MOSS FLORA of TAIWAN ( Exclusive of Pleurocarpi )

Total Page:16

File Type:pdf, Size:1020Kb

MOSS FLORA of TAIWAN ( Exclusive of Pleurocarpi ) MOSS FLORA OF TAIWAN ( Exclusive of Pleurocarpi ) by CHING CHANG CHUANG B. Sc., Taiwan Normal University, 1958 M. Sc., National Taiwan University, 1963 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1971 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of /ffivt Jc?***} The University of British Columbia Vancouver 8, Canada Date ytZpxy i ABSTRACT A floristic study is presented of the moss flora of Taiwan; such taxonomic research is the foundation for botanical science. The knowledge of the bryophytes of Taiwan has represented a serious gap in the knowledge of eastern Asia. In the present treatment are included 276 species including varieties and subspecies belonging to eighty-nine genera and twenty-three families. The included mosses belong to the subclasses Sphagnidae, Andreaeidae, Tetraphidae, Polytrichidae, Buxbaumiidae and the majority of the acrocarpous Bryidae. The pleurocarpous Bryidae have been excluded. Extensive field work throughout the island of Formosa was made during the two summers of 19&7 an^ 1968. Approximately 5»000 specimens were collected and studied. All species considered in this flora that were derived from records from the literature have been checked and reviewed. Type specimens and voucher specimens from the various herbaria plus my own extensive collections have been carefully examined microscopically both morphologically and anatomically. During the course of this study, one new species: Andreaea hohuanensis has been discovered and described. Two new combinations: Oligotrichum suzukii and Mastopoma undulata have been made. Four genera: Wilsoniella, Epipterygium, Leptobryum and Mielichhoferia and twenty-eight species are noted as taxa new to the moss flora of Taiwan. Twenty species and four varieties plus two forms are reduced to synonymy, based on superfluous names or misidentificat• ions. Keys are presented essentially for determination of mosses and are provided for all families in each subclass, and to the genera under each family. Keys are also given to the species and varieties in each genus. Thirty-three species and varieties have been excluded from the moss flora of Taiwan, because they represent nomina nuda, lack precise citation, or are doubtful. Detailed discussion has been made concerning each taxon where particular taxonomic problems arose. Ecological and distributional data are given "for each taxon. The vegetation as well as composition of the flora have been discussed and it is concluded that the bulk of the moss flora of Taiwan considered here is derived from that of the Asian mainland. iii TABLE OF CONTENTS page ABSTRACT . i TABLE OF CONTENTS iii LIST OF MAPS iv LIST OF FIGURES v ACKNOWLEDGEMENTS vi INTRODUCTION 1 GEOGRAPHIC SETTING 5 TOPOGRAPHY 8 GEOLOGY 11 SOIL 14 CLIMATE 19 VEGETATION 20 HISTORY OF BRYOLOGICAL COLLECTION AND STUDY 29 PHYTOGEOGRAPHY 35 CONTRIBUTIONS OF THE PRESENT STUDY TO THE BRYOLOGY OF SOUTHEAST ASIA 42 Outline of the classification 42 Taxa new to the country 43 Revision of nomenclature 46 Keys to taxa 47 Excluded species 48 TAXONOMIC TREATMENT 53 BIBLIOGRAPHY 235 iv LIST OF MAPS Map Page I. Regional location of Taiwan 4 II. Administrative districts of Taiwan 6 III. Physiographic regions of Taiwan 7 IV. Geology of Taiwan 10 V. Soils of Taiwan 13 VI. Average annual rainfall and temperature 18 VII. Map showing distribution of tropical species 38 VIII. Map showing distribution of Asian endemic species. 38 IX. Map showing distribution of temperate Eurasian species 39 X. Map showing distribution of pan boreal species ... 39 XI. Map showing disjunctive distribution 40 XII. Map showing distribution of Himalayan species .... 40 XIII. Map showing localities where the author made collections 41 v LIST OF FIGURES AND PLATE Figure Page 1. Subtropical rain forest 23 2. Subtropical rain forest 23 3. Evergreen broad leafed forest 24 4. Evergreen broad leafed forest 24 5. Mixed forest of broad leafed trees and conifers ... 25 6. Forest of predominant species: Chamaecyparis obtusa var. formosana 25 7. Tsuga forest at Mt. Ta-wu-shan 26 8. Central range of Taiwan high mountains 26 9. Abies kawakamii forest and alpine grassland 27 10. Mt. Sylvia range 27 11. A slope of Mt. Morrison range 28 12. Pure stand of Juniperus squamata var. morrisonicola 28 Plate 1. Andreaea hohuanensis sp. nov 64 vi ACKNOWLEDGEMENTS I am deeply indebted to Dr. W. B. Schofield under whose supervision this study was conducted, his guidance, financial aid, encouragement, and reading of the manuscript throughout the course of this study. I express my sincere appreciation to Dr. Sinske Hattori of the Hattori Botanical Laboratory, Nichinan, Japan, who offered me space to study the herbarium