A Comparative Study of the Floras of China and Canada

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Study of the Floras of China and Canada Núm. 24, pp. 25-51, ISSN 1405-2768; México, 2007 A COMPARATIVE STUDY OF THE FLORAS OF CHINA AND CANADA Zhiyao Su College of Forestry, South China Agricultural University, Guangzhou 510642 - P. R. China J. Hugo Cota-Sánchez Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2 - Canada E-mail: [email protected] ABSTRACT at the generic and specific levels that are correlated with more recent geological and In this study, we investigated the floristic climatic variations and ecoenvironment relationships between China and Canada diversity, resulting in differences in floristic based on comparative analysis of their composition. Overall, western and eastern spermatophyte floras. Floristic lists were Canada have a similar number of shared compiled from standard floras and then genera, which suggests multiple migration subjected to cluster analysis using UPGMA events of floristic elements via the Atlantic and NMS ordination methods. Our data and Pacific connections and corridors that demonstrate that the Chinese spermatophyte existed in past geological times. flora is considerably more diverse than that of Canada and that the taxonomic richness Keywords: China, Canada, floristic rela- of seed plants in the floras of China and tionships, taxonomic richness, shared taxa, Canada shows significant variation at the intercontinental disjunction. specific and generic levels. China contains 272 families, 3 318 genera, and 27 078 RESUMEN species (after taxonomic standardization), whereas the spermatophyte flora of Canada En este estudio se investigaron la relaciones includes 145 families, 947 genera, and florísticas entre Canadá y China basados 4 616 species. The results indicate that out en análisis comparativos de las floras de of 553 genera shared by the Chinese and espermatofitas de ambos países. Los listados Canadian floras, 60 of them have an eastern florísticos se compilaron de una extensa Asia-North American disjunct distributional revisión de literatura con respecto a inventa- pattern. These disjunct genera show a simi- rios florísticos, floras y trabajos relacionados lar geographic distribution in both eastern a la fitogeografía y vegetación de China y and western Canada. There is a higher de- Canadá. Esto incluyó también varios sitios gree of similarity at higher taxonomic levels de Internet que contienen información re- between the two intercontinental floras, ferente a este tema. La riqueza florística en which suggests ancient floristic relations- las diferentes regiones políticas de China y hips, but there are significant differences 25 Núm. 24: 25-51 Noviembre 2007 Canadá se obtuvo a partir de una serie de contribuido a las diferencias florísticas entre hipótesis nulas usando G-test, con las cuales China y Canadá. Éstos son: clima, migra- se evaluaron las diferencias taxonómicas a ción de especies de regiones circunvecinas, niveles ordinales, genéricos y específicos. stasis, y efectos de refugio. Las listas florísticas se organizaron en taxa compartidos en las diferentes categorías A pesar de que la diferencia en extensión taxonómicas entre ambos países y se tabu- territorial entre China y Canadá no es ex- laron en una matriz de datos binaria. tremadamente marcada, la diversidad en relieve topográfico y tipos climáticos de Posteriormente, después de estandarizar los China han favorecido la existencia de una aspectos nomenclaturales, los datos se so- gran variedad de regiones ecogeográficas metieron a análisis de UPGMA (Unweighted y ambientales en ese país. Estas variables Pair-Group Method with Arithmetic Mean) han contribuido a la formación de patrones y NMS (non-metric multidimensional sca- de vegetación geográficos de distribución ling) para estimar y comparar los índices de y composición taxonómicas más comple- similitud florística entre estos países. jas. En general, la diversidad taxonómica, composición florística y regiones fitogeo- Nuestros resultados indican que la flora gráficas de Canadá son mucho más simples espermatofita de China es mucho más di- que aquellas existentes en ese país oriental. versa que la flora canadiense. Además, la De hecho, China es el único país del mundo riqueza taxonómica de estas floras exhibe donde aún existe una conexión continua diferencias significativas a niveles espe- entre los bosques tropicales, subtropicales, cíficos y genéricos. La flora de China es templados y boreales. De la misma mane- aproximadamente seis veces más rica que su ra, las floras adyacentes del centro, norte contraparte canadiense. China incluye 272 y sur de