Cytotaxonomical Studies on the Caltha Palustris Complex (Ranunculaceae) in Poland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coptis Trifolia Conservation Assessment
CONSERVATION ASSESSMENT for Coptis trifolia (L.) Salisb. Originally issued as Management Recommendations December 1998 Marty Stein Reconfigured-January 2005 Tracy L. Fuentes USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington CONSERVATION ASSESSMENT FOR COPTIS TRIFOLIA Table of Contents Page List of Tables ................................................................................................................................. 2 List of Figures ................................................................................................................................ 2 Summary........................................................................................................................................ 4 I. NATURAL HISTORY............................................................................................................. 6 A. Taxonomy and Nomenclature.......................................................................................... 6 B. Species Description ........................................................................................................... 6 1. Morphology ................................................................................................................... 6 2. Reproductive Biology.................................................................................................... 7 3. Ecological Roles ............................................................................................................. 7 C. Range and Sites -
Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees. -
Mistaken Identity? Invasive Plants and Their Native Look-Alikes: an Identification Guide for the Mid-Atlantic
Mistaken Identity ? Invasive Plants and their Native Look-alikes an Identification Guide for the Mid-Atlantic Matthew Sarver Amanda Treher Lenny Wilson Robert Naczi Faith B. Kuehn www.nrcs.usda.gov http://dda.delaware.gov www.dsu.edu www.dehort.org www.delawareinvasives.net Published by: Delaware Department Agriculture • November 2008 In collaboration with: Claude E. Phillips Herbarium at Delaware State University • Delaware Center for Horticulture Funded by: U.S. Department of Agriculture Natural Resources Conservation Service Cover Photos: Front: Aralia elata leaf (Inset, l-r: Aralia elata habit; Aralia spinosa infloresence, Aralia elata stem) Back: Aralia spinosa habit TABLE OF CONTENTS About this Guide ............................1 Introduction What Exactly is an Invasive Plant? ..................................................................................................................2 What Impacts do Invasives Have? ..................................................................................................................2 The Mid-Atlantic Invasive Flora......................................................................................................................3 Identification of Invasives ..............................................................................................................................4 You Can Make a Difference..............................................................................................................................5 Plant Profiles Trees Norway Maple vs. Sugar -
Ficaria Verna Huds
DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD DRAFT July 2013 Scientific name: Ficaria verna Huds. Synonyms: Ranunculus ficaria L., Ranunculus ficaria L. ssp. bulbifera (Marsden-Jones) Lawalree, Ranunculus ficaria L. ssp. calthifolius (Reichenbach) Arcangeli, Ranunculus ficaria L. var. bulbifera Marsden-Jones, Ficaria verna Huds. Common name: Lesser celandine, fig buttercup, pilewort, figroot buttercup, figwort, bulbous buttercup, and small crowfoot Family: Ranunculaceae Legal Status: Proposed Class B noxious weed Images from left to right: 1. Plant growth with flowers, image: Catherine Herms, The Ohio State University, Bugwood.org; 2.Tuberous roots of Ficaria verna, image: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org; 3. Close up of flower, image: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org; 4. Bulbils in leaf axils, image: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org. Description and Variation: As Post et al. (2009) outline, North American treatments of Ficaria verna did not include subspecies or only included one while European treatments include five subspecies: subsp. ficariiformis, subsp. chrysocephalus, subsp. calthifolius, subsp. ficaria, subsp. bulbilifer. Through a review of herbarium specimens, Post et al. (2009) determined that all five subspecies existed here in the United States. Sell (1994) provides descriptions of all five subspecies. Whittemore (1997) states that the species is highly variable and that the different forms intergrade extensively and varieties are often impossible to distinguish. Listing Ficaria verna as a Class C noxious weed includes all subspecies of F. verna and any cultivars of the species and subspecies. Overall Habit: Ficaria verna is a highly variable, glabrous perennial with tuberous roots. -
