Bgj4.1 Cover:Bgj1.1 Cover
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antimicrobial Activity of Crescentia Cujete
AsianVol. 6 ·Journal January of2016 Health · International Volume 6 Peer Reviewed Journal Asian Journal of Health Accredited Category B CHED Journal Accreditation Service Print ISSN 2094-9243 · Online: ISSN: 2244-047X Antimicrobial Activity of Crescentia cujete MARILOU O. HONCULADA ORCID No. 0000-0002-5754-0337 [email protected] Liceo de Cagayan University Cagayan de Oro City, Philippines MICHELLE T. MABASA ORCID No. 0000-0001-8502-9803 [email protected] Liceo de Cagayan University Cagayan de Oro City, Philippines ABSTRACT The Philippines is known for being an agricultural country with different varieties of plants that have medicinal potential. This study focused on the antimicrobial potential of the fruit of Crescentia cujete or Calabash tree against common infections Staphylococcus aureus, a gram-positive bacteria, and Escherichia coli which is a gram- negative bacterium. Fruit extracts were obtained by maceration with ethanol for 24 hours at room temperature. The experimental research design was used through disc diffusion method. Findings of this study, however, revealed no antibacterial effect of the fruit extract against Staphylococcus aureus and Escherichia coli. Keywords: Crescentia cujete, antimicrobial, Staphylococcus aureus, Escherichia coli INTRODUCTION The healing power of plants is a widely explored study. Plants have been traditionally used for the treatment of infection of different aetiology. More so now with the development of bacterial resistance of some microorganisms due mainly to the abuse of antibiotic use. The increasing prevalence of multidrug-resistant strains of bacteria and the recent appearance of strains with reduced susceptibility to antibiotic raises the spectre of untreatable bacterial infections and adds urgency to the search for new infection-fighting strategies (Sieradzki, Roberts, Haber & Tomasz, 1999) as 80 International Peer Reviewed Journal cited by Mahbub et al. -
Unitary Or Unified Taxonomy?
Published online 23 March 2004 Unitary or unified taxonomy? Malcolm J. Scoble Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK ([email protected]) Taxonomic data form a substantial, but scattered, resource. The alternative to such a fragmented system is a ‘unitary’ one of preferred, consensual classifications. For effective access and distribution the (Web) revision for a given taxon would be established at a single Internet site. Although all the international codes of nomenclature currently preclude the Internet as a valid medium of publication, elements of unitary taxonomy (UT) still exist in the paper system. Much taxonomy, unitary or not, already resides on the Web. Arguments for and against adopting a unitary approach are considered and a resolution is attempted. Rendering taxonomy essentially Web-based is as inevitable as it is desirable. Apparently antithetical to the UT proposal is the view that in reality multiple classifications of the same taxon exist, since different taxonomists often hold different concepts of their taxa: a single name may apply to many different (frequently overlapping) circumscriptions and more than one name to a single taxon. However, novel means are being developed on single Internet sites to retain the diversity of multiple concepts for taxa, providing hope that taxonomy may become established as a Web-based information discipline that will unify the discipline and facilitate data access. Keywords: unitary taxonomy; Web revisions; taxonomy; Internet; multiple classifications 1. INTRODUCTION of ‘the field of taxoinformatics’ was another of Ashbur- ner’s concerns. Progress will surely need continued and If taxonomy were ever to be funded in proportion to the much expanded engagement with the Internet as the fast amount it is discussed, there might be less concern about evolving medium for providing access to information cur- its purported decline. -
INSIGHTS on the CHEMICAL CONSTITUENTS and HYDROTHERMAL CARBONIZATION of Crescentia Cujete L
