A Meander Is a Bend in a River

Total Page:16

File Type:pdf, Size:1020Kb

A Meander Is a Bend in a River Year 7 Geography- Rivers (B and P groups) Lesson 5 – Explain how a meander and an oxbow lake are formed Success criteria: I can define meander and oxbow lake I can explain how a meander is formed I can explain how a meander becomes an oxbow lake I can draw and label a series of diagrams showing meander formation Do now: 1. Rivers are used in agriculture for I… 2. When water is heated and rises into the air, it is called e… 3. Deposition (dropping material) happens when a river loses e… 4. What is formed when a waterfall retreats (moves backwards) upstream? 5. Name a job in the tertiary sector 6. Challenge: abrasion is when… Meanders: Start by watching this video: https://www.bbc.co.uk/bitesize/clips/zvm3cdm A meander is a bend in a river It starts with a slight bend. The The fast water erodes the Continued erosion and water moves faster on the outside of the bend. The deposition makes the bend outside of the bend and slower slower water deposits material bigger. on the inside of the bend. on the inside of the bend. Complete the sentences below: A meander is __________________________________________________________________________________ A meander starts with a……………… The fast water…………….……………… Continued e…………………………….on …………………………………………………... Water moves the……………………………of the bend the……………………………of the bend and fastest…………………..………………………………………... d………………………………..on the Water moves slowest……………………………………... The slow water…………….……………. material on …………………………………of the bend the………………………….. of the bend makes………………………………………... Challenge: suggest two types of erosion that occur on the outside of the bend ________________________________________________________________________ ________________________________________________________________________ Oxbow lakes: Start by watching this video: https://www.bbc.co.uk/bitesize/clips/zrhc87h An oxbow lake is a U shaped lake near a river Over time, erosion makes the Eventually the neck of the As less water is flowing through meander bend larger and larger. meander breaks through and the the meander, the energy is The neck of the meander water takes the most direct reduced. Material is deposited, narrows. route, avoiding the meander. blocking off the meander and creating an oxbow lake. Complete the sentence starters on the next page. An oxbow lake is _______________________________________________________________________________ Continued…………………………makes the Eventually the……………….…..of the meander As no water is flowing through the meander, bend…………………………………….. As a result breaks through and the water takes the the energy……………. the……………………of the meander most direct route avoiding …………………………………………………... gets…………………………… the……………………………….. As a result material is…………………. ………………………………………………….., blocking off the………………………….. and creating an………………………….. ………………………………………………….. Exit ticket: What is the name of the landform in the picture? ____________________________ What is going to happen to that landform over time? ____________________________ Does water flow fastest on the inside or the outside of the bend? _____________________________ Where is material dropped (deposited), the inside or the outside of the bend? ______________________________ Challenge: On paper, and without looking at your notes, draw and label the three stages of meander formation. .
Recommended publications
  • (P 117-140) Flood Pulse.Qxp
    117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g.
    [Show full text]
  • Deposition Patterns and Rates of Mining-Contaminated Sediment Within a Sedimentation Basin System, S.E
    BearWorks Institutional Repository MSU Graduate Theses Spring 2017 Deposition Patterns and Rates of Mining- Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri Joshua Carl Voss Missouri State University - Springfield, [email protected] Follow this and additional works at: http://bearworks.missouristate.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Hydrology Commons Recommended Citation Voss, Joshua Carl, "Deposition Patterns and Rates of Mining-Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri" (2017). MSU Graduate Theses. 3074. http://bearworks.missouristate.edu/theses/3074 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The orkw contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI A Masters Thesis Presented to The Graduate College of Missouri State University ATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Geospatial Sciences in Geography, Geology, and Planning By Josh C. Voss May 2017 Copyright 2017 by Joshua Carl Voss ii DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI Geography, Geology, and Planning Missouri State University, May 2017 Master of Science Josh C. Voss ABSTRACT Flooding events exert a dominant control over the deposition and formation of floodplains. The rate at which floodplains form depends on flood magnitude, frequency, and duration, and associated sediment transport capacity and supply.