The Crowfoot Family in Ohio
THE CROWFOOT FAMILY IN OHIO. NELLIE F. HENDERSON. Ranunculaceae, Crowfoot Family. Perennial or annual herbs, or woody climbers, with acrid sap. Leaves usually alternate, sometimes opposite; simple or compound, with clasping or dilated base; stipules none. Flowers hypogynous, actinomorphic or sometimes zygomorphic, bispor- angiate or occasionally monosporangiate; perianth of similar segments or differentiated into calyx and corolla; capels usually separate; stamens numerous. Fruit an achene, follicle or berry. SYNOPSIS. I. Petals or sepals with a nectariferous pit, spur or tube. 1. Petals broad with a nectariferous pit; sepals not spurred. (I) Ranunculus; (2) Ficaria; (3) Batrichium. 2. Petals cup-shaped or narrow; sepals not spurred. (a) Pods sessile; leaves not trifoliate. (4) Trollius; (5) Helleborus; (6) Nigella. (b) Pods long stalked; leaves trifoliate. (7) Coptis. 3. Either petals or sepals spurred, or hooded; actinomorphic or zygomorphic. (8) Aquilegia; (9) Aconitum; (10) Delphinium. II. Sepals and petals without a nectar pit or spur; sepals usually petal-like. 1. Styles usually elongated, often very prominent in fruit; fruit an achene. (a) Sepals imbricated in the bud. (II) Anemone; (12) Hepatica. (b) Sepals valvate in the bud; leaves opposite. (13) Clematis; (14) yiorna. 2. Style short in fruit; fruit a many-seeded follicle, or a berry. (a) Flowers usually solitary, not racemose. (15) Caltha; (16) Hydrastis. (b) Flowers racemose. (17) Actaea; (18) Cimicifuga. 3. Style short in fruit; fruit an achene or a few-seeded follicle; leaves ternately compound or decompound. (19) Syndesmon; (20) Isopyrum; (21) Thalictrum. KEY TO THE GENERA. 1. Petals or sepals or both with a nectariferous cup, or spur; flowers frequently yellow. -
Convolvulus Boissieri Ssp
International Rock Gardener Number 3 The Scottish Rock Garden Club March 2010 ----International Rock Gardener---- March 2010 Dear Fellow International Rock Gardeners, As we celebrate here the beauty of the gardens in the mountains and vice versa we must give a thought to all the plant hunters of the past, without whom we would be growing only plants native to our own country. Gardeners owe a great debt to these people who have roamed the wild places of the world to bring so many wonderful plants into cultivation. Nowadays a different world exists and there are many constraints in place to restrict or even prohibit the collection of any kind of plant materials. Sadly the rigour often applied to the enforcement of such regulations is not always so scrupulously applied to the greater problem of habitat destruction which can lead to the utter eradication of a species. Many think it is more logical to enable sustainable collection to allow plant numbers to be built up (and so protected) in cultivation than to see populations wiped out by careless or illegal development. With IRG we can all share the joy of great plants photographed in their natural habitat or in gardens and rejoice in the variety of nature. -----GARDENS IN THE MOUNTAINS----- Corydalis hamata by Harry Jans (Cover picture) This plant is one of the showiest species of Corydalis (Papaveraceae family, section Hamatae) from China. It is found at higher altitudes (3300-5000m) in the provinces of Yunnan and Sichuan, but also in Eastern Tibet. The best plants I found where growing on the Bai Ma Shan in Yunnan and on the Mengi pass and Da Xue Shan in Sichuan. -
Angiosperms Flowering Plants
