Biodiversity, Conservation and Cultural History

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity, Conservation and Cultural History Sycamore maple wooded pastures in the Northern Alps: Biodiversity, conservation and cultural history Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Thomas Kiebacher von Brixen (Italien) Leiter der Arbeit: Prof. Dr. Christoph Scheidegger Dr. Ariel Bergamini PD Dr. Matthias Bürgi WSL Swiss Federal Research Institute, Birmensdorf Sycamore maple wooded pastures in the Northern Alps: Biodiversity, conservation and cultural history Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Thomas Kiebacher von Brixen (Italien) Leiter der Arbeit: Prof. Dr. Christoph Scheidegger Dr. Ariel Bergamini PD Dr. Matthias Bürgi WSL Swiss Federal Research Institute, Birmensdorf Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen. Bern, 13. September 2016 Der Dekan: Prof. Dr. Gilberto Colangelo Meinen Eltern, Frieda und Rudolf Contents Abstract ................................................................................................................................................... 9 Introduction ........................................................................................................................................... 11 Context and aims ............................................................................................................................... 13 The study system: Sycamore maple wooded pastures ..................................................................... 13 Biodiversity ........................................................................................................................................ 15 Conservation ..................................................................................................................................... 17 Cultural history .................................................................................................................................. 20 ReFerences ............................................................................................................................................. 22 Chapter 1 ............................................................................................................................................... 33 Hidden crown jewels: The role oF tree crowns For bryophyte and lichen species richness in sycamore maple wooded pastures Chapter 2 ............................................................................................................................................... 79 Epiphyte species richness in a sylvo-pastoral system: Contrasting eFFects oF connectivity, tree structure and environmental conditions on bryophytes and lichens Chapter 3 ............................................................................................................................................. 127 Solitary trees increase the diversity oF vascular plants and bryophytes on pastures Chapter 4 ............................................................................................................................................. 167 Die Kulturgeschichte der Bergahornweiden (The cultural history oF sycamore maple wooded pastures) Chapter 5 ............................................................................................................................................. 231 Knowledge transFer and sensitisation activities Conclusions and outlook ..................................................................................................................... 245 Acknowledgements ............................................................................................................................. 247 Erklärung ............................................................................................................................................. 251 Curriculum vitae .................................................................................................................................. 253 Abstract Sycamore maple wooded pastures are a traditional land management system in the montane region oF the northern European Alps. So Far they have hardly been recognized as a distinct cultural landscape and they have been neglected from biodiversity research and from a conservation perspective. At six sites along the main area of occurrence oF sycamore maple wooded pastures in the montane region oF the northern Alps I assessed (1) the biodiversity of epiphytic bryophytes and lichens on the sycamore maple (Acer pseudoplatanus) trees; (2) the eFFects oF a range oF variables on species richness oF these organisms considering various Functional subgroups; (3) driving factors For the occurrence oF three focal species of major conservation concern (Tayloria rudolphiana, Orthotrichum rogeri, Lobaria pulmonaria); (4) the eFFects oF the trees on the ground vegetation (vascular plants and bryophytes); and, (5) the cultural and historical background oF the system, i.e. its spatial and structural evolution, management practices, usage oF the trees, and how sycamore maple wooded pastures are perceived and appraised by the local communities. Sycamore maple wooded pastures were Found to be characterized by an outstandingly high biodiversity, including many red-listed species. A total number oF 899 species on the trees and pastures surveyed were Found. On a single tree up to 60 bryophyte or 67 lichen species may occur. Bryophytes and lichens as well as their functional subgroups were differently and sometimes contrastingly aFFected by tree parameters, environmental variables and connectivity measures. Most strikingly, connectivity to neighbouring trees was crucial For lichens but not For bryophytes. However, the occurrence oF the bryophyte species T. rudolphiana was also Found to depend on connectivity at small spatial scales whereas the lichen L. pulmonaria did not. In contrast to most other species the pioneer bryophyte species O. rogeri was more Frequent on younger trees. The ground vegetation was also very species rich with up to 60 bryophyte species and 74 vascular plant species per plot (30 m2). The sycamore maple trees had a strong positive eFFect on alpha- and beta-diversity oF the ground vegetation, even on intensively managed pastures. Within the last 100 years the area occupied by sycamore maple wooded pastures generally decreased and at many sites young trees are scarce today. In historical times the main