Antioxidant and Antimicrobial Activity of Zingiberaceae Plants in Taiwan

Total Page:16

File Type:pdf, Size:1020Kb

Antioxidant and Antimicrobial Activity of Zingiberaceae Plants in Taiwan Plant Foods Hum Nutr (2008) 63:15–20 DOI 10.1007/s11130-007-0063-7 ORIGINAL PAPER Antioxidant and Antimicrobial Activity of Zingiberaceae Plants in Taiwan I-Nan Chen & Chen-Chin Chang & Chang-Chai Ng & Chung-Yi Wang & Yuan-Tay Shyu & Tsu-Liang Chang Published online: 20 December 2007 # Springer Science + Business Media, LLC 2007 Abstract The rhizomes of the Zingiberaceae family are a Keywords Antimicrobial . Antioxidant . Ginger . vegetable widely used in many Asian countries, and their Reducing power . Zingiberaceae medicinal functions have been broadly discussed and accepted in many traditional recipes. In this study, 18 species of five genus of Zingiberaceae plants from Taiwan area were Introduction collected and analyzed for their functional properties. Methanolic extracts of the plants were analyzed for their The Zingiberaceous plants are characterized by their total phenol compounds, α,α-diphenyl-β-picrylhydrazyl tuberous or non-tuberous rhizomes, which have strong (DPPH) scavenging activity, and reducing power. Antimi- aromatic and medicinal properties. It is commonly known crobial activity of these samples was also determined. The as ginger, and exists in about 50 genera and 1,300 species results showed that the total phenol compounds of the Alpinia worldwide, distributed mainly in South and Southeast Asia genus averaged 17, 30 mg/g for Curcumas, and the highest, [1]. Turmeric of Zingiberaceous plants in powder form is 36.5 mg/g for Vanoverberghia sasakiana. Antioxidant widely applied as a food additive in many Asian countries. performances were best observed in Vanoverberghia and Medicinal functions for treatment of diseases such as Hedychium, both 89%, and DPPH scavenging activity diarrhea, coryza, dermatosis disorders and rheumatism are followed similar trends. Particularly, Zingiber oligophyllum, also widely mentioned in traditional remedies [2–5]. considered as a traditional medicinal plant used in Taiwan Zingiberaceae plants contain many essential oils, including exhibited low DPPH scavenging activity and reducing terpenes, alcohols, ketones, flavonoids, carotenoids and phy- power. Most Zingiberaceae plant extracts exhibited antimi- toestrogens [6–8]. For instance, the water extract of Zingiber crobial activity against all tested food microorganisms. officinale exhibits 6-Gingerol, and is mostly found in the Hedychium and Vanoverberghia, did not show antimicrobial rhizome in concentrations of 130–7,138 ppm. The major activities on Escherichia coli and Vibrio parahaemolyticus. functional compound in Curcuma turmeric is curcumin, This study is a positive demonstration of the utility of which has concentrations as high as 38,000 ppm in certain screening Taiwan’s endemic Zingiberaceous plants for their species [8]. Less-polar constituents including curcuminoids, food and medicinal uses. kava pyrones and gingerols isolated from Zingiberaceous plants, which have been reported for their biological activities : : : : I.-N. Chen C.-C. Ng C.-Y. Wang Y.-T. Shyu in antifungal, antioxidant, insecticidal, and anti-inflammatory T.-L. Chang (*) activities [9–11] are particularly important and relevant for Department of Horticulture, National Taiwan University, these applications. 140 Keelung Rd. Section 4, Taipei 10600 Taiwan, Republic of China This study reveals the bioactive and medicinal potentials e-mail: [email protected] of ginger species in Taiwan. Six genera and 25 species of Zingiberaceae plants are native to Taiwan. Among these, C.