Coptis Trifolia Conservation Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Reduction of Diplycosia Indica (2009) to Gaultheria Akaensis (2006)
Panda, S., J.L. Reveal, and M. Sanjappa. 2012. Reduction of Diplycosia indica (2009) to Gaultheria akaensis (2006). Phytoneuron 2012-35: 1–7. Published 23 April 2012. ISSN 2153 733X REDUCTION OF DIPLYCOSIA INDICA (2009) TO GAULTHERIA AKAENSIS (2006) (ERICACEAE) SUBHASIS PANDA Taxonomy & Biosystematics Laboratory, Post-Graduate Department of Botany Darjeeling Government College, Darjeeling-734101 INDIA [email protected] JAMES L. REVEAL L.H. Bailey Hortorium, Department of Plant Biology Cornell University, Ithaca, New York 14853-4301 USA [email protected] MUNIVENKATAPPA SANJAPPA Former Director, Botanical Survey of India Presently at Botanical Garden, University of Agricultural Sciences GKVK, Bengaluru-560064 INDIA ABSTRACT Diplycosia indica M.R. Debta & H.J. Chowdhery is reduced to synonymy under Gaultheria akaensis Panda & Sanjappa due to a misinterpretation of immature floral features of the type material used by Debta and Chowdhery to establish their new species. KEY WORDS : nomenclature, synonymy, India, Singalelah National Park Diplycosia indica was described by Debta and Chowdhery (2009) based on two specimens collected by M.R. Debta in the Singalelah National Park area of the Darjeeling Himalaya. During the course of recent field studies (mid-December 2011) at different locations in Singalelah National Park as part of post-revisionary work in Indian Ericaceae, specimens of a species of Gaultheria L. were collected near Megma, Megma-Tonglu road and in the Kainyakata-Kalapokhri area on rocky slopes near adjacent road sides. The Gaultheria was identified as G. akaensis Panda & Sanjappa (2006), a critically endangered species then known only from Aka Hill in the Arunachal Himalaya. This expression of G. akaensis from the Singalelah National Park then proved to be identical to the type of D. -
Salal Gaultheria Shallon
Mountain Loop Conservancy Fact Sheet: Salal Gaultheria shallon Range: Salal grows only in North America and ranges from southeastern Alaska south to central California and east through the western slopes of the coastal ranges and Cascade Mountains. Salal grows from sea level to an elevation of 2,500 feet (763 m). Identification: This shrub grows to a height of 1.3 to 10 feet (0.4 - 3 m). Its evergreen leaves are thick, leathery, and shiny. Leaves are a pointed egg shape and are 2 - 4 inches (5 – 10cm) long. The green leaves grow alternately off stems that are often reddish in color. The lantern- shaped flowers are white to pinkish in color and grow along the ends of stems in showy clusters of 5 -15. They bloom from May 15 – July 1. Salal has a “pseudo berry” that is actually fleshy flower sepals. The berries are 0.24 - 0.4 inch (6 - 10mm) in diameter and reddish-blue to dark purple in color. They are covered with tiny hairs. The fruit is edible and is ripe by August 15. The berries taste a little like huckleberries but they are sweeter and have a drier texture. Salal with berries. Photo by Angie Goodloe © Unique characteristics: This is one of the most common understory plant species in the Pacific Northwest. Salal varies widely in height depending on where they are growing. Their growth can be a low, scraggly form or a tall, almost impenetrable, thicket. Habitat: Salal grows in a wide variety of habitats from coastal dunes to montane forests. It can grow in dry to very wet sites and tolerates sun or shade. -
Alabak Conopy Gap Study Final Report
An evaluation of canopy gaps in restoring wildlife habitat in second growth forests of Southeastern Alaska1 Paul Alaback FINAL REPORT February 20, 2010 1 A cooperative project with The Nature Conservancy-Alaska, Thorne Bay Ranger District and Craig Ranger District, Tongass National Forest, and POWTEC. Executive Summary We report on our initial findings from a two year study on a 20-year remeasurement of canopy gap treatments in second growth forests on Prince of Wales Island in Southeastern Alaska. Seventy-six gaps were selected for sampling representing a broad geographic, and ecological range of stand conditions throughout the region. Our analysis of these plots suggest that canopy gaps represent one of the most effective techniques for long-term improvement of habitat for deer and associated wildlife species in second growth forests on Prince of Wales. Our data shows statistically significant increases in species diversity, understory cover, forb biomass, and shrub annual growth for gap plots as compared to either thinned or unthinned controls. Canopy gap treatments create habitats that are on average 4 times the deer carrying capacity of our thinned second growth stands in the summer or over 8 times the carrying capacity of thinned sites in the winter. Within a gap there is as much summertime blueberry (Vaccinium) biomass as in typical old growth forests. A simple model (TONGASS GAP) was constructed for estimating the overall effect of canopy gaps on deer habitat at the stand level and also to provide managers with a tool to examinine tradeoffs between gap size, density and deer habitat for closed-canopy second growth stands. -