    [Show full text]
  • The Huron River History Book
    THE HURON RIVER Robert Wittersheim Over 15,000 years ago, the Huron River was born as a small stream draining the late Pleistocene landscape. Its original destination was Lake Maumee at present day Ypsilanti where a large delta was formed. As centuries passed, ceding lake levels allowed the Huron to meander over new land eventually settling into its present valley. Its 125 mile journey today begins at Big Lake near Pontiac and ends in Lake Erie. The Huron’s watershed, which includes 367 miles of tributaries, drains over 900 square miles of land. The total drop in elevation from source to mouth is nearly 300 feet. The Huron’s upper third is clear and fast, even supporting a modest trout fishery. The middle third passes through and around many lakes in Livingston and Washtenaw Counties. Eight dams impede much of the Huron’s lower third as it flows through populous areas it helped create. Over 47 miles of this river winds through publicly owned lands, a legacy from visionaries long since passed. White Lake White Lake Mary Johnson The Great Lakes which surround Michigan and the thousands of smaller lakes, hundreds of rivers, streams and ponds were formed as the glacier ice that covered the land nearly 14,000 years ago was melting. The waters filled the depressions in the earth. The glaciers deposited rock, gravel and soil that had been gathered in their movement. This activity sculpted the land creating our landscape. In section 28 of Springfield Township, Oakland County, a body of water names Big Lake by the area pioneers is the source of the Huron River.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • The Arkansas River Flood of June 3-5, 1921
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE 0ns SMITH, Director Water-Supply Paper 4$7 THE ARKANSAS RIVER FLOOD OF JUNE 3-5, 1921 BY ROBERT FOLLANS^EE AND EDWARD E. JON^S WASHINGTON GOVERNMENT PRINTING OFFICE 1922 i> CONTENTS. .Page. Introduction________________ ___ 5 Acknowledgments ___ __________ 6 Summary of flood losses-__________ _ 6 Progress of flood crest through Arkansas Valley _____________ 8 Topography of Arkansas basin_______________ _________ 9 Cause of flood______________1___________ ______ 11 Principal areas of intense rainfall____ ___ _ 15 Effect of reservoirs on the flood__________________________ 16 Flood flows_______________________________________ 19 Method of determination________________ ______ _ 19 The flood between Canon City and Pueblo_________________ 23 The flood at Pueblo________________________________ 23 General features_____________________________ 23 Arrival of tributary flood crests _______________ 25 Maximum discharge__________________________ 26 Total discharge_____________________________ 27 The flood below Pueblo_____________________________ 30 General features _________ _______________ 30 Tributary streams_____________________________ 31 Fountain Creek____________________________ 31 St. Charles River___________________________ 33 Chico Creek_______________________________ 34 Previous floods i____________________________________ 35 Flood of Indian legend_____________________________ 35 Floods of authentic record__________________________ 36 Maximum discharges
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • Stream Restoration, a Natural Channel Design
    Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state.
    [Show full text]
  • Logistic Analysis of Channel Pattern Thresholds: Meandering, Braiding, and Incising
    Geomorphology 38Ž. 2001 281–300 www.elsevier.nlrlocatergeomorph Logistic analysis of channel pattern thresholds: meandering, braiding, and incising Brian P. Bledsoe), Chester C. Watson 1 Department of CiÕil Engineering, Colorado State UniÕersity, Fort Collins, CO 80523, USA Received 22 April 2000; received in revised form 10 October 2000; accepted 8 November 2000 Abstract A large and geographically diverse data set consisting of meandering, braiding, incising, and post-incision equilibrium streams was used in conjunction with logistic regression analysis to develop a probabilistic approach to predicting thresholds of channel pattern and instability. An energy-based index was developed for estimating the risk of channel instability associated with specific stream power relative to sedimentary characteristics. The strong significance of the 74 statistical models examined suggests that logistic regression analysis is an appropriate and effective technique for associating basic hydraulic data with various channel forms. The probabilistic diagrams resulting from these analyses depict a more realistic assessment of the uncertainty associated with previously identified thresholds of channel form and instability and provide a means of gauging channel sensitivity to changes in controlling variables. q 2001 Elsevier Science B.V. All rights reserved. Keywords: Channel stability; Braiding; Incision; Stream power; Logistic regression 1. Introduction loads, loss of riparian habitat because of stream bank erosion, and changes in the predictability and vari- Excess stream power may result in a transition ability of flow and sediment transport characteristics from a meandering channel to a braiding or incising relative to aquatic life cyclesŽ. Waters, 1995 . In channel that is characteristically unstableŽ Schumm, addition, braiding and incising channels frequently 1977; Werritty, 1997.