-C. Chang Alpinia is the largest genus, with 14 species recorded so far Department of Living Sciences, Tainan University of Technology, 529 Jhongjheng Rd., Yongkang, [12]. The antioxidant and antimicrobial properties of Tainan 71002 Taiwan, Republic of China Taiwan’s endemic and imported Zingiberaceae plants have 16 Plant Foods Hum Nutr (2008) 63:15–20 not yet been thoroughly explored [7]. This work evaluated Antioxidant Activity Determination the antioxidant and antimicrobial properties of 18 Taiwan endemic species collected from all over the island. The The antioxidant capacity of samples was measured by the concentrations of phenolic compounds, antioxidant capac- method described by Miller and Rice-Evans, and Arnao et al. ity, α,α-diphenyl-β-picrylhydrazyl (DPPH) scavenging [14, 15] with little modifications. Peroxidase (4.4 units/ml, activity and reducing power of the samples were deter- Sigma, MO, USA), H2O2 (50 μM, Merck, Germany), 2, mined. The activities of ginger rhizomes against different 2-azino-bis (3-ethylbenz-thiazoline-6-sulphonic acid) food-related microorganism were also measured. This [100 μM, Sigma, MO, USA] and distilled water (1 ml) investigation evaluates the potential medicinal applications were mixed and kept in dark for 1 h for reaction. One ml of of Taiwan’s endemic Zingiberaceae plants. plant extract was subsequently added and determined by absorbance at 734 nm. The antioxidant capacity was calculated by the following formula: Materials and Methods Antioxidant activity (%) = [1−(A734 nm, sample/ A734 nm, control)] × 100 Rhizome Collection DPPH Free Radical Scavenging Activity Test Plant materials were collected and purchased from the Taiwan Endemic Species Research Institute, the Council of The capacity of Zingiberaceae to remove 1,1-diphenyl-2- Agriculture, traditional markets, and local growers from picryl-hydrazyl radical (Sigma, MO, USA) was determined whole Taiwan Island. The rhizomes were removed from the by the method described by Shimada et al. [16]. Briefly, plant and cleaned for use. 1 ml of methanolic extract and 5 ml of freshly prepared 0.1 mM DPPH methanolic solution were thoroughly mixed Sample Treatment and Extraction and kept in the dark for 60 min. The absorbance of the reaction mixture at 517 nm was measured with a spectro- Peeled and washed samples were further chopped into 2× photometer. The blank was prepared by replacing the 2 cm dice and dried with freeze-dryer (Freeze dryer Alpha extract with methanol (1 ml). The percentage of free radical 1-2/LD-2, Vacuum pump RZ-5, Christ, Germany) for 48 h. scavenging activity was calculated as follows: Dried samples were subsequently milled using commercial Scavenging activity (%) = [1−(A517 nm, sample/ hand-carry milling machine. For methanol extraction, A517 nm, blank)] × 100 sample powders (1.25, 2.5, 3.75, or 5 g) were mixed with 20 ml methanol (Sigma, St. Louis, MO, USA) in a rotary Reducing Power Test shaker for 12 h. The mixtures were then filtered (Whatman No.1, Middlesex, England). The filtrate was then concen- Reducing power was measured according to the method trated in a rotary evaporator (Büchi R-210, Flawil, Switzer- described by Duh and Yen [17]. One ml of plant extract, land) until dried. The weight of extract was then measured phosphate buffer (0.2 M, pH 6.6, 0.5 ml), and potassium and recorded. The yield of methanolic extract was hexacyanoferrate solution (1% v/w, 2.5 ml; both from expressed as milligram of extract per gram of ginger fresh Merck) were placed in a test tube and heated at 50 °C for weight, calculated as follows: 20 min. The tube was cooled on ice and 0.5 ml 10% Yield = weight of Rotavapor dried sample (mg)/fresh trichloroacetic acid (Merck) were added. After centrifuga- sample (g) × 100% tion at 3,000×g for 10 min, a 1 ml of aliquot supernatant was mixed with 1 ml distilled water and 0.1 ml ferric Total Phenolics Determination chloride (0.1%) and reacted for 10 min. Finally, the absorbance at 700 nm was measured, increased absorbance The total phenolics content of ginger extracts was deter- of the reaction mixture indicated increased reducing power. mined by the Folin–Ciocalteau method [13]. Briefly, 0.5 ml diluted extract solution was shaken for 1 min with 100 μlof Antimicrobial Activity Folin–Ciocalteau reagent and 6 ml of distilled water. The mixture was shaken and 2 ml of 15% Na2CO3 were added To screen the activity of methanolic extracts of Zingiberaceae and shaken once again for 30 s. Finally, the solution was plants against food related microorganism, a filter paper disc brought up to 10 ml by adding distilled water. After 1.5 h, method was used as described by Gülçin et al. [18]. the absorbance at 750 nm was evaluated using a spectro- Escherichia coli Bioresources Collection and Research photometer (Beckman Coulter DU-640, CA, USA). The Center (BCRC) 10675, Salmonella enterica BCRC 10242, results were expressed as gallic acid equivalents. Staphylococcus aureus spp. aureus BCRC 10451 and Vibrio Plant Foods Hum Nutr (2008) 63:15–20 17 parahaemolyticus BCRC 12863 were purchased from BCRC, Table 1. Extraction yield ranged from lowest 41 mg/g Republic of China. E. coli stock cultures were maintained on (Alpinia pricei Hayata) to highest 127 mg/g (Alpinia potato dextrose agar (Difco, Detroit, MI, USA) and the other zerumbet (Pers.) Burtt & Smith), notably Vanoverberghia three were kept on nutrient agar (Difco, Detroit, MI, USA) sasakiana, the endemic species Taiwan has second high in according to the culture manual. Culture concentrations of 1× extraction rate of 177 mg/g. Average extraction rate was 108 colony-forming unit/ml were plated on their respective found to be 0.084% (84 mg/g). Habsah et al. [6]has agar plates. Sterile filter paper discs with 6 mm diameter displayed the methanolic extraction rate of Alpinia, Costus (Whatman) were immersed with 500 μl of Zingiberaceae and Zingiber, which ranged 0.09–0.57% in various samples. extract. After thorough absorption, they were then placed on In general, freeze drying preserves more reducing power of agar plate for cultivation. Salmonella plates were incubated at plant extract, such as yam (Dioscorea sp.) extract as 30 °C, while E. coli, Staphylococcus and Vibrio plates were compared to hot-air drying and drum drying [20]. The color kept at 37 °C for 72 h. The results were recorded by and appearance of our vacuum-dried samples remained measuring the zones of growth inhibition surrounding the unchanged and intact. V. sasakiana showed a 36.5 mg/g of disc. Clear inhibition zones around the discs indicated the total phenol content (Table 1), highest in Taiwan endemic presence of antimicrobial activity.
Recommended publications
  • Alpinia Galanga (L.) Willd
    TAXON: Alpinia galanga (L.) Willd. SCORE: 5.0 RATING: Low Risk Taxon: Alpinia galanga (L.) Willd. Family: Zingiberaceae Common Name(s): false galangal Synonym(s): Languas galanga (L.) Stuntz greater galanga Maranta galanga L. languas Siamese-ginger Thai ginger Assessor: Chuck Chimera Status: Assessor Approved End Date: 16 Jun 2016 WRA Score: 5.0 Designation: L Rating: Low Risk Keywords: Rhizomatous, Naturalized, Edible, Self-Compatible, Pollinator-Limited Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) Low 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 n 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n Creation Date: 16 Jun 2016 (Alpinia galanga (L.) Willd.) Page 1 of 15 TAXON: Alpinia galanga (L.) Willd.