1/29/20 Angiosperms Magnoliophyta - Flowering Plants flowering plants Introduction to Angiosperms •"angio-" = vessel; so "angiosperm" means "vessel for the seed” [seed encased in ovary and later fruit] • Dominant group of land plants and arose about 140 million years ago – Jurassic/Cretaceous • 275,000+ species – diverse! Floral structure will be examined in lab next Mon/Tues – save space in your notes! • Co-evolved with animals and violet flower & fruit fungi 1 2 Magnoliophyta - Flowering Plants Magnoliophyta - Flowering Plants 4 Features Define Angiosperms 2. Further reduction of the gametophyte stages - embryo 1. Possession of flowers – with sac and pollen grain stamens and ovaries – ovary(ies) becomes a fruit violet flower & fruit 3 4 1 1/29/20 Magnoliophyta - Flowering Plants Magnoliophyta - Flowering Plants 2. Further reduction of the 3. Double fertilization: the 4. Vessel elements in xylem - gametophyte stages - embryo sperm cell has two nuclei – efficient water conducting cells sac and pollen grain zygote and endosperm; corn seed endosperm Cross section of young bean seed American basswood pink lady-slipper seeds with cotyldeons- NO endosperm endosperm 5 6 Magnoliophyta - Flowering Plants The Flower Classification of Angiosperms • The outstanding and most significant feature of the flowering plants is the flower Relationships of flowering plants • Understanding floral structure and names of are now well known based on the parts is important in recognizing, keying, DNA sequence evidence - APG and classifying species, genera, families. (Angiosperm Phylogeny Group) classification system is standard. Changes in families (names and genera) have been common in recent years! Field Manual of Michigan Flora Flower: highy specialized shoot = stem + has most up-to-date (generally) leaves from Schleiden 1855 7 8 2 1/29/20 The Flower The Flower 1. -
Species Profile: Minnesota DNR
Species profile: Minnesota DNR events | a-z list | newsroom | about DNR | contact us Recreation | Destinations | Nature | Education / safety | Licenses / permits / regs. Home > Nature > Rare Species Guide > Keyword Search | A-Z Search | Filtered Search Botrychium campestre W.H. Wagner & Farrar ex W.H. & F. Prairie Wagner Moonwort MN Status: Basis for Listing special concern Federal Status: Botrychium campestre was first none discovered in 1982 and described eight CITES: years later (Wagner and Wagner 1990). none Until that time, no one knew that USFS: Botrychium spp. (moonworts) occurred in none prairies. The discovery sparked considerable interest among botanists in Group: finding more sites of this species, and in vascular plant trying to find out if other undescribed Class: moonworts could be found. Results have Ophioglossopsida been quite impressive; we now know that Order: B. campestre ranges across the whole Ophioglossales continent. Botanists have also discovered Family: previously undescribed species of Ophioglossaceae Botrychium from prairies and a variety of Life Form: prairie-like habitats. The actual rarity of forb B. campestre is difficult to judge at this Longevity: time. There are now numerous records, perennial but they are the result of an Leaf Duration: unprecedented search effort. Further deciduous searches will undoubtedly discover Water Regime: additional sites, and it is possible that at terrestrial some time in the future B. campestre will Soils: be thought of as relatively common. Map Interpretation sand, loam Botrychium campestre was listed as a Light: special concern species in Minnesota in full sun 1996. Habitats: Upland Prairie Description Botrychium campestre is a small, Best time to see: inconspicuous fern that can be very difficult to find. -
Lesser Celandine (Ficaria Verna Huds.) Identification and Management Common Name: Fig Buttercup, Figroot Buttercup, Figwort, Pilewort, and Small Crowfoot Etc
Dr. Jatinder S. Aulakh Valley Laboratory, Windsor, CT The Connecticut Agricultural Experiment Station 153 Cook Hill Road, P. O. Box 248 Windsor, CT 06095 Phone: (860) 683-4984 Fax: (860) 683-4987 Founded in 1875 Email: [email protected] Putting science to work for society Website: https://portal.ct.gov/caes Lesser Celandine (Ficaria verna Huds.) Identification and Management Common name: Fig buttercup, figroot buttercup, figwort, pilewort, and small crowfoot etc. Scientific name: Ficaria verna Huds. formerly Ranunculus ficaria L. Family name: Renunculaceae - buttercup family. Pictures (left to right): Lesser celandine plant in bloom (left) and tubers/bulbils (right). Picture courtesy: Les Mehrhoff, University of Connecticut (left), and David L. Clement, University of Maryland (right), Bugwood.org. US introduction and distribution: Lesser celandine also known as fig buttercup is a perennial herb native to Europe, temperate Asia, and northern Africa. It was introduced into North America from Europe for ornamental use. The earliest record of its presence in the Unites States dates to 1867 from Philadelphia County, Pennsylvania. Historically, lesser celandine has been used as a medicinal plant for treatment of hemorrhoids and scurvy due to high vitamin C content of the young leaves. Five subspecies are known to exist in the United States (Post et al 2009). Of these, Ficaria verna or Ranunculus ficaria subsp. calthifolius has the widest distribution and R. ficaria subsp. chrysocephalus has the most limited distribution. Currently, lesser celandine is 1 present throughout the northeastern United States and west to Missouri, and in the Pacific Northwest. (EDDMaps 2020). Lesser Celandine US distribution (Map: EDDMapS. -