Asia tienen gran influencia en la familias, 3 318 géneros, y 27 078 especies, composición florística de China dado que mientras que la flora de Canadá abarca 145 eventos migratorios pasados y presentes familias, 947 géneros y 4 616 especies. Estas han permitido el intercambio de elementos estadísticas representan una contribución a florísticos, divergencia de especies y casos nivel mundial estimada en 12% para China y de especiación. A su vez, stasis ha tenido un 1.4-1.5% de Canadá. Asimismo, el número papel importante en los complejos procesos de géneros distribuidos en ambos países es de especiación y diversidad de especies, de 533. Este número representa un valor es decir, que los niveles taxonómicos más estimado de 5.4 veces más elevado en la altos representan los linajes filogenéticos cantidad de especies en la flora de China más ancestrales. Finalmente, la noción de (12 967) comparada con 2 384 en Canadá. áreas de refugio también han contribuido En general, existen 123 taxa que exhiben en los niveles de diversidad y diferencias distribución disjunta entre China y Canadá. taxonómicas así como la existencia de Las provincias de la región este de Canadá especies actuales poco comunes pero con comparten un número de especies más alta distribución disjunta. Esto a su vez sugiere con China, y por lo tanto tienen mayor grado que la ruta migratoria florística de elementos de afinidad florística, comparadas con las a través del Estrecho de Bering contribuyó provincias del lado oeste del país. Conside- significativamente a la distribución de espe- ramos que cuatro factores principales han cies en ambos países. En conclusión, nuestro 26 Zhiyao Su and J.H. Cota-Sánchez: A comparative study of the Floras of China and Canada estudio confirma que un buen número de 1972; Wood, 1972), ecological (Ricklefs and especies comunes entre China y Canadá Latham, 1992;), geological (Wu, 1983), and tienen distribución vicariante o disjunta phylogenetic (Wen and Stuessy, 1993; Xiang y comparten historia biogeográfica como et al., 1998) perspectives. The temperate resultado de eventos geológicos pasados, y floristic elements exhibiting intercontinental que las floras de estos países han evolucio- disjunct distribution are considered Tertiary nado independientemente a consecuencia de relicts that were once widely distributed aislamiento geográfico y factores climáticos across Laurasia (Li, 1952; Wolfe and y geológicos, entre otros. Leopold, 1967; Xiang et al., 1998). Other references (Kruckeberg, 1983; Wu, 1983, Palabras claves: China, Canadá, relaciones 1991; Ricklefs and Latham, 1992; Wen, florísticas, riqueza taxonómica, taxa 1999) have focused on compiling taxonomic compartidos, disjunción intercontinental. lists of species with disjunct distribution in eastern Asia and North America, particularly INTRODUCTION China and the United States. The study of the floristic relationships In order to address the floristic relationship between eastern Asia and North America of eastern Asia and North America, previous is an example of long-standing research studies (Cheng, 1983; Hou, 1983; Hsu, focusing on biogeograpical floristic affinities 1983; Wu, 1983; Ying, 1983; Xiang et and intercontinental disjunctions. According al., 1998; Qian, 1999) have compared to Wood (1972), the eastern Asia North the flora of China with that of the United American floristic relationships were first States as representative elements of eastern mentioned by Linnaeus in 1750 and later Asia and North America, respectively. in a series of publications between 1840 The geographical and environmental and 1878 by Asa Gray, who brought this similarities and the remarkable interest topic to the attention of other American in plant disjunctions between China and and European scientists. More recently, a the United States have justified such number of sources (Li, 1952; Boufford and comparisons (Qian, 1999). In spite of Spongberg, 1983; White, 1983; Wu, 1983; the progress made in understanding the Tiffney, 1985; Guo et al., 1998; Xiang et intercontinental disjunctions between al., 1998; Qian, 1999, 2001) have provided eastern Asia and North America, additional evidence that the two floras have similarities floristic and monographic work is needed to in taxonomic diversity and geographic complete a catalogue of species. The Flora distribution patterns. of China project is an ongoing collaborative study with completion estimated in 2010 The occurrence of intercontinental (reviewed in Heywood, 2001; see also Flora disjunction in plants stands as one of the of China Website available at: http://flora. most intriguing circumstances regarding the huh. harvard.edu/china/). floristic relationships between eastern Asia and North America. In fact, the distributional The flora of Canada, on the other hand, has pattern and affinities of the North American received relatively little attention despite and eastern Asia floristic elements has been the historical floristic migrations and extant explained from