function of the trees was to provide shelter For grazing animals and the leaves were economically important as they were used as litter. Although nowadays the sycamore maple trees lost most oF their economic importance, Farmers and local communities generally still have a positive attitude towards them. Sycamore maple wooded pastures are a unique sylvo-pastoral ecosystem where the trees are keystone structures For biodiversity because they Foster high species richness at small spatial scales. For the conservation oF high overall species richness and oF threatened species it is crucial to sustain a wide range oF tree sizes and ages in suFFicient densities. Specific conservation policies need to be established For a sustainable long-term preservation oF sycamore maple wooded pastures. These policies may consist in creating financial incentives for the plantation of trees and the process of creating public awareness, which has successfully been initiated in the course oF this PhD project, should be advanced. 9 10 INTRODUCTION Introduction Context and aims In the course oF the Neolithic revolution which started about 12'500 years ago (Barker 2009) man’s impact on nature drastically changed (Simmons 2011). BeFore, man as a hunter and gatherer, similar to animals, merely reduced the abundance oF species which served his uses (Marsh 1864, Foley et al. 2013) and extirpated probably some large mammals at the end oF the Pleistocene (e.g. Alroy 2001). Then, the shiFt to the systematic production oF Food in settled agriculture considerably disturbed the natural (without human inFluence) turnover oF species, i.e. natural rate oF extinction and emergence oF new species. The transition to settled agriculture drastically reduced and even extirpated some species but also promoted the evolution of new taxa (Marsh 1864, Goudie 2013), which was driven primarily by the creation oF new habitats and the destruction oF natural ones (Goudie 2013). The invention oF agricultural practises allowed a strong expansion oF the human population (Gupta 2004). Nowadays in large areas oF the world’s land surFace, like For example in central Europe, hardly any patch of land can be Found which is not directly inFluenced by human activities (Ellenberg and Leuschner 1996). Compared to the natural state, man-made habitats host diFferent assemblages of species and the species richness of these communities can be either strongly reduced or increased (Bazzaz 1983) depending on a range oF Factors oF which management intensity (e.g. in terms oF nutrient input) is among the most important (Klimek et al. 2007). Man-made sylvo-pastoral systems, For instance, are among the most species-rich habitats in Europe (Kull and Zobel 1991, BeauFoy 1998, Sammul et al. 2008, Miklín and Čížek 2014). The high species richness of these systems can be explained by a generally low management intensity in combination with disturbances of intermediate Frequency and intensity (see Huston 1979, 1994) by the grazing animals and a high structural heterogeneity at small spatial scales leading to high small scale variations
Recommended publications
  • Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA
    Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure.
    [Show full text]
  • Coptis Trifolia Conservation Assessment
    CONSERVATION ASSESSMENT for Coptis trifolia (L.) Salisb. Originally issued as Management Recommendations December 1998 Marty Stein Reconfigured-January 2005 Tracy L. Fuentes USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington CONSERVATION ASSESSMENT FOR COPTIS TRIFOLIA Table of Contents Page List of Tables ................................................................................................................................. 2 List of Figures ................................................................................................................................ 2 Summary........................................................................................................................................ 4 I. NATURAL HISTORY............................................................................................................. 6 A. Taxonomy and Nomenclature.......................................................................................... 6 B. Species Description ........................................................................................................... 6 1. Morphology ................................................................................................................... 6 2. Reproductive Biology.................................................................................................... 7 3. Ecological Roles ............................................................................................................. 7 C. Range and Sites
    [Show full text]
  • Check- and Red List of Bryophytes of the Czech Republic (2003)
    Preslia, Praha, 75: 193–222, 2003 193 Check- and Red List of bryophytes of the Czech Republic (2003) Seznam a Červený seznam mechorostů České republiky (2003) Jan K u č e r a 1 and Jiří Vá ň a 2 1University of South Bohemia, Faculty of Biological Sciences, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic, e-mail: [email protected]; 2Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, CZ-128 01 Prague, Czech Republic, e-mail: [email protected] Kučera J. & Váňa J. (2003): Check- and Red List of bryophytes of the Czech Republic (2003). – Preslia, Praha, 75: 193–222. The second version of the checklist and Red List of bryophytes of the Czech Republic is provided. Generally accepted infraspecific taxa have been incorporated into the checklist for the first time. With respect to the Red List, IUCN criteria version 3.1 has been adopted for evaluation of taxa, and the criteria used for listing in the respective categories are listed under each red-listed taxon. Taxa without recent localities and those where extinction has not been proven are listed as a subset of DD taxa. Little known and rare non-threatened taxa with incomplete knowledge of distribution which are worthy of further investigation are listed on the so-called attention list. In total, 849 species plus 5 subspecies and 19 varieties have been accepted. 23 other historically reported species and one va- riety were evaluated as doubtful with respect to unproven but possible occurrence in the territory, and 6 other species with proven occurrence require taxonomic clarification.