Malaysian Journal of Analytical Sciences, Vol 24 No 1 (2020): 134 - 145 S INSIGHTS ON THE CHEMICAL CONSTITUENTS AND HYDROTHERMAL CARBONIZATION OF Crescentia cujete L. (Pencirian Jujukan Kimia dan Pengkarbonan Hidrotermal bagi Crescentia cujete L.) Judith Clarisse Jose1, Glenn Oyong2, Michael Dominic Ajero3, Irving Chiong3, Esperanza Cabrera1,2, Maria Carmen S. Tan3* 1Biology Department 2Molecular Science Unit Laboratory Center for Natural Sciences and Environmental Research 3Chemistry Department De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines *Corresponding author: [email protected] Received: 12 December 2019; Accepted: 21 January 2020 Abstract Crescentia cujete L. is an evergreen tree that presents several medicinal and industrial applications. This study primarily aimed to present preliminary characterization of the fruit extracts and fruit pulp of Crescentia cujete L. using several analytical techniques. Characterization of the crude MeOH extract and pure compound, trans-cinnamic acid, isolated from the fruit extract were performed using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS). Lyophilized pulp was characterized by energy dispersive X-ray spectroscopy (EDX). Hydrochar samples resulting from hydrothermal carbonization (HTC) of fruit pulp were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Eight constituents were eluted from the crude MeOH extract which were mainly composed of furan (5-Hydroxymethylfurfural, 53.99%), a pyranone derivative (2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4- one, 8.68%) and a carboxylic acid (3-phenyl-2-propenoic acid, 7.94% or compound 5). Other notable compounds of the extract include furaneol (0.78% and 1.56%), phenol, 2,4-bis(1,1-dimethylethyl)- (3.73%), benzenepropanoic acid, 3,5-bis(1,1- dimethylethyl)-4-hydroxy-, methyl ester (1.15%) and n-hexadecanoic acid (0.59%). -
Morphological Stasis Abd Molecular Divergence in the Intercontinental Disjunct Genus Datisca (Datiscaceae) Aaron Liston Rancho Santa Ana Botanic Garden
Aliso: A Journal of Systematic and Evolutionary Botany Volume 12 | Issue 3 Article 8 1989 Morphological Stasis abd Molecular Divergence in the Intercontinental Disjunct Genus Datisca (Datiscaceae) Aaron Liston Rancho Santa Ana Botanic Garden Loren H. Rieseberg Rancho Santa Ana Botanic Garden Thomas S. Elias Rancho Santa Ana Botanic Gardem Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Liston, Aaron; Rieseberg, Loren H.; and Elias, Thomas S. (1989) "Morphological Stasis abd Molecular Divergence in the Intercontinental Disjunct Genus Datisca (Datiscaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 12: Iss. 3, Article 8. Available at: http://scholarship.claremont.edu/aliso/vol12/iss3/8 ALISO 12(3), 1989, pp. 525-542 MORPHOLOGICAL STASIS AND MOLECULAR DIVERGENCE IN THE INTERCONTINENTAL DISJUNCT GENUS DATISCA (DATISCACEAE) AARoN LISTON, LoREN H. RIESEBERG, AND THoMAS S. ELIAS Rancho Santa Ana Botanic Garden, 1500 N. College Avenue Claremont, California 91711-3101 ABSTRACf The genus Datisca comprises two species and has an intercontinentally disjunct distribution: D. cannabina is native to southwest and central Asia, whereas D. g/omerata is distributed from northern California to northern Baja California. In 1975, Axelrod proposed a geohistorical scenario to account for such "Madrean-Tethyan links," suggesting that these disjunctions resulted from migration across the mid-Atlantic from the Paleogene up to the Neogene, approximately 23 to 65 m.y.a. The two species are quite similar in most phenotypic traits which have been studied to date. The major difference between the two involves their breeding system: D. cannabina is dioecious while D. -
Towards Establishment of a Centralized Spider Traits Database
2020. Journal of Arachnology 48:103–109 Towards establishment of a centralized spider traits database Elizabeth C. Lowe1,*, Jonas O. Wolff1,*, Alfonso Aceves-Aparicio1, Klaus Birkhofer2, Vasco Veiga Branco3, Pedro Cardoso3,4, Filipe Chichorro3, Caroline Sayuri Fukushima3, Thiago Gonc¸alves-Souza5, Charles R. Haddad6, Marco Isaia7, Henrik Krehenwinkel8, Tracy Lynn Audisio9, Nuria Mac´ıas-Herna´ndez3,18, Jagoba Malumbres-Olarte3,4, Stefano Mammola3,10, Donald James McLean1, Radek Michalko11, Wolfgang Nentwig12, Stano Peka´r13, Julien Pe´tillon14, Ka¨ına Privet14, Catherine Scott15, Gabriele Uhl16, Fernando Urbano-Tenorio3, Boon Hui Wong17 and Marie E. Herberstein1: 1Department of Biological Sciences, Macquarie University, NSW 2109, Australia; E-mails: [email protected], Jonas. [email protected]; 2Department of Ecology, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany; 3Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (Luomus), University of Helsinki, P.O. Box 17 (Pohjoinen Rautatiekatu 13), 00014 Helsinki, Finland; 4cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Ac¸ores – Faculty of Agriculture and Environment, Rua Capita˜oJoa˜od’A´ vila, Sa˜o Pedro, 9700-042 Angra do Hero´ısmo, Terceira, Ac¸ores, Portugal; 5Ecological Synthesis and Biodiversity Conservation Lab, Department of Biology, Federal Rural University of Pernambuco, Brazil; 6Department of Zoology & Entomology, University of the Free State, -
Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year. -
Bignoniaceae)
Systematic Botany (2007), 32(3): pp. 660–670 # Copyright 2007 by the American Society of Plant Taxonomists Taxonomic Revisions in the Polyphyletic Genus Tabebuia s. l. (Bignoniaceae) SUSAN O. GROSE1 and R. G. OLMSTEAD Department of Biology, University of Washington, Box 355325, Seattle, Washington 98195 U.S.A. 1Author for correspondence ([email protected]) Communicating Editor: James F. Smith ABSTRACT. Recent molecular studies have shown Tabebuia to be polyphyletic, thus necessitating taxonomic revision. These revisions are made here by resurrecting two genera to contain segregate clades of Tabebuia. Roseodendron Miranda consists of the two species with spathaceous calices of similar texture to the corolla. Handroanthus Mattos comprises the principally yellow flowered species with an indumentum of hairs covering the leaves and calyx. The species of Handroanthus are also characterized by having extremely dense wood containing copious quantities of lapachol. Tabebuia is restricted to those species with white to red or rarely yellow flowers and having an indumentum of stalked or sessile lepidote scales. The following new combinations are published: Handroanthus arianeae (A. H. Gentry) S. Grose, H. billbergii (Bur. & K. Schum). S. Grose subsp. billbergii, H. billbergii subsp. ampla (A. H. Gentry) S. Grose, H. botelhensis (A. H. Gentry) S. Grose, H. bureavii (Sandwith) S. Grose, H. catarinensis (A. H. Gentry) S. Grose, H. chrysanthus (Jacq.) S. Grose subsp. chrysanthus, H. chrysanthus subsp. meridionalis (A. H. Gentry) S. Grose, H. chrysanthus subsp. pluvicolus (A. H. Gentry) S. Grose, H. coralibe (Standl.) S. Grose, H. cristatus (A. H. Gentry) S. Grose, H. guayacan (Seemann) S. Grose, H. incanus (A. H. -
Mangroves: Unusual Forests at the Seas Edge
Tropical Forestry Handbook DOI 10.1007/978-3-642-41554-8_129-1 # Springer-Verlag Berlin Heidelberg 2015 Mangroves: Unusual Forests at the Seas Edge Norman C. Dukea* and Klaus Schmittb aTropWATER – Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia bDepartment of Environment and Natural Resources, Deutsche Gesellschaft fur€ Internationale Zusammenarbeit (GIZ) GmbH, Quezon City, Philippines Abstract Mangroves form distinct sea-edge forested habitat of dense, undulating canopies in both wet and arid tropic regions of the world. These highly adapted, forest wetland ecosystems have many remarkable features, making them a constant source of wonder and inquiry. This chapter introduces mangrove forests, the factors that influence them, and some of their key benefits and functions. This knowledge is considered essential for those who propose to manage them sustainably. We describe key and currently recommended strategies in an accompanying article on mangrove forest management (Schmitt and Duke 2015). Keywords Mangroves; Tidal wetlands; Tidal forests; Biodiversity; Structure; Biomass; Ecology; Forest growth and development; Recruitment; Influencing factors; Human pressures; Replacement and damage Mangroves: Forested Tidal Wetlands Introduction Mangroves are trees and shrubs, uniquely adapted for tidal sea verges of mostly warmer latitudes of the world (Tomlinson 1994). Of primary significance, the tidal wetland forests they form thrive in saline and saturated soils, a domain where few other plants survive (Fig. 1). Mangrove species have been indepen- dently derived from a diverse assemblage of higher taxa. The habitat and structure created by these species are correspondingly complex, and their features vary from place to place. For instance, in temperate areas of southern Australia, forests of Avicennia mangrove species often form accessible parkland stands, notable for their openness under closed canopies (Duke 2006). -
Sir Arthur Hill, KCMG
No. 3760, NovEMBER 22, 1941' NATURE 619 OBITUARIES Sir Arthur Hill, K.C.M.G., F.R.S. the time of his death an entirely new revision of the HE tragic death of Sir Arthur Hill, director of genus Nototriche to be illustrated by an elaborate T the Royal Botanic Gardens, Kew, in a riding series of drawings. accident on November 3, is not only a disaster for the The appointment to Kew as assistant director Gardens, but also a great loss to the many societies, 1mder Sir David Prain we,s made in 1907. Hill was institutions and Government departments of which allotted a number of routine duties including the he was the chief representative of official botany for editorship of the Kew Bulletin, but in spite of these Great Britain. The twenty-odd years during which he was able