Recommended publications
  • Phylogenetics, Flow-Cytometry and Pollen Storage in Erica L
    Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Phylogenetics, flow-cytometry and pollen storage in Erica L. (Ericaceae). Implications for plant breeding and interspecific crosses. Inaugural-Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Ana Laura Mugrabi de Kuppler aus Buenos Aires Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Referent: Prof. Dr. Jens Léon Korreferent: Prof. Dr. Jaime Fagúndez Korreferent: Prof. Dr. Dietmar Quandt Tag der mündlichen Prüfung: 15.11.2013 Erscheinungsjahr: 2013 A mis flores Rolf y Florian Abstract Abstract With over 840 species Erica L. is one of the largest genera of the Ericaceae, comprising woody perennial plants that occur from Scandinavia to South Africa. According to previous studies, the northern species, present in Europe and the Mediterranean, form a paraphyletic, basal clade, and the southern species, present in South Africa, form a robust monophyletic group. In this work a molecular phylogenetic analysis from European and from Central and South African Erica species was performed using the chloroplast regions: trnL-trnL-trnF and 5´trnK-matK , as well as the nuclear DNA marker ITS, in order i) to state the monophyly of the northern and southern species, ii) to determine the phylogenetic relationships between the species and contrasting them with previous systematic research studies and iii) to compare the results provided from nuclear data and explore possible evolutionary patterns. All species were monophyletic except for the widely spread E. arborea , and E. manipuliflora . The paraphyly of the northern species was also confirmed, but three taxa from Central East Africa were polyphyletic, suggesting different episodes of colonization of this area.
    [Show full text]
  • Smithsonian Institution Archives (SIA)
    SMITHSONIAN OPPORTUNITIES FOR RESEARCH AND STUDY 2020 Office of Fellowships and Internships Smithsonian Institution Washington, DC The Smithsonian Opportunities for Research and Study Guide Can be Found Online at http://www.smithsonianofi.com/sors-introduction/ Version 2.0 (Updated January 2020) Copyright © 2020 by Smithsonian Institution Table of Contents Table of Contents .................................................................................................................................................................................................. 1 How to Use This Book .......................................................................................................................................................................................... 1 Anacostia Community Museum (ACM) ........................................................................................................................................................ 2 Archives of American Art (AAA) ....................................................................................................................................................................... 4 Asian Pacific American Center (APAC) .......................................................................................................................................................... 6 Center for Folklife and Cultural Heritage (CFCH) ...................................................................................................................................... 7 Cooper-Hewitt,
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA
    Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure.
    [Show full text]
  • Alpinia Galanga (L.) Willd
    TAXON: Alpinia galanga (L.) Willd. SCORE: 5.0 RATING: Low Risk Taxon: Alpinia galanga (L.) Willd. Family: Zingiberaceae Common Name(s): false galangal Synonym(s): Languas galanga (L.) Stuntz greater galanga Maranta galanga L. languas Siamese-ginger Thai ginger Assessor: Chuck Chimera Status: Assessor Approved End Date: 16 Jun 2016 WRA Score: 5.0 Designation: L Rating: Low Risk Keywords: Rhizomatous, Naturalized, Edible, Self-Compatible, Pollinator-Limited Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) Low 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 n 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n Creation Date: 16 Jun 2016 (Alpinia galanga (L.) Willd.) Page 1 of 15 TAXON: Alpinia galanga (L.) Willd.