    [Show full text]
  • Lavansaari) – One of the Remote Islands in the Gulf of Finland
    Folia Cryptog. Estonica, Fasc. 56: 31–52 (2019) https://doi.org/10.12697/fce.2019.56.05 The lichens of Moshchny Island (Lavansaari) – one of the remote islands in the Gulf of Finland Irina S. Stepanchikova1,2, Dmitry E. Himelbrant1,2, Ulf Schiefelbein3, Jurga Motiejūnaitė4, Teuvo Ahti5, Mikhail P. Andreev2 1St. Petersburg State University, Universitetskaya emb. 7–9, 199034 St. Petersburg, Russia. E-mails: [email protected], [email protected] 2Laboratory of Lichenology and Bryology, Komarov Botanical Institute RAS, Professor Popov St. 2, 197376 St. Petersburg, Russia. E-mail: [email protected] 3Blücherstrasse 71, D-18055 Rostock, Germany. E-mail: [email protected] 4Laboratory of Mycology, Institute of Botany, Nature Research Centre, Žaliųjų Ežerų 49, LT–08406 Vilnius, Lithuania. E-mail: [email protected] 5Botanical Museum, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland. E-mail: [email protected] Abstract: We present a checklist for Moshchny Island (Leningrad Region, Russia). The documented lichen biota comprises 349 species, including 313 lichens, 30 lichenicolous fungi and 6 non-lichenized saprobic fungi. Endococcus exerrans and Lichenopeltella coppinsii are reported for the first time for Russia;Cercidospora stenotropae, Erythricium aurantiacum, Flavoplaca limonia, Lecidea haerjedalica, and Myriospora myochroa for European Russia; Flavoplaca oasis, Intralichen christiansenii, Nesolechia fusca, and Myriolecis zosterae for North-Western European Russia; and Arthrorhaphis aeruginosa, Calogaya pusilla, and Lecidea auriculata subsp. auriculata are new for Leningrad Region. The studied lichen biota is moderately rich and diverse, but a long history of human activity likely caused its transformation, especially the degradation of forest lichen biota.
    [Show full text]
  • Economic and Ethnic Uses of Bryophytes
    Economic and Ethnic Uses of Bryophytes Janice M. Glime Introduction Several attempts have been made to persuade geologists to use bryophytes for mineral prospecting. A general lack of commercial value, small size, and R. R. Brooks (1972) recommended bryophytes as guides inconspicuous place in the ecosystem have made the to mineralization, and D. C. Smith (1976) subsequently bryophytes appear to be of no use to most people. found good correlation between metal distribution in However, Stone Age people living in what is now mosses and that of stream sediments. Smith felt that Germany once collected the moss Neckera crispa bryophytes could solve three difficulties that are often (G. Grosse-Brauckmann 1979). Other scattered bits of associated with stream sediment sampling: shortage of evidence suggest a variety of uses by various cultures sediments, shortage of water for wet sieving, and shortage around the world (J. M. Glime and D. Saxena 1991). of time for adequate sampling of areas with difficult Now, contemporary plant scientists are considering access. By using bryophytes as mineral concentrators, bryophytes as sources of genes for modifying crop plants samples from numerous small streams in an area could to withstand the physiological stresses of the modern be pooled to provide sufficient material for analysis. world. This is ironic since numerous secondary compounds Subsequently, H. T. Shacklette (1984) suggested using make bryophytes unpalatable to most discriminating tastes, bryophytes for aquatic prospecting. With the exception and their nutritional value is questionable. of copper mosses (K. G. Limpricht [1885–]1890–1903, vol. 3), there is little evidence of there being good species to serve as indicators for specific minerals.