    [Show full text]
  • Invasive Alien Plnat Species.Pdf
    Punjab ENVIS Centre NEWSLETTER Vol. 11, No. 4, 2013-14 INVASIVE ALIEN PLANT SPECIES IN PUNJAB l Inform ta at n io e n m S Status of Environment & Related Issues n y o s r t i e v m n E www.punenvis.nic.in INDIA EDITORIAL The World Conservation Union (IUCN) defines alien invasive species as organisms that become established in native ecosystems or habitats, proliferate, alter, and threaten native biodiversity. These aliens come in the form of plants, animals and microbes that have been introduced into an area from other parts of the world, and have been able to displace indigenous species. Invasive alien species are emerging as one of the major threats to sustainable development, on a par with global warming and the destruction of life-support systems. Increased mobility and human interaction have been key drivers in the spread of Indigenous Alien Species. Invasion by alien species is a global phenomenon, with threatening negative impacts to the indigenous biological diversity as well as related negative impacts on human health and overall his well-being. Thus, threatening the ecosystems on the earth. The Millennium Ecosystem Assessment (MA) found that trends in species introductions, as well as modelling predictions, strongly suggest that biological invasions will continue to increase in number and impact. An additional concern is that multiple human impacts on biodiversity and ecosystems will decrease the natural biotic resistance to invasions and, therefore, the number of biotic communities dominated by invasive species will increase. India one of the 17 "megadiverse" countries and is composed of a diversity of ecological habitats like forests, grasslands, wetlands, coastal and marine ecosystems, and desert ecosystems have been reported with 40 percent of alien flora species and 25 percent out of them invasive by National Bureau of Plant Genetic Resource.
    [Show full text]
  • 2018-01-26 Langual Proposal from Foodex2 – Plants in Facet B
    2018-01-26 LanguaL proposal from FoodEx2 – plants in facet B The following are proposals to update LanguaL Facet B, after having indexed EFSA FoodEx2 Exposure hierarchy 20170919. To these, I have added previously-submitted 2017 proposals based on GS1 that have not (yet) been included in LanguaL facet B. GS1 terms and FoodEx2 terms in the following tables are just given to indicate the origin of the proposal. Comments are given in red. First, some simple additions of terms to the SYNONYM field, to make it easier to find descriptors in the LanguaL Food Product Indexer: descriptor synonyms FoodEx2 term FoodEx2 def WORMWOOD [B3433] Add SYN: artemisia vulgaris LITTLE RADISH [B2960] Add SYN: raphanus sativus BLACK RADISH [B2959] Add SYN: raphanus sativus niger PARSNIP [B1483] Add SYN: pastinaca sativa ARRACACHA [B3439] Add SYN: arracacia xanthorrhiza CHAYOTE [B1730] Add SYN: GS1 10006356 - Squash Squash, Choko, grown from Sechium edule (Choko) choko NEW ZEALAND SPINACH Add SYN: GS1 10006427 - New- Tetragonia tetragonoides Zealand Spinach [B1732] tetragonia tetragonoides JAPANESE MILLET Add : barnyard millet; A000Z Barnyard millet Echinochloa esculenta (A. Braun) H. Scholz, Barnyard millet or Japanese Millet. [B4320] echinochloa esculenta INDIAN LONG PEPPER Add SYN! A019B Long pepper fruit Piper longum [B2956] piper longum EUROPEAN ELDER Modify SYN: [B1403] sambucus spp. (which refers to broader term) Should be sambucus nigra DOG ROSE [B2961] ADD SYN: rosa canina LOOSE LEAF LETTUCE Add SYN: [B2087] lactusa sativa L. var. crispa LOLLO ROSSO [B2088] Add SYN: GS1 10006425 - Lollo Lactuca sativa L. var. crispa Rosso red coral lettuce JAVA APPLE [B3395] Add syn! syzygium samarangense Some existing descriptors would also greatly benefit from updated AI (and synonyms): FoodEx2 FoodEx2 def descriptor AI synonyms term ENDIVE [B1314] Add to AI: A00LD Escaroles There are two main varieties of cultivated C.
