceiVed February 11, 2007 The nonplanarity found in metallabenzene complexes has been investigated theoretically via density functional theory (DFT) calculations. A metallabenzene has four occupied π molecular orbitals (8 π electrons) instead of three that benzene has. Our electronic structure analyses show that the extra occupied π molecular orbital, which is the highest occupied molecular orbital (HOMO) in many metallabenzenes, has antibonding interactions between the metal center and the metal-bonded ring-carbon atoms, providing the electronic driving force toward nonplanarity. Calculations indicate that the electronic driving force toward nonplanarity, however, is relatively small. Therefore, other factors such as steric effects also play important roles in determining the planarity of these metallabenzene complexes. In this paper, how the various electronic and steric factors interplay has been discussed. Introduction benzene complexes. For example, the formation mechanism and chemical reactivity of metallabenzene complexes have been Metallabenzenes, organometallic compounds formed by extensively studied.17 formal replacement of a CH group in benzene by an isolobal In the studies of metallabenzene complexes, a central issue transition metal fragment, were first considered theoretically by concerns the π-conjugation of the six-membered metal-contain- Hoffman et al. in 1979.1 Since the isolation of the first stable 2 ing ring. Indeed, it is true that metallabenzene complexes are osmabenzenes by Roper’s group in 1982, metallabenzene highly conjugated in view of the fact that the single-double complexes have attracted considerable interest over the last bond alternation is insignificant in the six-membered metal- quarter century.
    [Show full text]
  • Rational Design of Small Molecule Fluorescent Probes for Biological Applications
    Organic & Biomolecular Chemistry Rational Design of Small Molecule Fluorescent Probes for Biological Applications Journal: Organic & Biomolecular Chemistry Manuscript ID OB-REV-06-2020-001131.R1 Article Type: Review Article Date Submitted by the 13-Jul-2020 Author: Complete List of Authors: Jun, Joomyung; University of Pennsylvania, Chemistry; Massachusetts Institute of Technology, Chemistry Chenoweth, David; University of Pennsylvania, Department of Chemistry Petersson, E.; University of Pennsylvania, Chemistry Page 1 of 16 Organic & Biomolecular Chemistry ARTICLE Rational Design of Small Molecule Fluorescent Probes for Biological Applications a,b a a,c Received 00th January 20xx, Joomyung V. Jun, David M. Chenoweth* and E. James Petersson* Accepted 00th January 20xx Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical DOI: 10.1039/x0xx00000x biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to “modulate” fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure- property relationships concerning the substituents are discussed in detail with examples for several dye families. Then, we present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.
    [Show full text]
  • Pd/S,O-Ligand Catalysed Regioselective C–H Olefination of Anisole Derivates
    Bachelor Thesis Scheikunde Pd/S,O-ligand Catalysed Regioselective C–H Olefination of Anisole Derivates door Rianne van Diest 14 december 2020 Studentnummer 11677635 Onderzoeksinstituut Verantwoordelijk docent Van ’t Hoff Institute for Molecular Sciences Dr. M.A. (Tati) Fernández Ibáñez Onderzoeksgroep Begeleider Synthetic Organic Chemistry Verena (Vivi) Sukowski 1 TABLE OF CONTENTS List of abbreviations ............................................................................................................................. 3 Abstract .................................................................................................................................................. 4 Popular scientific summary ................................................................................................................. 4 1. Introduction ....................................................................................................................................... 5 1.1 C–H activation as attractive strategy for green chemistry ............................................................ 5 1.2 Improving the selectivity of C–H activation with ligands ............................................................ 6 1.3 C–H olefination of anisole derivates ............................................................................................. 7 2. Background information .................................................................................................................. 9 2.1 C–H activation mechanisms .........................................................................................................
    [Show full text]
  • Principles of Drug Action 1, Spring 2005, Resonance and Induction
    Principles Of Drug Action 1, Spring 2005, Resonance and Induction RESONANCE AND INDUCTION TUTORIAL Jack DeRuiter The terms "resonance" and "induction" refer to the electronic effects that atoms or functional groups may have within a compound. These effects are defined below and are dependent on the valence, bonding order and electronegativity of atoms, as well as the molecular geometry. Thus it is important that you understand these concepts prior to reviewing this tutorial. I. INDUCTION Induction or the inductive effect of an atom or functional group is a function of that groups 1). electronegativity, 2). bonding order and charge and 3). position within a structure. Inductive effects refer to those electronic effects of an atom or functional group can contribute through single bonds such as saturated (sp3) carbon atoms! This is very different from resonance effects discussed later in this section. The contribution of electronegativity, bonding order and position toward induction is as follows: Electronegativity: Atoms or functional groups that are electronegative relative to hydrogen such as the halogens, oxygen, nitrogen, etc. may have a negative inductive effect (-I), depending on their bonding order (see the Table below). Thus these atoms withdraw electron density through the single bond structure of a compound and can assist in the stabilization of negative charge that may form in reactions. One such reaction where -I groups can have a stabilizing (enhancing) effect is the ionization of acids. Consider the case of acetic acid, chloroacetic acid and trichloroacetic acid shown below. All three of these compounds can ionize (loss of proton from the carboxyl OH).