    [Show full text]
  • Properties of Trunk and Briarwood of Tree Heath (Erica Arborea L.) From
    Properties of trunk and briarwood of tree heath ( Erica arborea L.) from island Rab Slavko Govor čin 1, Tomislav Sinkovi ć1, Tomislav Sedlar 1, Bogoslav Šefc 2, Iva Ištok 2 1,2 Department for wood science, Faculty of Forestry, University of Zagreb, Croatia, [email protected] , [email protected] , [email protected] , [email protected] , [email protected] ABSTRACT Tree heath (Erica arborea L.) is an evergreen shrub that grows mainly in Mediterranean region. This species tends to grow in areas such as macchia shrub lands, dry evergreen scrublands, forest roadsides and forest outskirts which have a lot of light and sun though daytime. Tree heath is not a commercial timber species, it occurs as a result of forest roads and forest fireroads construction. This wood species is interesting because of its briarwood. Briarwood is tumour like outgrow that develops between root and trunk and it’s commonly used in making bowls of tobacco smoking pipes and knife handles. The trunk can also be used for variety of products because of its relatively good mechanical properties and nice colour and texture. Material for this study was taken from tree heath ( Erica arborea L.) shrubs growing on island of Rab in Croatia. In this study density and dimensional stability of briarwood and trunk of tree heath were investigated . Also some mechanical properties of trunk such as bending strength and compression strength parallel to the grain were studied. Key words: Tree heath ( Erica arborea L.), briarwood, trunk, physical properties, mechanical properties AIM OF RESEARCH Knowing technological characteristics of wood is important postulate for rational usage of wood recourses.
    [Show full text]
  • Ericaceae Five Petals, Sometimes Free, Though Usually the Heather Family Fused Together to Form a Tube, Bell Or Urn
    RHS GENEALOGY FOR GARDENERS EUDICOTS sepals, free or fused at the base, and four or Ericaceae five petals, sometimes free, though usually The heather family fused together to form a tube, bell or urn. The stamens are in whorls of four or five and Hugely useful in the garden, this family of mainly woody plants includes the heathers the pollen is released from the anthers by (Calluna, Erica, Daboecia), azaleas, rhododendrons, wintergreens (Gaultheria), way of pores at the tips. Pieris and mountain laurels (Kalmia). Commercially significant crops include Fruit blueberries and cranberries (Vaccinium). Fruits are typically dry capsules, though fleshy Size Origins fruits, such as blueberries, are not uncommon. One of the larger families, the Ericaceae contains Earliest evidence of this family dates to the Late Leaves over 3,850 species. Within this great diversity are Cretaceous (about 90 million years ago). Fossils many small genera with one or two species, and suggest that Ericaceae was once more diverse in Most Ericaceae have evergreen, alternate leaves and Vaccinium corymbosum, three titans; Rhododendron (with 1,000 species), Europe, which was home to genera now restricted no stipules. Some species, such as many azaleas, highbush blueberry Erica (850 species) and Vaccinium (500 species). to Asia and/or America. are deciduous, while opposite and whorled leaf It should be noted that azaleas are included arrangements are also known. Leaf margins are within Rhododendron. Flowers entire, toothed or curled under, and some species USES FOR THIS FAMILY (including many rhododendrons) have dense hair Great floral diversity is encompassed by this or scales on the lower surfaces.