    [Show full text]
  • An Asian Orchid, Eulophia Graminea (Orchidaceae: Cymbidieae), Naturalizes in Florida
    LANKESTERIANA 8(1): 5-14. 2008. AN ASIAN ORCHID, EULOPHIA GRAMINEA (ORCHIDACEAE: CYMBIDIEAE), NATURALIZES IN FLORIDA ROBE R T W. PEMBE R TON 1,3, TIMOTHY M. COLLINS 2 & SUZANNE KO P TU R 2 1Fairchild Tropical Botanic Garden, 2121 SW 28th Terrace Ft. Lauderdale, Florida 33312 2Department of Biological Sciences, Florida International University, Miami, FL 33199 3Author for correspondence: [email protected] ABST R A C T . Eulophia graminea, a terrestrial orchid native to Asia, has naturalized in southern Florida. Orchids naturalize less often than other flowering plants or ferns, butE. graminea has also recently become naturalized in Australia. Plants were found growing in five neighborhoods in Miami-Dade County, spanning 35 km from the most northern to the most southern site, and growing only in woodchip mulch at four of the sites. Plants at four sites bore flowers, and fruit were observed at two sites. Hand pollination treatments determined that the flowers are self compatible but fewer fruit were set in selfed flowers (4/10) than in out-crossed flowers (10/10). No fruit set occurred in plants isolated from pollinators, indicating that E. graminea is not autogamous. Pollinia removal was not detected at one site, but was 24.3 % at the other site evaluated for reproductive success. A total of 26 and 92 fruit were found at these two sites, where an average of 6.5 and 3.4 fruit were produced per plant. These fruits ripened and dehisced rapidly; some dehiscing while their inflorescences still bore open flowers. Fruit set averaged 9.2 and 4.5 % at the two sites.
    [Show full text]
  • Herbs, Spices and Essential Oils
    Printed in Austria V.05-91153—March 2006—300 Herbs, spices and essential oils Post-harvest operations in developing countries UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Telephone: (+43-1) 26026-0, Fax: (+43-1) 26926-69 UNITED NATIONS FOOD AND AGRICULTURE E-mail: [email protected], Internet: http://www.unido.org INDUSTRIAL DEVELOPMENT ORGANIZATION OF THE ORGANIZATION UNITED NATIONS © UNIDO and FAO 2005 — First published 2005 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: - the Director, Agro-Industries and Sectoral Support Branch, UNIDO, Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria or by e-mail to [email protected] - the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the United Nations Industrial Development Organization or of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • The Inhibitory Effect of Some Iranian Plants Extracts on the Alpha Glucosidase
    Iranian Journal of Basic Medical Sciences Vol. 11, No. 1, Spring 2008, 1 - 9 Received: Mar 2, 2008; Accepted: May 17, 2008 The Inhibitory Effect of Some Iranian Plants Extracts on the Alpha Glucosidase *1Ahmad Gholamhoseinian, 1Hossein Fallah, 2Fariba Sharifi-far, 3Mansour Mirtajaddini Abstract Objective Diabetes mellitus is manifested by hyperglycaemia. Different treatments such as diets and drugs are recommended for diabetes control. For various reasons in recent years traditional plant (herbal) therapies as prescribed by indigenous systems of medicine with different mechanisms have commonly been used. The digestive enzymes such as alpha glucosidase are among these herbal remedies. Materials and Methods One hundred species of plants were collected or purchased from the Medicinal Herbal Markets and botanically identified. Methanolic and aqueous extracts were prepared by the maceration method. The enzymatic activities of alpha glucosidase were determined colorimetrically by monitoring the release of p-nitrophenol from the appropriate p-nitrophenol glycoside substrate, after 30 mins incubation at 37 6C in the phosphate buffer (pH= 6.8). Results Among 200 prepared extracts, Verbascum kermanensis , Rosa damascene, Rosmarinus officinalis , Levisticum officinale , Zataria multiflora Sanguisorba minor , Alhagi camelorum , Pistacia vera , Vaccinium arcto- staphylus, Zhumeria majdae, Alpinia officinarum , Salvadora persica, and Thymus serpyllum showed more than 50% inhibitory effect on the alpha glucosidase. Conclusion These active plants have