specimens and literature, and to Dr. and Mrs. Zennoske Iwatsuki who gave me considerable assistance during my visit to the Hattori Laboratory in April 1968 and from May to June 1969. I wish to express my grateful thanks to the curators of herbaria for sending me specimens to study, and also to Drs. A. J. Sharp, A. Noguchi, N. Takaki, H. Ando, H. Suzuki, H. Ochi, S. Nakanishi, U. Mizushima, T. Shin, H. Inoue, N. Kitagawa, C. K. Wang, B. Y. Yang, C. G. G. J. van Steenis all of whom kindly send me literatures and specimens. Great thanks to Dr. T. Koponen who send me his recent unpublished paper concerning the Mniaceae of Taiwan. Acknowledgement is made of the financial support from the University of British Columbia in the form of Graduate Fellow• ships during 1967-70 and summer grant for 1971. Support was also given through grants to Dr. W. B. Schofield from the National Research Council, Canada. -1- INTRODUCTION For many years, during my studies of vascular plants in Taiwan, I have noted the astonishing diversity and mysterious beauty of the mosses of the island. The knowledge of the bryophytes remains in a chaotic state in this part of the world. Although some modern branches of botany have been growing rapidly, it is very clear that the study of these modern fields is fundamen• tally based on precise identity of the plant involved. The name of the plant is of basic import to botanical science. Thus, taxonomic research of this flora is essential. The present study makes an effort to solve the difficult critical problems of the moss flora of Taiwan. It is based on my extensive collections as well as the material deposited in various herbaria. In this treatment are included 276 species including varieties and subspecies belonging to eighty-nine genera and twenty-three families. This constitutes all of the known mosses belonging to the subclasses Sphagnidae, Andreaeidae, Tetraphidae, Polytrichidae, Buxbaumiidae and the majority of the acrocarpous Bryidae. The pleurocarpous Bryidae are excluded, although the author has studied these in a preliminary way. Extensive field work throughout the island was made during the summer of 1967 and 1968 (Map XIII. P. 41). Dr. W. B. Schofield also visited Taiwan to assist my field work in May 7 to May 29, 1968. Approximately 5,000 specimens, with complete ecological data, have been collected for this study and are -2- deposited in the herbarium of the University of British Columbia. All species based on records from the literature have been checked and reviewed. Each species has been carefully examined microscopically both morphologically and anatomically verified, evaluated and cited. When this was impossible, this has been indicated. Of special importance was the study and comparison of many type specimens as well as voucher specimens, which are preserved in the following herbaria: H Botanical Museum, University of Helsinki, Finland. HIRO Hiroshima University, Hiroshima, Japan. JE Herbarium Haussknecht, Friedrich-Schiller Universitat, Germany. KU Kobe University, Kobe, Japan. KYO Kyoto University, Kyoto, Japan. MAK Makino Herbarium, Tokyo Metropolitan University, Tokyo, Japan. NICH Hattori Botanical Laboratory, Nichinan, Japan. NOG Kumamoto University, Kumamoto, Japan. NY New York Botanical Garden, New York, USA. TAI National Taiwan University, Taipei, Taiwan. TI Tokyo University, Tokyo, Japan. THU Tunghai University, Taichung, Taiwan. TNS The National Science Museum, Tokyo, Japan. UBC University of British Columbia, Vancouver, Canada. Abbreviations for herbaria are essentially those used by Lanjouw & Stafleu (1964); herbaria not treated by these authors are given the following abbreviations: KU, MAX, NOG, THU and UBC. Keys are provided for all families in each subclass, and to the genera under each family; keys are also given to the species and varieties under each genus to assist in identification of mosses of Taiwan. Critical discussion is given when the material has permitted careful study. The families are arranged according to Brotherus* system in the second edition of Engler and Prantl's Die Naturlichen Pflanzenfamilien (1924) with some modifications based on more recent treatments. The genera and species are dealt with in alphabetical order. Ecological data and distribution are given and phytogeographic notes are included with each taxon. For each taxon the basis for its inclusion is indicated under the designation "Cited specimen". This notes an actual specimen examined, the literature record of those not examined and when possible, the location of the specimen. _4- Map, I. Regional location of Taiwan -5- GEOGRAPHIC SETTING Taiwan is composed of the main island of Formosa plus several small satellite islands or island groups: Pescadores Island, involving over 60 small islands with a total area of only 79 sq.