The “Early-Diverging” Flowering Plants
The Flower – 4 Basic Whorls Calyx [CA]: the green The “Early-Diverging” sepals (#3) Corolla [CO]: the showy Flowering Plants petals (#4) Androecium [A]: the stamens or male structures (#6-8) Gynoecium [G]: the carpels or pistils or female structures that contain an ovary (#9-12) 1 2 The Flower – 4 Basic Whorls Magnoliophyta - Flowering Plants Early Diverging Angiosperms Variation in flowers – immense and what makes them successful! • number of parts We will begin our survey of • symmetry Great Lakes’ flowering plants • fusion of like parts by examining the “early • fusion of unlike parts diverging angiosperms” • placentation • position of ovary • inflorescence type will use floral formulas as shorthand 3 4 1 The Flower The Flower Early diverging angiosperms tend to have floral parts Early diverging angiosperms tend to have floral parts not fused not fused . and have many parts at each whorl Connation: fusion of floral Adnation: fusion of floral parts parts from same whorl from different whorls 5 6 Magnoliaceae - magnolia family Derivation of the follicle fruit Not found in Wisconsin, but part of the Alleghenian flora. Sub-tropical and warm temperate trees P ∞ A ∞ G ∞ Tepals, laminar stamens, apocarpic 1 floral ‘leaf’ or carpel Folded carpel 1 carpel with 2 with ovules rows of seeds; Magnolia Fruit = “cone” of follicles the fruit opens along the 1 line Dehiscent fruit with one of suture suture, derived from one carpel 7 8 2 Magnoliaceae - magnolia family Aristolochiaceae - birthwort family Tulip tree (Liriodendron) is also not native, but commonly planted. 8-10 genera and about 600 species worldwide; 1 species in Wisconsin. -
Weed Risk Assessment for Ficaria Verna Huds. (Ranunculaceae)
United States Weed Risk Assessment for Ficaria Department of Agriculture verna Huds. (Ranunculaceae) – Fig buttercup Animal and Plant Health Inspection Service August 12, 2015 Version 1 Top: Ficaria verna infestation and plant habit (source: Sylvan Kaufman). Middle: Aerial bulbils at the bases of plant leaves, and underground tubers (source: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org). Bottom: Infestation at a local park near Washington, D.C. (source: Spencer Johnson, Invasive Plant Control, Inc.). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Ficaria verna Huds Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. The PPQ WRA process includes three analytical components that together describe the risk profile of a plant species (risk potential, uncertainty, and geographic potential; PPQ, 2015). -
February 2010 ----- International Rock Gardener
International Rock Gardener Number 2 The Scottish Rock Garden Club February 2010 ----- International Rock Gardener ----- Dear Fellow International Rock Gardeners, We are greatly encouraged by your positive and constructive responses to the first issue and already we have offers of contributions for the future. It is our hope to continue with a rich mix of items, concentrating on the flowers in the wild and in garden settings. Please do get in touch, whether by email or via the IRG Feedback pages on the Forum to share your ideas. In case you did not notice in Issue 1- you will see here that some words are highlighted by blue text –these contain hyperlinks to other relevant websites or to other parts of the SRGC website, such as the SRGC Forum – a left-mouse-click on these links will take you to the destination. Cover photo by Zdenek Zvolánek: Iris rosenbachiana f. nicolai ´Cormozak´ …see REPORTS FROM THE BEAUTY SLOPE for more….. ----- GARDENS IN THE MOUNTAINS ----- Primula x forsteri - natural hybrid (P. hirsuta x P. minima) Alpine meadows –photos Milan Halada The first group of photographs shows alpine plants from the grassy areas above the tree line, where the humus in soil is mostly provided by means of short grasses (species like Carex firma are prevalent). These strongly eroded areas are called alpine meadows and their strategy is very elegant. The amount of grasses, alpines and open gritty places are in pleasant balance. The grasses provide in their root systems havens for nutrients and nitrogen-fixing bacteria and this intelligent system of symbiosis is the reason that we can see such plants as Primula x forsteri, Primula daonensis f.