Flora of New Zealand Mosses
FLORA OF NEW ZEALAND MOSSES BRACHYTHECIACEAE A.J. FIFE Fascicle 46 – JUNE 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 46, Brachytheciaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0-947525-65-1 (pdf) ISBN 978-0-478-34747-0 (set) 1. Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.345.16(931) DC 588.20993 DOI: 10.7931/w15y-gz43 This work should be cited as: Fife, A.J. 2020: Brachytheciaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 46. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/w15y-gz43 Date submitted: 9 May 2019 ; Date accepted: 15 Aug 2019 Cover image: Eurhynchium asperipes, habit with capsule, moist. Drawn by Rebecca Wagstaff from A.J. Fife 6828, CHR 449024. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1 -
Volume 1, Chapter 2-7: Bryophyta
Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium..................................................................................................... -
The First Comprehensive Phylogeny of Coptis (Ranunculaceae) and Its Implications for Character Evolution and Classification
RESEARCH ARTICLE The First Comprehensive Phylogeny of Coptis (Ranunculaceae) and Its Implications for Character Evolution and Classification Kun-Li Xiang1,2, Sheng-Dan Wu3, Sheng-Xian Yu1, Yang Liu4, Florian Jabbour5, Andrey S. Erst6,7, Liang Zhao8, Wei Wang1*, Zhi-Duan Chen1 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China, 2 University of Chinese Academy of Sciences, Beijing, 100049, China, 3 College of Life Sciences, Shanxi Normal University, Linfen, 041004, China, 4 Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269–3043, United States of America, 5 Muséum national d’Histoire naturelle, Institut de Systématique, Evolution, Biodiversité, UMR 7205 ISYEB MNHN/CNRS/UPMC/EPHE, Sorbonne Universités, Paris, 75005, France, 6 Central Siberian Botanical Garden of the Siberian Branch of Russian Academy of Sciences, Zolotodolinskaya str. 101, Novosibirsk, 630090, Russia, 7 Laboratory of Systematics and Phylogeny of Plants, National Research Tomsk State University, prospekt Lenina 36, Tomsk, 634050, Russia, 8 College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China * [email protected] OPEN ACCESS Citation: Xiang K-L, Wu S-D, Yu S-X, Liu Y, Jabbour F, Erst AS, et al. (2016) The First Comprehensive Abstract Phylogeny of Coptis (Ranunculaceae) and Its Implications for Character Evolution and Coptis (Ranunculaceae) contains 15 species and is one of the pharmaceutically most Classification. PLoS ONE 11(4): e0153127. important plant genera in eastern Asia. Understanding of the evolution of morphological doi:10.1371/journal.pone.0153127 characters and phylogenetic relationships within the genus is very limited. -
Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees. -
Mistaken Identity? Invasive Plants and Their Native Look-Alikes: an Identification Guide for the Mid-Atlantic
Mistaken Identity ? Invasive Plants and their Native Look-alikes an Identification Guide for the Mid-Atlantic Matthew Sarver Amanda Treher Lenny Wilson Robert Naczi Faith B. Kuehn www.nrcs.usda.gov http://dda.delaware.gov www.dsu.edu www.dehort.org www.delawareinvasives.net Published by: Delaware Department Agriculture • November 2008 In collaboration with: Claude E. Phillips Herbarium at Delaware State University • Delaware Center for Horticulture Funded by: U.S. Department of Agriculture Natural Resources Conservation Service Cover Photos: Front: Aralia elata leaf (Inset, l-r: Aralia elata habit; Aralia spinosa infloresence, Aralia elata stem) Back: Aralia spinosa habit TABLE OF CONTENTS About this Guide ............................1 Introduction What Exactly is an Invasive Plant? ..................................................................................................................2 What Impacts do Invasives Have? ..................................................................................................................2 The Mid-Atlantic Invasive Flora......................................................................................................................3 Identification of Invasives ..............................................................................................................................4 You Can Make a Difference..............................................................................................................................5 Plant Profiles Trees Norway Maple vs. Sugar -
Botanical Inventory Report