    [Show full text]
  • Assessment of Lichens As Biomonitors of Heavy Metal Pollution in Selected Mining Area, Slovakia Amer H
    ISSN-1996-918X Cross Mark Pak. J. Anal. Environ. Chem. Vol. 22, No. 1 (2021) 53 – 59 http://doi.org/10.21743/pjaec/2021.06.07 Assessment of Lichens as Biomonitors of Heavy Metal Pollution in Selected Mining Area, Slovakia Amer H. Tarawneh1, Ivan Salamon2*, Rakan M. Altarawneh3, Jozef Mitra1 and Anastassiya Gadetskaya4 1Tafila Technical University, Department of Chemistry and Chemical Technology, P.O.Box 179, Tafila 66110, Jordan. 2University of Presov, Faculty of Humanities and Natural Science, Department of Ecology, 01, 17th November St., 081 16, Presov, Slovakia. 3Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan. 4School of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan. *Corresponding Author Email: [email protected] Received 07 September 2020, Revised 23 April 2021, Accepted 26 April 2021 -------------------------------------------------------------------------------------------------------------------------------------------- Abstract Lichens have widely been used as bioindicators to reflect the quality of the environment. The present study was conducted to investigate the lichens diversity that grows on the surface of waste heaps from an abandoned old copper mine in Mlynky, Slovakia. In spite of the heavy metal- contaminated environment, we documented twenty species of lichens in the selected site. Taxonomically the most numerous group were represented by Cladonia with seven species, as well other species; namely, Acarospora fuscata, Cetraria islandica, Dermatocarpon miniatum, Hypogymnia physodes, Hypogymnia tubulosa, Lecanora subaurea, Lepraria incana, Physcia aipolia, Porpidia macrocarpa, Pseudevernia furfuracea, Rhizocarpon geographicum and Xanthoria parietina. The content of selected heavy metals (Cu, Fe, and Zn) in the predominant lichens Cetraria islandica, Cladonia digitata, Cladonia pyxidata, Hypogymnia physodes and Pseudevernia furfuracea were analyzed.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2012
    Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org NATURAL HERITAGE PROGRAM LIST OF THE RARE PLANTS OF NORTH CAROLINA 2012 Edition Edited by Laura E. Gadd, Botanist and John Finnegan, Information Systems Manager North Carolina Natural Heritage Program, Office of Conservation, Planning, and Community Affairs Department of Environment and Natural Resources, 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org Table of Contents LIST FORMAT ......................................................................................................................................................................... 3 NORTH CAROLINA RARE PLANT LIST ......................................................................................................................... 10 NORTH CAROLINA PLANT WATCH LIST ..................................................................................................................... 71 Watch Category
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • Volatile Concentrate from the Neotropical Moss Neckeropsis Undulata (Hedw.) Reichardt, Existing in the Brazilian Amazon Thyago G