Recommended publications
  • Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA
    Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure.
    [Show full text]
  • Zeitschrift Für Naturforschung / C / 50 (1995)
    Notes 311 The Biflavonoid Pattern of the Tortes, Lerida (Spain), 2.11.1991, leg. et det. J.A. Moss Bartramia ithyphylla Löpez-Säez and Puerto de Canencia, Madrid (Bartramiaceae, Musci) (Spain), 10.12.1988, leg. et det. M.E. Ron. Voucher José Antonio López-Sáez, specimens are deposited in the Herbarium of the Marí a José Pérez-Alonso and Department of Plant Biology, Faculty of Biology, Arturo Velasco-Negueruela Complutense University of Madrid (“MACB”). Departamento de Biologfa Vegetal I, Facultad de Bio- logfa, Universidad Complutense, 28040 Madrid, Spain Extraction and isolation Z. Naturforsch. 50c, 311-312 (1995); received October 31, 1994/January 23, 1995 120 g air-dried plant material (freed from for­ Bartramiaceae, Bartramia ithyphylla Brid., Biflavonoids eign matter) was extracted three times with From Bartramia ithyphylla the following five biflavo­ M e0H :H 20 (8:2) 5 1 each and twice with 4 1 noids were isolated: philonotisflavone, 2,3-dihydrophilo- Me2C 0 :H 20 (8:2). To eliminate chlorophylls the notisflavone, dicranolomin, 5',3'"-dihydroxyamentofla- combined extracts were evaporated and the resi­ vone and 5'-hydroxyamentoflavone. due subjected to a four step Craig distribution be­ tween the upper and lower phases of DMF/HzO/ Et20 (4:1:8). The combined lower phases were re­ duced in vacuo to a thin syrup (about 100 ml). Bartramia Hedw. is a large moss genus of about After addition of 60 ml dry polyamide-6 powder 100 species and three sections (Corley et al., 1981). it was diluted with 1 1 water. The resulting suspen­ During a study of the flavonoid patterns of the sion was cautiously poured on top of a 3-1 poly- Bartramiaceae by TLC and HPLC (Löpez-Säez, amide-6-column (wet packed).
    [Show full text]
  • Alpinia Galanga (L.) Willd
    TAXON: Alpinia galanga (L.) Willd. SCORE: 5.0 RATING: Low Risk Taxon: Alpinia galanga (L.) Willd. Family: Zingiberaceae Common Name(s): false galangal Synonym(s): Languas galanga (L.) Stuntz greater galanga Maranta galanga L. languas Siamese-ginger Thai ginger Assessor: Chuck Chimera Status: Assessor Approved End Date: 16 Jun 2016 WRA Score: 5.0 Designation: L Rating: Low Risk Keywords: Rhizomatous, Naturalized, Edible, Self-Compatible, Pollinator-Limited Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) Low 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 n 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n Creation Date: 16 Jun 2016 (Alpinia galanga (L.) Willd.) Page 1 of 15 TAXON: Alpinia galanga (L.) Willd.