Botanical Inventory Mason Quarry Conservation Area Mason, New Hampshire Erin Schaeffer New England Wild Flower Society © 2013 Prepared by 180 Hemenway Road Framingham, MA 01701 508-877-7630 www.newfs.org Amanda Weise John Burns Conducted in 2013 This report was produced for the Town of Mason, Conservation Commission This project was made possible by a generous donation from Catherine Schwenk TABLE OF CONTENTS INTRODUCTION ........................................................................................................................... 4 METHODS ...................................................................................................................................... 6 RESULTS ........................................................................................................................................ 7 PLANT SPECIES ............................................................................................................... 7 PLANT IDENTIFICATIONS ............................................................................................ 7 NATURAL COMMUNITIES ............................................................................................ 8 DISCUSSION .................................................................................................................................. 8 COUNTY RECORDS ........................................................................................................ 9 RARE PLANTS ................................................................................................................. -
Coptis Teeta: a Potential Endemic and Endangered Medicinal Plant Of
Journal of Pharmacognosy and Phytochemistry 2019; 8(4): 245-248 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(4): 245-248 Coptis teeta: A potential endemic and endangered Received: 01-05-2019 Accepted: 03-06-2019 medicinal plant of Eastern Himalayas A Bajpay A Bajpay, RC Nainwal and D Singh C.S.I.R, National Botanical Research Institute, Lucknow, Uttar Pradesh, India Abstract Coptis teeta, is a non-timber forest product (NTFP) that grows in northwest Yunnan (China), Bhutan and RC Nainwal northeast India, specially in temperate regions of Arunachal Pradesh. Rhizome of this plant is very C.S.I.R, National Botanical famous in traditional medication in North East India and China, for prevention and treatment of a number Research Institute, Lucknow, of human diseases. Destructive commercial harvesting for centuries and deforestation, this species has Uttar Pradesh, India entered into the Chinese Red Data Book, due to its high market demand, commercial harvesting pressure on wild populations that were already dwindling as a result of deforestation and population reach at risk D Singh of extinction. On the basis of the various reports and studies Coptis teeta contains many alkaloids such as C.S.I.R, National Botanical berberine, palmatine, jatrorrhizine, coptisine, columbamine, and epiberberine and various secondary Research Institute, Lucknow, Uttar Pradesh, India metabolites, lignans, phenylpropanoids, flavonoids, phenolic acids, saccharides and steroids are also present in Coptis teeta. Thus, the qualitative and quantitative analysis of several high-content constituents in Coptis extracts will help us for better evaluation and regulation of drug quality. Due to its versatile nature and many pharmacological benefits the cultivation and propagation of Coptis teeta should be done with proper care and patience. -
Ficaria Verna Huds
DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD DRAFT July 2013 Scientific name: Ficaria verna Huds. Synonyms: Ranunculus ficaria L., Ranunculus ficaria L. ssp. bulbifera (Marsden-Jones) Lawalree, Ranunculus ficaria L. ssp. calthifolius (Reichenbach) Arcangeli, Ranunculus ficaria L. var. bulbifera Marsden-Jones, Ficaria verna Huds. Common name: Lesser celandine, fig buttercup, pilewort, figroot buttercup, figwort, bulbous buttercup, and small crowfoot Family: Ranunculaceae Legal Status: Proposed Class B noxious weed Images from left to right: 1. Plant growth with flowers, image: Catherine Herms, The Ohio State University, Bugwood.org; 2.Tuberous roots of Ficaria verna, image: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org; 3. Close up of flower, image: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org; 4. Bulbils in leaf axils, image: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org. Description and Variation: As Post et al. (2009) outline, North American treatments of Ficaria verna did not include subspecies or only included one while European treatments include five subspecies: subsp. ficariiformis, subsp. chrysocephalus, subsp. calthifolius, subsp. ficaria, subsp. bulbilifer. Through a review of herbarium specimens, Post et al. (2009) determined that all five subspecies existed here in the United States. Sell (1994) provides descriptions of all five subspecies. Whittemore (1997) states that the species is highly variable and that the different forms intergrade extensively and varieties are often impossible to distinguish. Listing Ficaria verna as a Class C noxious weed includes all subspecies of F. verna and any cultivars of the species and subspecies. Overall Habit: Ficaria verna is a highly variable, glabrous perennial with tuberous roots.