    Miranda et al. BMC Chemistry (2021) 15:7 https://doi.org/10.1186/s13065-021-00736-3 BMC Chemistry RESEARCH ARTICLE Open Access Volatile concentrate from the neotropical moss Neckeropsis undulata (Hedw.) Reichardt, existing in the brazilian Amazon Thyago G. Miranda1, Raynon Joel M. Alves1, Ronilson F. de Souza2, José Guilherme S. Maia3, Pablo Luis B. Figueiredo2* and Ana Cláudia C. Tavares‑Martins1,2 Abstract Background: Many natural compounds have been identifed and synthesized by the advancement of bryophytes phytochemistry studies. This work aimed to report the composition of Neckeropsis undulata (Hedw.) Reichardt moss volatiles, sampled in the Combú Island, Belém city, Pará state, Brazil. The volatile concentrate of N. undulata was obtained by a simultaneous distillation‑extraction micro‑system, analyzed by GC and GC‑MS, and reported for the frst time. Results: Ten compounds were identifed in the volatile concentrate, corresponding to 91.6% of the total, being 1‑octen‑3‑ol (35.7%), α‑muurolol (21.4%), naphthalene (11.3%), and n‑hexanal (10.0 %) the main constituents. Most of the constituents of the N. undulata volatile concentrate have been previously identifed in other mosses, and liver‑ worts spread wide in the world. Conclusions: 1‑Octen‑3‑ol, n‑hexanal, 2‑ethylhexanol, isoamyl propionate, and octan‑3‑one are already known metabolic products obtained from enzymatic oxidation of polyunsaturated fatty acids, belonging to the large family of minor oxygenated compounds known as oxylipins. The knowledge of the composition of volatiles from moss N. undulata could contribute to the Neckeraceae species’ chemotaxonomy. Keywords: Neckeraceae, Volatile concentrate, 1‑octen‑3‑ol, α‑muurolol, n‑hexanal Background Brazil’s bryophyte fora comprises 1524 species, of which Bryophytes are small terrestrial spore-forming green 880 are mosses, 633 liverworts, and 11 hornworts.
    [Show full text]
  • BLS Bulletin 111 Winter 2012.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • New National and Regional Bryophyte Records, 63
    Journal of Bryology ISSN: 0373-6687 (Print) 1743-2820 (Online) Journal homepage: https://www.tandfonline.com/loi/yjbr20 New national and regional bryophyte records, 63 L. T. Ellis, O. M. Afonina, I. V. Czernyadjeva, L. A. Konoreva, A. D. Potemkin, V. M. Kotkova, M. Alataş, H. H. Blom, M. Boiko, R. A. Cabral, S. Jimenez, D. Dagnino, C. Turcato, L. Minuto, P. Erzberger, T. Ezer, O. V. Galanina, N. Hodgetts, M. S. Ignatov, A. Ignatova, S. G. Kazanovsky, T. Kiebacher, H. Köckinger, E. O. Korolkova, J. Larraín, A. I. Maksimov, D. Maity, A. Martins, M. Sim-Sim, F. Monteiro, L. Catarino, R. Medina, M. Nobis, A. Nowak, R. Ochyra, I. Parnikoza, V. Ivanets, V. Plášek, M. Philippe, P. Saha, Md. N. Aziz, A. V. Shkurko, S. Ştefănuţ, G. M. Suárez, A. Uygur, K. Erkul, M. Wierzgoń & A. Graulich To cite this article: L. T. Ellis, O. M. Afonina, I. V. Czernyadjeva, L. A. Konoreva, A. D. Potemkin, V. M. Kotkova, M. Alataş, H. H. Blom, M. Boiko, R. A. Cabral, S. Jimenez, D. Dagnino, C. Turcato, L. Minuto, P. Erzberger, T. Ezer, O. V. Galanina, N. Hodgetts, M. S. Ignatov, A. Ignatova, S. G. Kazanovsky, T. Kiebacher, H. Köckinger, E. O. Korolkova, J. Larraín, A. I. Maksimov, D. Maity, A. Martins, M. Sim-Sim, F. Monteiro, L. Catarino, R. Medina, M. Nobis, A. Nowak, R. Ochyra, I. Parnikoza, V. Ivanets, V. Plášek, M. Philippe, P. Saha, Md. N. Aziz, A. V. Shkurko, S. Ştefănuţ, G. M. Suárez, A. Uygur, K. Erkul, M. Wierzgoń & A. Graulich (2020): New national and regional bryophyte records, 63, Journal of Bryology, DOI: 10.1080/03736687.2020.1750930 To link to this article: https://doi.org/10.1080/03736687.2020.1750930 Published online: 18 May 2020.
    [Show full text]