    [Show full text]
  • A Comparative Study of the Floras of China and Canada
    Núm. 24, pp. 25-51, ISSN 1405-2768; México, 2007 A COMPARATIVE STUDY OF THE FLORAS OF CHINA AND CANADA Zhiyao Su College of Forestry, South China Agricultural University, Guangzhou 510642 - P. R. China J. Hugo Cota-Sánchez Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2 - Canada E-mail: [email protected] ABSTRACT at the generic and specific levels that are correlated with more recent geological and In this study, we investigated the floristic climatic variations and ecoenvironment relationships between China and Canada diversity, resulting in differences in floristic based on comparative analysis of their composition. Overall, western and eastern spermatophyte floras. Floristic lists were Canada have a similar number of shared compiled from standard floras and then genera, which suggests multiple migration subjected to cluster analysis using UPGMA events of floristic elements via the Atlantic and NMS ordination methods. Our data and Pacific connections and corridors that demonstrate that the Chinese spermatophyte existed in past geological times. flora is considerably more diverse than that of Canada and that the taxonomic richness Keywords: China, Canada, floristic rela- of seed plants in the floras of China and tionships, taxonomic richness, shared taxa, Canada shows significant variation at the intercontinental disjunction. specific and generic levels. China contains 272 families, 3 318 genera, and 27 078 RESUMEN species (after taxonomic standardization), whereas the spermatophyte flora of Canada En este estudio se investigaron la relaciones includes 145 families, 947 genera, and florísticas entre Canadá y China basados 4 616 species. The results indicate that out en análisis comparativos de las floras de of 553 genera shared by the Chinese and espermatofitas de ambos países.
    [Show full text]
  • Discovery of Antibacterial Dietary Spices That Target Antibiotic-Resistant Bacteria
    Article Discovery of Antibacterial Dietary Spices That Target Antibiotic-Resistant Bacteria Dan Zhang 1, Ren-You Gan 1,*, Arakkaveettil Kabeer Farha 1, Gowoon Kim 1, Qiong-Qiong Yang 1, Xian-Ming Shi 1, Chun-Lei Shi 1, Qi-Xia Luo 2, Xue-Bin Xu 3, Hua-Bin Li 4 and Harold Corke 1,* 1 Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (D.Z.); [email protected] (A.K.F.); [email protected] (G.K.); [email protected] (Q.-Q.Y.); [email protected] (X.-M.S.); [email protected] (C.-L.S.). 2 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China; [email protected] 3 Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; [email protected] 4 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China. [email protected] * Correspondence: [email protected] (R.-Y.G.); [email protected] (H.C.); Tel.: +86-21-3420-8517 (R.-Y.G.); +86-21-3420-8515 (H.C.) Received: 11 April 2019; Accepted: 28 May 2019; Published: 29 May 2019 Abstract: Although spice extracts are well known to exhibit antibacterial properties, there is lack of a comprehensive evaluation of the antibacterial effect of spices against antibiotic-resistant bacteria.