    [Show full text]
  • Invasive Alien Plnat Species.Pdf
    Punjab ENVIS Centre NEWSLETTER Vol. 11, No. 4, 2013-14 INVASIVE ALIEN PLANT SPECIES IN PUNJAB l Inform ta at n io e n m S Status of Environment & Related Issues n y o s r t i e v m n E www.punenvis.nic.in INDIA EDITORIAL The World Conservation Union (IUCN) defines alien invasive species as organisms that become established in native ecosystems or habitats, proliferate, alter, and threaten native biodiversity. These aliens come in the form of plants, animals and microbes that have been introduced into an area from other parts of the world, and have been able to displace indigenous species. Invasive alien species are emerging as one of the major threats to sustainable development, on a par with global warming and the destruction of life-support systems. Increased mobility and human interaction have been key drivers in the spread of Indigenous Alien Species. Invasion by alien species is a global phenomenon, with threatening negative impacts to the indigenous biological diversity as well as related negative impacts on human health and overall his well-being. Thus, threatening the ecosystems on the earth. The Millennium Ecosystem Assessment (MA) found that trends in species introductions, as well as modelling predictions, strongly suggest that biological invasions will continue to increase in number and impact. An additional concern is that multiple human impacts on biodiversity and ecosystems will decrease the natural biotic resistance to invasions and, therefore, the number of biotic communities dominated by invasive species will increase. India one of the 17 "megadiverse" countries and is composed of a diversity of ecological habitats like forests, grasslands, wetlands, coastal and marine ecosystems, and desert ecosystems have been reported with 40 percent of alien flora species and 25 percent out of them invasive by National Bureau of Plant Genetic Resource.
    [Show full text]
  • Spore Dispersal Vectors
    Glime, J. M. 2017. Adaptive Strategies: Spore Dispersal Vectors. Chapt. 4-9. In: Glime, J. M. Bryophyte Ecology. Volume 1. 4-9-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 3 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 4-9 ADAPTIVE STRATEGIES: SPORE DISPERSAL VECTORS TABLE OF CONTENTS Dispersal Types ............................................................................................................................................ 4-9-2 Wind Dispersal ............................................................................................................................................. 4-9-2 Splachnaceae ......................................................................................................................................... 4-9-4 Liverworts ............................................................................................................................................. 4-9-5 Invasive Species .................................................................................................................................... 4-9-5 Decay Dispersal............................................................................................................................................ 4-9-6 Animal Dispersal .......................................................................................................................................... 4-9-9 Earthworms ..........................................................................................................................................
    [Show full text]
  • Monoicous Species Pairs in the Mniaceae (Bryophyta); Morphology, Sexual Condition and Distiribution
    ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 67-81, 2019 DOI: 10.2478/cszma-2019-0008 Published: online 1 July 2019, print July 2019 On the hypothesis of dioicous − monoicous species pairs in the Mniaceae (Bryophyta); morphology, sexual condition and distiribution Timo Koponen On the hypothesis of dioicous − monoicous species pairs in the Mniaceae (Bryophyta); morphology, sexual condition and distiribution. – Acta Mus. Siles. Sci. Natur., 68: 67-81, 2019. Abstract: Some early observations seemed to show that, in the Mniaceae, the doubling of the chromo- some set affects a change from dioicous to monoicous condition, larger size of the gametophyte including larger leaf cell size, and to a wider range of the monoicous counterpart. The Mniaceae taxa are divided into four groups based on their sexual condition and morphology. 1. Dioicous – monoicous counterparts which can be distinguished by morphological characters, 2. Dioicous – monoicous taxa which have no morphological, deviating characters, 3. Monoicous species mostly with diploid chromosome number for which no dioicous counterpart is known, and 4. The taxa in Mniaceae with only dioicous plants. Most of the monoicous species of the Mniaceae have wide ranges, but a few of them are endemics in geographically isolated areas. The dioicous species have either a wide holarctic range or a limited range in the forested areas of temperate and meridional North America, Europe and SE Asia, or in subtropical Asia. Some of the monoicous species are evidently autodiploids and a few of them are allopolyploids from cross-sections of two species. Quite recently, several new possible dioicous – monoicous relationships have been discovered.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • An Annotated Checklist of Tasmanian Mosses
    15 AN ANNOTATED CHECKLIST OF TASMANIAN MOSSES by P.I Dalton, R.D. Seppelt and A.M. Buchanan An annotated checklist of the Tasmanian mosses is presented to clarify the occurrence of taxa within the state. Some recently collected species, for which there are no published records, have been included. Doubtful records and excluded speciei. are listed separately. The Tasmanian moss flora as recognised here includes 361 species. Key Words: mosses, Tasmania. In BANKS, M.R. et al. (Eds), 1991 (3l:iii): ASPECTS OF TASMANIAN BOTANY -- A TR1BUn TO WINIFRED CURTIS. Roy. Soc. Tasm. Hobart: 15-32. INTRODUCTION in recent years previously unrecorded species have been found as well as several new taxa described. Tasmanian mosses received considerable attention We have assigned genera to families followi ng Crosby during the early botanical exploration of the antipodes. & Magill (1981 ), except where otherwise indicated in One of the earliest accounts was given by Wilson (1859), the case of more recent publications. The arrangement who provided a series of descriptions of the then-known of families, genera and species is in alphabetic order for species, accompanied by coloured illustrations, as ease of access. Taxa known to occur in Taslnania ami Part III of J.D. Hooker's Botany of the Antarctic its neighbouring islands only are listed; those for Voyage. Although there have been a number of papers subantarctic Macquarie Island (politically part of since that time, two significant compilations were Tasmania) are not treated and have been presented published about the tum of the century. The first was by elsewhere (Seppelt 1981).