    [Show full text]
  • Sulphur Creek Sulphur Creek Has Cut a Deep Canyon That Passes Through the Oldest Rocks Exposed at Capitol Reef
    Capitol Reef National Park National Park Service U.S. Department of the Interior Sulphur Creek Sulphur Creek has cut a deep canyon that passes through the oldest rocks exposed at Capitol Reef. It is a perennial stream with a flow that varies significantly in response to upstream water usage, snowmelt, and heavy rain. There are about two miles of scenic narrows and three small waterfalls. Bypassing the falls requires the ability to scramble down 12-foot (3.6 m) ledges. The route usually requires some walking in shallow water, but it is not uncommon for there to be much deeper water that might even require swimming. This route may be difficult for children if deep water is present. Ask at the visitor center for the latest condition report. Dangerous flash floods are an occasional hazard on this route—do not hike the Sulphur Creek route if there is a chance of rain. The 5.8-mile (9.3 km) one-way hike through Sulphur Creek Canyon involves leaving a shuttle vehicle at each end. If you don’t have two vehicles, a 3.3-mile (5.3 km) hike along Highway 24 is required to return your starting point. Vehicle shuttles are not provided or facilitated by the park. Though legal, hitchhiking is not recommended. This route is not an official, maintained trail. Route conditions, including obstacles in canyons, change frequently due to weather, flash floods, rockfall, and other hazards. Routefinding, navigation, and map-reading skills are critical. Do not rely solely on unofficial route markers (rock cairns, etc.); they are not maintained by the National Park Service (NPS), may not indicate Sulphur Creek the route in this description, or may be absent.
    [Show full text]
  • Surviving a Flash Flood in a Slot Canyon
    Surviving a Flash Flood in a Slot Canyon Narrow canyons can turn into sheer-walled death traps during heavy rain. Emerging from them safely depends on smart planning, constant awareness, and, when those don't work, a healthy dose of luck. By: Joe Spring for Outside Magazine On July 24, 2010, a flash flood swept 39-year-old Joe Cain and two friends through Utah's Spry Canyon and over a 40-foot cliff. He lived to talk about it—barely. Here's his story, as told to JOE SPRING. IT WAS MY FIRST TIME canyoneering. I was camping in Zion National Park with two friends, Jason Fico and Dave Frankhouser. We planned to do two canyons. The three of us had been doing outdoor stuff for a long time and we had all been rock climbing. I’d been climbing since the mid-90s. I’d been in slot canyons before, scrambling around and hiking up the narrows, and we were all very proficient about setting up rappels on anchors. The first day, July 24, we decided to do Spry Canyon. Jason had been through that canyon before. It’s a three-hour hike from the trailhead to the top where we dumped in. There were sections that you kind of scrambled through, sections you hiked through, and then a drop off with some anchors where you have to rappel. We anticipated we would be done in four hours. This was late July, 2010, monsoon season in Utah. We knew that if it rained this time of year it would probably start in mid-to-late afternoon.
    [Show full text]
  • Minneopa State Park Is That Ground Wheat and Other Grains from 1864 to STATE PARK a FULL SET of STATE PARK RULES and the Third Oldest State Park in Minnesota
    © 2020, Minnesota Department of Natural Resources ABOUT THE PARK SO EVERYONE CAN MINNEOPA ENJOY THE PARK... Established in 1905, Minneopa State Park is that ground wheat and other grains from 1864 to STATE PARK A FULL SET OF STATE PARK RULES AND the third oldest state park in Minnesota. It is best 1890. REGULATIONS IS AVAILABLE ONLINE. known for the double waterfall that 54497 GADWALL RD. PARK OPEN MANKATO, MN 56001 thunders during high water. The upper falls 8 a.m.–10 p.m. daily. BLUE EARTH COUNTY • 507-386-3910 [email protected] drops 7 to 10 feet and the lower falls tumbles another 40. This feature is the result of water CAMPGROUND QUIET HOURS cutting into layers of sandstone over time. 10 p.m.–8 a.m. Take the Mill Road to look for the bison, VISITOR TIPS VEHICLE PERMITS reintroduced in 2015. These animals will Required; purchase at park office or self-pay station. • Respect trail closures. naturally manage the prairie ecosystem, • Minneopa has two sections. just as they did over a hundred fifty years ago. PETS WELCOME The office and waterfall are off Near this area, you may view another Keep on 6-foot leash; leave no trace; only service animals allowed in park buildings. County Highway 69. Camping, reminder of the park’s rich history: Seppmann Don’t miss the double waterfall stone windmill, and bison are Mill. Enjoy a walk to the sandstone windmill FIREWOOD off Highway 68. Use only from approved vendors. • Minneopa Creek is not TRAIL HIGHLIGHTS recommended for swimming.
    [Show full text]