    [Show full text]
  • Invasive Alien Plnat Species.Pdf
    Punjab ENVIS Centre NEWSLETTER Vol. 11, No. 4, 2013-14 INVASIVE ALIEN PLANT SPECIES IN PUNJAB l Inform ta at n io e n m S Status of Environment & Related Issues n y o s r t i e v m n E www.punenvis.nic.in INDIA EDITORIAL The World Conservation Union (IUCN) defines alien invasive species as organisms that become established in native ecosystems or habitats, proliferate, alter, and threaten native biodiversity. These aliens come in the form of plants, animals and microbes that have been introduced into an area from other parts of the world, and have been able to displace indigenous species. Invasive alien species are emerging as one of the major threats to sustainable development, on a par with global warming and the destruction of life-support systems. Increased mobility and human interaction have been key drivers in the spread of Indigenous Alien Species. Invasion by alien species is a global phenomenon, with threatening negative impacts to the indigenous biological diversity as well as related negative impacts on human health and overall his well-being. Thus, threatening the ecosystems on the earth. The Millennium Ecosystem Assessment (MA) found that trends in species introductions, as well as modelling predictions, strongly suggest that biological invasions will continue to increase in number and impact. An additional concern is that multiple human impacts on biodiversity and ecosystems will decrease the natural biotic resistance to invasions and, therefore, the number of biotic communities dominated by invasive species will increase. India one of the 17 "megadiverse" countries and is composed of a diversity of ecological habitats like forests, grasslands, wetlands, coastal and marine ecosystems, and desert ecosystems have been reported with 40 percent of alien flora species and 25 percent out of them invasive by National Bureau of Plant Genetic Resource.
    [Show full text]
  • Castilleja Coccinea and C. Indivisa (Orobanchaceae)
    Nesom, G.L. and J.M. Egger. 2014. Castilleja coccinea and C. indivisa (Orobanchaceae). Phytoneuron 2014-14: 1–7. Published 6 January 2014. ISSN 2153 733X CASTILLEJA COCCINEA AND C. INDIVISA (OROBANCHACEAE) GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com J. M ARK EGGER Herbarium, Burke Museum of Natural History and Culture University of Washington Seattle, Washington 98195-5325 [email protected] ABSTRACT Castilleja coccinea and C. indivisa are contrasted in morphology and their ranges mapped in detail in the southern USA, where they are natively sympatric in small areas of Oklahoma, Arkansas, and Louisiana. Castilleja indivisa has recently been introduced and naturalized in the floras of Alabama and Florida. Castilleja ludoviciana , known only by the type collection from southwestern Louisiana, differs from C. coccinea in subentire leaves and relatively small flowers and is perhaps a population introgressed by C. indivisa . Castilleja coccinea and C. indivisa are allopatric except in small areas of Oklahoma, Arkansas, and Lousiana, but assessments of their native distributions are not consistent among various accounts (e.g. Thomas & Allen 1997; Turner et al. 2003; OVPD 2012; USDA, NRCS 2013). Morphological contrasts between the two species, via keys in floristic treatments (e.g., Smith 1994; Wunderlin & Hansen 2003; Nelson 2009; Weakley 2012), have essentially repeated the differences outlined by Pennell (1935). The current study presents an evaluation and summary of the taxonomy of these two species. We have examined specimens at CAS, TEX-LL, SMU-BRIT-VDB, MO, NLU, NO, USF, WS, and WTU and viewed digital images available through Florida herbaria and databases.
    [Show full text]
  • Molecular Investigation of the Origin of Castilleja Crista-Galli by Sarah
    Molecular investigation of the origin of Castilleja crista-galli by Sarah Youngberg Mathews A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences Montana State University © Copyright by Sarah Youngberg Mathews (1990) Abstract: An hypothesis of hybrid origin of Castilleja crista-galli (Scrophulariaceae) was studied. Hybridization and polyploidy are widespread in Castilleja and are often invoked as a cause of difficulty in defining species and as a speciation model. The putative allopolyploid origin of Castilleja crista-gralli from Castilleja miniata and Castilleja linariifolia was investigated using molecular, morphological and cytological techniques. Restriction site analysis of chloroplast DNA revealed high homogeneity among the chloroplast genomes of species of Castilleja and two Orthocarpus. No species of Castilleia represented by more than one population in the analysis was characterized by a distinctive choroplast genome. Genetic distances estimated from restriction site mutations between any two species or between genera are comparable to distances reported from other plant groups, but both intraspecific and intrapopulational distances are high relative to other groups. Restriction site analysis of nuclear ribosomal DNA revealed variable repeat types both within and among individuals. Qualitative species groupings based on restriction site mutations in the ribosomal DNA repeat units do not place Castilleja crista-galli with either putative parent in a consistent manner. A cladistic analysis of 11 taxa using 10 morphological characters places Castilleja crista-galli in an unresolved polytomy with both putative parents and Castilleja hispida. Cytological analyses indicate that Castilleja crista-gralli is not of simple allopolyploid origin. Both diploid and tetraploid chromosome counts are reported for this species, previously known only as an octoploid.