    [Show full text]
  • Rangifer Tarandus Platyrhynchus) Michał Hubert We˛Grzyn 1, Paulina Wietrzyk-Pełka 1, Agnieszka Galanty 2, Beata Cykowska-Marzencka 3 & Monica Alterskjær Sundset 4
    RESEARCH ARTICLE Incomplete degradation of lichen usnic acid and atranorin in Svalbard reindeer (Rangifer tarandus platyrhynchus) Michał Hubert We˛grzyn 1, Paulina Wietrzyk-Pełka 1, Agnieszka Galanty 2, Beata Cykowska-Marzencka 3 & Monica Alterskjær Sundset 4 1 Prof. Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Jagiellonian University, Kraków, Poland; 2 Department of Pharmacognosy, Pharmaceutical Faculty, Medical College, Jagiellonian University, Kraków, Poland; 3 Laboratory of Bryology, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland; 4 Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway Abstract Keywords Lichen secondary metabolites; ruminant; Previous studies of Eurasian tundra reindeer (Rangifer tarandus tarandus) in faecal samples; Spitsbergen; Arctic Norway indicate that their rumen microbiota play a key role in degrading lichen secondary metabolites. We investigated the presence of usnic acid and atranorin Contact in faecal samples from Svalbard reindeer (R. tarandus platyrhynchus). Samples Michał Hubert We˛grzyn, Prof. were collected in Bolterdalen valley together with vegetation samples from the Z. Czeppe Department of Polar study site. The mesic tundra in this area was dominated by vascular plants (59% Research and Documentation, Institute of vegetation cover). Bryophytes (16%) and lichens (25%) were also present. of Botany, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland. Qualitative and quantitative analyses of usnic acid and atranorin in lichen and E-mail: [email protected] faeces samples were performed using high-performance liquid chromatogra- phy. Contents of atranorin averaged 12.49 ± 0.41 mg g–1 in the thalli of Stereo- Abbreviations caulon alpinum, while the average level of usnic acid was lowest in Cladonia mitis HPLC: high-performance liquid (12.75 ± 2.86 mg g–1) and highest in Flavocetraria cucullata (34.87 ± 0.47 mg g–1).