    [Show full text]
  • Screening of Crude Drugs Used in Japanese Kampo Formulas for Autophagy-Mediated Cell Survival of the Human Hepatocellular Carcinoma Cell Line
    Medicines 2019, 6, 63; doi:10.3390/medicines6020063 S1 of S6 Supplementary Materials: Screening of Crude Drugs Used in Japanese Kampo Formulas for Autophagy-Mediated Cell Survival of the Human Hepatocellular Carcinoma Cell Line Shinya Okubo, Hisa Komori, Asuka Kuwahara, Tomoe Ohta, Yukihiro Shoyama and Takuhiro Uto Table S1. List of crude drugs. Drug Japanese Name English Name Scientific Name Medicinal Part No. 1 Akyo Donkey Glue Equus asinus glue 2 Ireisen Clematis Root Clematis chinensis, C. mandshurica, C. hexapetala root with rhizome 3 Inchinko Artemisia Capillaris Flower Artemisia capillaris capitulum 4 Uikyo Fennel Foeniculum vulgare fruit 5 Uzu a) Aconite Root Aconitum carmichaeli, A. japonicum tuberous root (mother root) 6 Uyaku Lindera Root Lindera strychnifolia root 7 Engosaku Corydalis Tuber Corydalis turtschaninovii tuber 8 Ogi Astragalus Root Astragalus membranaceus, A. mongholicus root 9 Ogon Scutellaria Root Scutellaria baicalensis root 10 Obaku Phellodendron Bark Phellodendron amurense, P. chinense bark 11 Oren Coptis Rhizome Coptis japonica, C. chinensis, C. deltoidea, C. teeta rhizome 12 Onji Polygala Root Polygala tenuifolia root or root bark 13 Gaiyo Artemisia Leaf Artemisia princeps, A. montana leaf and twig 14 Kashi Myrobalan Fruit Terminalia chebula fruit 15 Kashu Polygonum Root Polygonum multiflorum root 16 Gajutsu Zedoary Curcuma zedoaria rhizome 17 Kakko Pogostemon Herb Pogostemon cablin aerial part 18 Kakkon Pueraria Root Pueraria lobata root 19 Kasseki Aluminum Silicate Hydrate with Silicon Dioxide 20 Karokon Trichosanthes Root Trichosanthes kirilowii, T. kirilowii var. japonica, T. bracteata root Medicines 2019, 6, 63; doi:10.3390/medicines6020063 S2 of S6 21 Karonin Trichosanthes Seed Trichosanthes kirilowii, T. kirilowii var. japonica, T.
    [Show full text]
  • A Review on the Ethnomedicinal Uses, Phytochemistry and Pharmacology of Plant Species Belonging to Kaempferia L
    Pharmaceutical Sciences Asia Pharm Sci Asia 2021; 48(1), 1-24 DOI:10.29090/psa.2021.01.19.070 Review A review on the ethnomedicinal uses, phytochemistry and pharmacology of plant species belonging to Kaempferia L. genus (Zingiberaceae) Ngoc Khanh Pham1,2,3*, Hoang Tuan Nguyen2, Quoc Binh Nguyen4 ABSTRACT 1 Institute of Natural Products Chemistry Kaempferia L. is a genus commonly distributed in Asian (INPC), Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam countries including China, India, Thailand, Myanmar, Malaysia, 2 Hanoi University of Pharmacy, Hoan Kiem, Indonesia, Laos, Cambodia and Vietnam, where these species are Hanoi, Vietnam popularly used as traditional medicines for different ailments 3 College of Pharmacy, Dongguk University, Goyang, Korea comprising infective diseases, wound infection, cough, pain and 4 Vietnam National Museum of Nature, digestion disorders on chemical composition of Kaempferia plants Vietnam Academy of Science and revealed the presence of natural compounds classified in Technology, Cau Giay, Hanoi, Vietnam monoterpenoids, diterpenoids, flavonoids, phenolic glycosides, cyclohexane oxide derivatives, diarylheptanoids and essential oil with *Corresponding author: various biological properties, which are valuable for discovery of new Ngoc Khanh Pham natural-derived therapeutic drugs and applications for the human [email protected] beings. This study is aimed to review the chemical, ethnobotanical and pharmacological properties of the plants belonging to Kaempferia genus growing in Asian countries and especially in South East Asia. 1. INTRODUCTION Kaempferia, is a medium - sized genus of about 60 plant species belonging to Zingiberaceae1 that is one of the major tropical plant families with many members commonly used as ornaments, 2 spices and as medicinal herbs .