to continue research and he published he was director saw a tremendous advance in the several taxonomic revisions and other papers. He progress of botanical science in all its branches, and took a share in the preparation of the great African it was ·natural that Kew should play a prominent part Floras published from Kew, namely "The Flora in many of the activities characteristic of this period. Capensis" and "The Flora of Tropical Africa". For Arthur William Hill was born on October ll, both of these he elaborated the difficult family 187 5, and was the only son of Daniel Hill, of Watford. Santalacere, which entailed careful dissection of small H e was educated at Marlborough and at King's and inconspicuous flowers, and for "The Flora College, Cambridge, where h e obtained a first class Capensis" he prepared (in collaboration with Pra.in) in both Part I and Part II of the Natural Sciences the article on the Gentiana.cere. -
Asteraceae: Astereae), a New Genus and Species from Northern Chile
Phytotaxa 177 (5): 280–290 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.177.5.4 Kieslingia chilensis (Asteraceae: Astereae), a new genus and species from northern Chile PATRICIO SALDIVIA1, LUIS FAÚNDEZ1,2, ALICIA MARTICORENA3 & JOSÉ L. PANERO4 1Biota, Gestión y Consultorías Ambientales Ltda. Av. Miguel Claro 1224, Providencia, Santiago, Chile; email: [email protected], [email protected] 2Laboratorio de Morfología y Taxonomía Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile. Av. Santa Rosa 11315, Casilla 1004, La Pintana, Santiago, Chile 3Departamento de Botánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile; email: [email protected] 4Department of Integrative Biology, 1 University Station C 0930, The University of Texas, Austin, TX 78712, USA; email: panero@ utexas.edu Abstract Kieslingia chilensis, a new genus and species of tribe Astereae (Asteraceae) from northern Chile restricted to the Huasco river basin of the Andes pre-mountain Range in the Atacama region is described and illustrated. The combination of its diagnostic characters including discoid homogamous capitula, alveolate epaleate receptacles, and deeply trifid leaves, is not found in any other species of South American Astereae. An ITS phylogenic analysis placed Kieslingia chilensis within subtribe Hinterhuberinae, and sister to the genus Guynesomia, also endemic to Chile. The morphological characteristics of Kieslingia chilensis are compared and contrasted to sister taxa as identified by the molecular phylogenetic studies and the environmental features of the area where the species is found are discussed. A key to distinguish Kieslingia from other Astereae genera of northern Chile is given. -
ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M. -
They Come in Teams
GBE Frankia-Enriched Metagenomes from the Earliest Diverging Symbiotic Frankia Cluster: They Come in Teams Thanh Van Nguyen1, Daniel Wibberg2, Theoden Vigil-Stenman1,FedeBerckx1, Kai Battenberg3, Kirill N. Demchenko4,5, Jochen Blom6, Maria P. Fernandez7, Takashi Yamanaka8, Alison M. Berry3, Jo¨ rn Kalinowski2, Andreas Brachmann9, and Katharina Pawlowski 1,* 1Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden 2Center for Biotechnology (CeBiTec), Bielefeld University, Germany 3Department of Plant Sciences, University of California, Davis 4Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia 5Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia 6Bioinformatics and Systems Biology, Justus Liebig University, Gießen, Germany 7Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Universite Lyon I, Villeurbanne Cedex, France 8Forest and Forestry Products Research Institute, Ibaraki, Japan 9Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany *Corresponding author: E-mail: [email protected]. Accepted: July 10, 2019 Data deposition: This project has been deposited at EMBL/GenBank/DDBJ under the accession PRJEB19438 - PRJEB19449. Abstract Frankia strains induce the formation of nitrogen-fixing nodules on roots of actinorhizal plants. Phylogenetically, Frankia strains can be grouped in four clusters. The earliest divergent cluster, cluster-2, has a particularly wide host range. The analysis of cluster-2 strains has been hampered by the fact that with two exceptions, they could never be cultured. In this study, 12 Frankia-enriched meta- genomes of Frankia cluster-2 strains or strain assemblages were sequenced based on seven inoculum sources. Sequences obtained via DNA isolated from whole nodules were compared with those of DNA isolated from fractionated preparations enhanced in the Frankia symbiotic structures.