    [Show full text]
  • Notes on Bryaceae (Bryopsida) in Japan
    Hattoria 5: 51-70, 2014 Notes on Bryaceae (Bryopsida) in Japan Tadashi Suzuki1 1The Hattori Botanical Laboratory, Shimada Branch, 6480-3 Takasago-cho, Shimada-shi, Shizuoka- ken 427-0054, Japan Abstract. Four genera of Bryaceae, Acidodontium Schwaegr., Orthodontium Schwaegr., Pseudopohlia Williams and Schizymenium Harv. are newly found in Japan. Two species of Acidodontium, A. megalocarpum (Hook.) Ren. & Card. and A. longifolium (Par.) Broth., two species of Orthodontium, O. denticulatum Geh. & Hampe and O. pellucens (Hook.) Bruch, Schimp. & Gümbel, Pseudopohlia didymodontia (Mitt.) A. L. Andrews, Schizymenium novoguinense (E. B. Bartram) A. Eddy, three species of Brachymenium, B. alpinum Ochi, B. jilinense T. J. Kop., A. J. Shaw, J.-S. Lou & C. Gao and B. muricola Broth. and Mielichhoferia pusilla (Hook. f. & Wilson) Mitt. are added to the moss flora of Japan. Two new combinations, Schizymenium japonicum (Besch.) Tad. Suzuki and Schizymenium sasaokae (Broth.) Tad. Suzuki are made. Introduction In a catalog of the mosses of Japan, Iwatsuki (2004) listed 9 genera of Bryaceae. In this paper, four genera of Bryaceae are added to the moss flora of Japan and I present information on 12 species of the family in Japan. A key to genera of Bryaceae in Japan is provided. Descriptions, specimens examined, distributions, notes and illustrations of 12 species are included. All collections are deposited in the Herbarium of the Hattori Botanical Laboratory (NICH). Key to genera of Bryaceae in Japan 1. Upper leaf cells linear-rhomboidal, firm-walled, basal leaf cells abruptly short-rectangular to subquadrate; axillary gemmae present ·························································· Pseudopohlia 1. Plants not with combination of characters mentioned above ·················································· 2 2.
    [Show full text]
  • Chi-Chi, Taiwan Earthquake Event Report
    TM Event Report Chi-Chi, Taiwan Earthquake .8E 7km depth N 120 23.8 6 M7. m. a. 47 1: 99 19 , 1 2 r e b m e t p e S Chi-Chi Reconnaissance Team Weimin Dong, Ph.D. Laurie Johnson, AICP RMS Team Leader, Earthquake Engineer RMS Event Response Coordinator, Urban Planner Guy Morrow, S.E. Craig Van Anne, M.S. RMS, Structural Engineer OYO RMS, Fire Protection Engineer Akio Tanaka Shukyo Segawa OYO RMS, Geophysicist OYO Corporation, Geophysicist Hideo Kagawa Chin-Hsun Yeh, Ph.D. Engineering & Risk Services, National Center for Research in Earthquake Structural Engineer Engineering, Associate Research Fellow Lun-Chang Chou, Ph.D. Kuo-Liang Wen, Ph.D. National Science and Technology Program for National Science and Technology Program for Hazards Mitigation, National Taiwan University Hazards Mitigation, National Taiwan University Yi-Ben Tsai, Ph.D. Wei-ling Chiang, Ph.D. National Central University, Professor National Central University, Professor Wenko Hsu Institute for Information Industry, Engineer, Special Systems Division The reconnaissance team members arrived in Taiwan on Wednesday, September 23, two days after the earthquake, and initially spent 20 man-days in the field. OYO RMS, OYO, and ERS reconnaissance team members jointly presented preliminary findings at a seminar in Tokyo on October 11. RMS joined Pacific Gas & Electric (PG&E) and members of the Technical Council on Lifeline Earthquake Engineering (TCLEE) on October 10 in a week-long mission to further investigate power disruption and associated business interruption impacts, and collect additional loss data. Many of the team members, particularly our Taiwanese colleagues, have continued investigations of this earthquake.
    [Show full text]
  • Biodiversity, Conservation and Cultural History
    Sycamore maple wooded pastures in the Northern Alps: Biodiversity, conservation and cultural history Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Thomas Kiebacher von Brixen (Italien) Leiter der Arbeit: Prof. Dr. Christoph Scheidegger Dr. Ariel Bergamini PD Dr. Matthias Bürgi WSL Swiss Federal Research Institute, Birmensdorf Sycamore maple wooded pastures in the Northern Alps: Biodiversity, conservation and cultural history Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Thomas Kiebacher von Brixen (Italien) Leiter der Arbeit: Prof. Dr. Christoph Scheidegger Dr. Ariel Bergamini PD Dr. Matthias Bürgi WSL Swiss Federal Research Institute, Birmensdorf Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen. Bern, 13. September 2016 Der Dekan: Prof. Dr. Gilberto Colangelo Meinen Eltern, Frieda und Rudolf Contents Abstract ................................................................................................................................................... 9 Introduction ........................................................................................................................................... 11 Context and aims ............................................................................................................................... 13 The study system: Sycamore maple wooded pastures ..................................................................... 13 Biodiversity .......................................................................................................................................
    [Show full text]