    [Show full text]
  • Globaltreesearch Database Sources
    GlobalTreeSearch database sources Abbott, J. R. (2009). Phylogeny of the Poligalaceae and a Revision of Badiera. Doctoral dissertation, University of Florida, FL. Acevedo-Rodríguez, P. (2011). Allophylastrum: a new genus of Sapindaceae from northern South America. PhytoKeys, 5, 39-43. Acevedo-Rodríguez, P. & Strong, M. T. (2007). Catalogue of the seed plants of the West Indies. Retreived September 01, 2014, from http://botany.si.edu/Antilles/WestIndies/. Acevedo-Rodríguez, P. & Strong, M. T. (2012). Catalogue of Seed Plants of the West Indies. Smithsonian Contributions to Botany, 98, 1-92. Acevedo-Rodríguez, P. & Brewer, S. W. (2016). Spathelia belizensis, a new species and first record for the genus in Central America (tribe Spathelieae, Rutaceae). PhytoKeys, 75, 145- 151. Adema, F. & van der Ham, R. W. J. M. (1993). Cnesmocarpon (Gen. Nov.), Jagera and Trigonachras (Sapindaceae-Cupanieae): Phylogeny and Systematics. Blumea, 38, 73-215. Agostini, G. & Fariñas, M. (1963). Holotype of Maytenus agostinii Steyerm. (Celastraceae). Caracas: Fundación Instituto Botánico de Venezuela. Akopian, S. S. (2007). On the Pyrus L. (Rosaceae) species in Armenia. Flora, Vegetation and Plant Resources of Armenia, 16, 15-26. Alejandro, G. J. D. & Meve, U. (2016). Rubovietnamia coronula sp. nov. (Rubiaceae: Gardenieae) from the Philippines. Nordic Journal of Botany. 34 (2), 385–389. Alemayehu, G., Asfaw, Z. & Kelbessa, E. (2016) Cordia africana (Boraginaceae) in Ethiopia: A review on its taxonomy, distribution, ethnobotany and conservation status. International Journal of Botany Studies. 1 (2), 38-46. Alfarhan, A. H., Al-Turki, T. A. & Basahy, A. Y. (2005). Flora of Jizan Region. Final Report Supported by King Abdulaziz City for Science and Technology.
    [Show full text]
  • Edited Perennials List Spring 2019
    2020 Nursery Season Perennials List Culinary Herbs Acorus calamus Sweet Flag Acorus gramineus 'Pusillus Minimus Aureus' Dwarf Golden Sweet Flag Acorus gramineus variegatus Grassy Sweet Flag Alpinia galanga Greater Galangal Alpinia officinarum Lesser Galangal Armoracia rusticana Horseradish Artemisia dracunculus French Tarragon Cryptotaenia japonica Mitsuba Cymbopogon flexuosus East Indian Lemongrass Eriocephalus africanus African Rosemary Hyssopus officinalis Hyssop Blue-Flowered Hyssopus officinalis Hyssop Pink-Flowered Hyssopus officinalis Hyssop White-Flowered Micromeria fruiticosa White Savory Pelargonium crispum Golen Lemon Crisp Geranium Pelargonium 'Attar of Rose' Rose Geranium Pelargonium fragrans Candy Dancer Pelargonium sp. Nutmeg Geranium Pelargonium sp. Nutmeg Variegated Polygonum odoratum Vietnamese Cilantro Sanguisorba minor Salad Burnet Satureja montana Winter Savory Satureja spinosa Pygmy Savory Satureja thymbra Savory of Crete Silene inflata Stridolo/Sculpit Smyrnium olusatrum Alexanders Stevia rebaudiana Stevia Zingiber mioga Japanese Mioga Ginger Zingiber mioga variegata Japanese Ginger 'Dancing Crane' Culinary Herbs & Edible Flowers Agastache foeniculum Blue Anise Hyssop Agastache foeniculum White Anise Hyssop Allium schoenoprasum Chives Allium tuberosum Garlic Chives Levisticum officinale Lovage Tulbaghia violacea White Flowered Society Garlic Tulbaghia violacea Society Garlic Tulbaghia violacea Variegated Society Garlic Selection subject to change, while supplies last. Questions? Call the nursery at (707) 874-9591.
    [Show full text]