    [Show full text]
  • T a B L E O F C O N T E N
    T A B L E O F C O N T E N T S Page PREFACE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ v EXPLANATORY NOTES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vii Terminology ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vii Use of specific terms and characters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vii Glossary on chemical terms ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ix Abbreviations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x Sample Monograph (PART ONE) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xi Chemical information and regime of control ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xii Other common names ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xiii Salts and derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xiv Cross-Index (PART TWO) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xv Bilingual Lists (PART THREE) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xv International Regime of Control (PART FOUR) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xvi Scheduling History and Current Control Status ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xvi Scope and Regime of Control of Substances, their Salts, Isomers, Esters and Ethers ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ xvii PART ONE Monographs on Narcotic Drugs and Psychotropic
    [Show full text]
  • Structure / Nomenclature Guide
    Structure / Nomenclature Guide A Guide to the Graphic Representation and Nomenclature of Chemical Formulae in the European Pharmacopoeia European Pharmacopoeia European Directorate for the Quality of Medicines & HealthCare 2011 2nd Edition © Council of Europe, 67075 Strasbourg Cedex, France - 2011 All rights reserved Making copies of this fi le for commercial purposes or posting this fi le on a website that is open to public consultation is strictly prohibited. S/N GUIDE 2011, European Pharmacopoeia 2011:2nd Edition NOMENCLATURE AND GRAPHIC REPRESENTATION OF CHEMICAL FORMULAE CONTENTS PREAMBLE SECTION A – General rules for graphic representation SECTION B – Graphic rules specific to the Ph. Eur. SECTION C – Main structural classes SECTION D – Nomenclature and application of IUPAC rules SECTION E – Frequently asked questions (FAQ) REFERENCES PREAMBLE The guide on nomenclature and graphic representation of chemical formulae has been prepared to reply to a number of questions from the European Pharmacopoeia Commission and users of the Ph. Eur. I. CHEMICAL NAME OR GRAPHIC REPRESENTATION? In principle, a chemical structure or name alone can be used to define a chemical compound. However, the Ph. Eur. uses both to facilitate checking and to remove ambiguities. Each system has its advantages and disadvantages, which are summarised below. 1. STRUCTURES Advantages: molecules are immediately recognisable and their structures are easily compared. Limits: there is a risk of some inaccuracy with any representation of a chemical structure because it involves drawing a molecule with a 3–dimensional structure in 2 dimensions; bond angles and lengths are not necessarily depicted accurately. 2. NAMES Advantages: stereochemistry is specified directly with no need to interpret the structure.
    [Show full text]
  • John William Baker and the Origin of the Baker-Nathan Effect
    82 Bull. Hist. Chem., VOLUME 37, Number 2 (2012) JOHN WILLIAM BAKER AND THE ORIGIN OF THE BAKER-NATHAN EFFECT Martin D. Saltzman, Providence College, [email protected] The Baker-Nathan effect was a theory proposed by independent school in west London from 1909-1916. He John William Baker (1898-1967) and Wilfred Samuel was awarded a Royal Scholarship in Chemistry which Nathan (1910-1961) of Leeds University in 1935 to allowed him to enroll at the Imperial College of Science explain certain anomalous results obtained in SN2 reac- and Technology in London. His exceptional aptitude for tions carried out in solution. The explanation produced chemistry was shown by his passing the intermediate by them was expanded to a general type of no-bond exams for the B.Sc. Degree by the end of 1916. In April resonance known as hyperconjugation by Mulliken in 1917 he was conscripted and assigned to the Royal En- papers published in 1939 and 1941 (1). Hyperconjuga- gineers where he was commissioned a Lieutenant. His tion is today defined as the conjugation of polarized major responsibilities were in the area of water purifica- sigma bonds and adjacent pi orbitals. This theory has tion. In May 1918 he was sent to Mesopotamia (now Iraq) been applied to a host of anomalous physical measure- where he was assigned the same duties. He was finally ments such as bond lengths and dipole moments. The demobilized in 1920 and returned to Imperial where he Baker-Nathan effect as it was originally framed is no was awarded his B.Sc.
    [Show full text]
  • Nomenclature of Tetrapyrroles
    Pure & Appi. Chem. Vol.51, pp.2251—2304. 0033-4545/79/1101—2251 $02.00/0 Pergamon Press Ltd. 1979. Printed in Great Britain. PROVISIONAL INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY and INTERNATIONAL UNION OF BIOCHEMISTRY JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE*t NOMENCLATURE OF TETRAPYRROLES (Recommendations, 1978) Prepared for publication by J. E. MERRITT and K. L. LOENING Comments on these proposals should be sent within 8 months of publication to the Secretary of the Commission: Dr. H. B. F. DIXON, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK. Comments from the viewpoint of languages other than English are encouraged. These may have special significance regarding the eventual publication in various countries of translations of the nomenclature finally approved by IUPAC-IUB. PROVISIONAL IUPAC—ITJB Joint Commission on Biochemical Nomenclature (JCBN), NOMENCLATUREOF TETRAPYRROLES (Recommendations 1978) CONTENTS Preface 2253 Introduction 2254 TP—O General considerations 2256 TP—l Fundamental Porphyrin Systems 1.1 Porphyrin ring system 1.2 Numbering 2257 1.3 Additional fused rings 1.4 Skeletal replacement 2258 1.5 Skeletal replacement of nitrogen atoms 2259 1.6Fused porphyrin replacement analogs 2260 1.7Systematic names for substituted porphyrins 2261 TP—2 Trivial names and locants for certain substituted porphyrins 2263 2.1 Trivial names and locants 2.2 Roman numeral type notation 2265 TP—3 Semisystematic porphyrin names 2266 3.1 Semisystematic names in substituted porphyrins 3.2 Subtractive nomenclature 2269 3.3 Combinations of substitutive and subtractive operations 3.4 Additional ring formation 2270 3.5 Skeletal replacement of substituted porphyrins 2271 TP—4 Reduced porphyrins including chlorins 4.1 Unsubstituted reduced porphyrins 4.2 Substituted reduced porphyrins.