    [Show full text]
  • The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems
    Pursuit - The Journal of Undergraduate Research at The University of Tennessee Volume 3 Issue 2 Spring 2012 Article 8 March 2012 The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems Johannah Reed University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/pursuit Recommended Citation Reed, Johannah (2012) "The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems," Pursuit - The Journal of Undergraduate Research at The University of Tennessee: Vol. 3 : Iss. 2 , Article 8. Available at: https://trace.tennessee.edu/pursuit/vol3/iss2/8 This Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Pursuit - The Journal of Undergraduate Research at The University of Tennessee by an authorized editor. For more information, please visit https://trace.tennessee.edu/pursuit. Pursuit: The Journal of Undergraduate Research at the University of Tennessee Copyright © The University of Tennessee The Effects of Hemiparasitism by Castilleja Species on Community Structure in Alpine Ecosystems JOHANNAH REED Advisor: Nate Sanders Environmental Studies, University of Tennessee, Knoxville There is a long history in ecology of examining how interactions such as competition, predation, and mutualism influence the structure and dynamics of natural communities. However, few studies to date have experimentally as- sessed the role of hemiparasitic plants as a structuring force. Hemiparasitic plants have the potential to shape plant communities because of their ability to photosynthesize and parasitize and because of their abundance in a variety of natural and managed ecosystems.
    [Show full text]
  • Bgci's Plant Conservation Programme in China
    SAFEGUARDING A NATION’S BOTANICAL HERITAGE – BGCI’S PLANT CONSERVATION PROGRAMME IN CHINA Images: Front cover: Rhododendron yunnanense , Jian Chuan, Yunnan province (Image: Joachim Gratzfeld) Inside front cover: Shibao, Jian Chuan, Yunnan province (Image: Joachim Gratzfeld) Title page: Davidia involucrata , Daxiangling Nature Reserve, Yingjing, Sichuan province (Image: Xiangying Wen) Inside back cover: Bretschneidera sinensis , Shimen National Forest Park, Guangdong province (Image: Xie Zuozhang) SAFEGUARDING A NATION’S BOTANICAL HERITAGE – BGCI’S PLANT CONSERVATION PROGRAMME IN CHINA Joachim Gratzfeld and Xiangying Wen June 2010 Botanic Gardens Conservation International One in every five people on the planet is a resident of China But China is not only the world’s most populous country – it is also a nation of superlatives when it comes to floral diversity: with more than 33,000 native, higher plant species, China is thought to be home to about 10% of our planet’s known vascular flora. This botanical treasure trove is under growing pressure from a complex chain of cause and effect of unprecedented magnitude: demographic, socio-economic and climatic changes, habitat conversion and loss, unsustainable use of native species and introduction of exotic ones, together with environmental contamination are rapidly transforming China’s ecosystems. There is a steady rise in the number of plant species that are on the verge of extinction. Great Wall, Badaling, Beijing (Image: Zhang Qingyuan) Botanic Gardens Conservation International (BGCI) therefore seeks to assist China in its endeavours to maintain and conserve the country’s extraordinary botanical heritage and the benefits that this biological diversity provides for human well-being. It is a challenging venture and represents one of BGCI’s core practical conservation programmes.
    [Show full text]