    [Show full text]
  • Ionization Constants of Fluorinated Acids
    IONIZATION CONSTANTS OF FLUORINATED ACIDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Charles Junius Fox, B.Sc., M.Sc. The Ohio State University 1953 • * • • * • • • • * * • * » * * • t , » : *: * Approved by: Adviser ACKNOWLEDGEMENT It is with deep gratitude that the author wishes to express his appreciation to Dr. A.L. Henne for his personal friendship and for his guidance in this research. Appreciation to the Socony-Vacuum Oil Company is also expressed for the support received through their fellowship at the Ohio State University, Department of Chemistry during the academic year 1950-1951. i 933328 TABLE OF CONTENTS Page Introduction ........................................ 1 Historical ................................... 4- Results of This Investigation Synthesis 5>5>S-Trifluorovaleric Acid .............. 5 4,4,4-Trifluorocrotonic Acid ............... 5 2-Fluoroacrylic Acid ....................... 6 Perfluoroacrylic Acid ...................... 7 3,3-Difluoroacrylic Acid ............... 12 Physical Measurements ..... ................ 14- Effect of Substituents on Ionization Constants 19 Ionization Constants of Saturated Aliphatic Acids ......................... 22 Ionization Constants of Unsaturated Aliphatic Acids ........................................ 24 Experimental A. Synthesis 1.0 Preparation of 5»5>5-Trifluorovaleric Acid 1.1 Fluorination of CCla(CHa )sCH2Cl ....... 35 1.2 Preparation of CFa(CHa )aCHa0H ........ 35 1.3 Oxidation of CFa( CKa)aCHa0H ............ 36 1.4 Attempted Preparation of CFa(CHS )aCHa0H from CFaCHaCHaCl ....................... 37 ii Page 1,5 Attempted Preparation of CFa(CHa )3C0aC3H 6 from CFaCHaCHaCl .......... 37 2.0 Preparation of CFaCH=CHCOaH ............. 37 3.0 Preparation of 1-Fluoroacryllc Acid 3.1 Preparation of .CHaBrCHBrCOaCHa .......... 38 3.2 Preparation of CH2ClCBrClCOaCHa ...... 38 3.3 Fluorination of CHaClCBrClCOaCHa .....
    [Show full text]
  • Interpretation of Both Electron Pushing and Electron Withdrawing Inductive Effect of Alkyl Groups in Terms of Mulliken–Jaffe’S Charge Coefficient Parameters (B)∗
    GENERAL ARTICLE Interpretation of Both Electron Pushing and Electron Withdrawing Inductive Effect of Alkyl Groups in Terms of Mulliken–Jaffe’s Charge Coefficient Parameters (b)∗ Asim K Das Alkyl groups can delocalize both the negative and positive charges through ion (charge)-induced dipole interaction with the polarizable alkyl groups. This charge induced polariza- tion of the alkyl group to delocalize the charge is the origin of ‘inductive effect’ of the alkyl groups. The apparent less effi- ciency in negative charge delocalization compared to positive charge delocalization by a particular alkyl group is attributed Asim K Das is currently a to the less polarizing field strength of the anionic charge. senior Professor of Chemistry Department, Visva Bharati, a Central University, 1. Introduction Santiniketan. His research interest is in the field of ff thermodynamic and kinetic The concept of inductive e ect and its application are the impor- aspects of metal-ligand tant course components of organic chemistry taught at the high interactions. He has authored school and undergraduate level. Inductive effect actually delocal- some advanced level text izes the charge [1, 2]. Depending on the properties of the atoms books on inorganic chemistry, ff bioinorganic chemistry and or groups, they can show electron withdrawing (i.e. –I e ect) or environmental chemistry for electron pushing (i.e. +Ieffect) inductive effect [1, 2]. The +Ief- the undergraduate and fect delocalizes the positive charge while the −Ieffect delocalizes postgraduate students. the negative charge. By considering the inductive effect of the groups or atoms, many important aspects of organic chemistry like the relative stabilities of carbocations and carbanions, acid- base strength, reaction mechanism, etc., are explained [1, 2] in the classrooms, and these are also discussed in all organic textbooks.
    [Show full text]