The Reproductive Biology of the Surf Clams Triangle Shell (Spisula

Total Page:16

File Type:pdf, Size:1020Kb

The Reproductive Biology of the Surf Clams Triangle Shell (Spisula The reproductive biology of the surf clams Triangle Shell (Spisula aequilatera), Ringed dosinia (Dosinia anus) and Deep water Tuatua (Paphies donacina) from the North- East of South Island, New Zealand Nuha Al jadani A thesis submitted to Auckland University of Technology In partial fulfilment of the requirement for the degree of Master of Science (MSc) 2013 School of Applied Science Table of Content List of figures …………………………………………………………………………..…..………..iv List of tables………………………………………………………………………...….……...….…..v Attestation of authorship……………………………………………………………....………....….vii Acknowledgement…………………………………………………………………….………....….viii Abstract………………………………………………………………………………....….…...……ix 1 Introduction .................................................................................................................................. 1 1.1 Background/significance of the problem ............................................................................... 1 1.2 Aim and objectives ................................................................................................................ 3 1.3 Scope and limitation .............................................................................................................. 4 1.4 Organization of the thesis ...................................................................................................... 4 2 Literature review .......................................................................................................................... 6 2.1 Biological characteristics of surf clams ................................................................................. 6 2.2 Life history ............................................................................................................................ 7 2.2.1 Reproductive cycle of surf clams ................................................................................... 8 2.3 Development of surf clams .................................................................................................. 10 2.4 Distribution of surf clams throughout the world ................................................................. 13 2.5 Commercial fishery of surf clams ....................................................................................... 14 2.6 Surf clams in NZ.................................................................................................................. 15 2.6.1 Distribution of surf clams in NZ .................................................................................. 15 2.6.2 Growth rates of surf clams in NZ and influencing factors ........................................... 19 2.7 Harvesting of surf clams in NZ ........................................................................................... 21 2.7.1 Management of surf clams in NZ ................................................................................. 22 2.7.2 Significance of gametogenesis and gonadal development researches ......................... 24 2.8 Conclusion ........................................................................................................................... 26 Triangle shell (Spisula aequilatera) ................................................................................................... 27 3 Triangle shell (Spisula aequilatera) ........................................................................................... 28 i 3.1 Introduction ......................................................................................................................... 28 3.2 Materials and methods ......................................................................................................... 29 3.2.1 Study sites .................................................................................................................... 29 3.2.2 Sampling method .......................................................................................................... 30 3.2.3 Environmental parameters used ................................................................................... 30 3.2.4 Size and growth ............................................................................................................ 30 3.2.5 Techniques to investigate the reproductive biology ..................................................... 31 3.2.6 Statistics ....................................................................................................................... 36 3.3 Data, results and interpretations .......................................................................................... 37 3.3.1 Environmental parameters ............................................................................................ 37 3.3.2 Size and growth ............................................................................................................ 38 3.3.3 Sex ratio ........................................................................................................................ 44 3.3.4 Sexual cycle .................................................................................................................. 47 3.3.5 Condition index for Spisula aequailatera in Cloudy Bay ............................................ 60 3.4 Discussion ............................................................................................................................ 64 Ringed dosinia (Dosinia anus) ........................................................................................................... 75 4 Ringed dosinia (Dosinia anus) ................................................................................................... 76 4.1 Introduction ......................................................................................................................... 76 4.2 Materials and methods ......................................................................................................... 77 4.3 Data, results and interpretations .......................................................................................... 77 4.3.1 Environmental parameters ............................................................................................ 77 4.3.2 Size and growth ............................................................................................................ 77 4.3.3 Sex ratio ........................................................................................................................ 83 4.3.4 Sexual cycle .................................................................................................................. 85 4.3.5 Condition index for Dosinia anus in Cloudy Bay ........................................................ 99 4.4 Discussion .......................................................................................................................... 102 Deep water Tuatua (Paphies donacina) ........................................................................................... 108 ii 5 Deep water Tuatua (Paphies donacina) ................................................................................... 109 5.1 Introduction ....................................................................................................................... 109 5.2 Materials and methods ....................................................................................................... 110 5.3 Data, results and interpretations ........................................................................................ 110 5.3.1 Environmental parameters .......................................................................................... 111 5.3.2 Size and growth .......................................................................................................... 111 5.3.3 Sex ratio ...................................................................................................................... 116 5.3.4 Sexual cycle ................................................................................................................ 118 5.3.5 Condition index for Paphies donacina in Cloudy Bay .............................................. 131 5.4 Discussion .......................................................................................................................... 135 6 Conclusion ................................................................................................................................ 142 References iii List of figures Figure 1-1: 16 sites where biomasses of surf clams are estimated for 450 m wide strips (Cranfield & Michael, 2001b) ................................................................................................................................... 18 Figure 3-1: male and female reproductive cycle .................................................................................. 35 Figure 3-2: Directions of length and width measured .......................................................................... 37 Figure 3-3 :Length versus width: Spisula aequailatera ....................................................................... 40 Figure 3-4 :Length versus total weight: Spisula aequailatera ............................................................. 41 Figure 3-5 :Length versus shell weight: Spisula aequailatera ............................................................. 41 Figure 3-6 :Length versus flesh weight: Spisula aequailatera ............................................................ 42 Figure 3-7 : presence of hermaphrodite: Spisula
Recommended publications
  • Gomphina Veneriformis and Tegillaca Granosa)
    Dev. Reprod. Vol. 14, No. 1, 7-11 (2010) 7 Germ Cell Aspiration (GCA) Method as a Non-fatal Technique for Sex Identification in Two Bivalves (Gomphina veneriformis and Tegillaca granosa) † Jung Sick Lee1, Sun Mi Ju1, Ji Seon Park1, Young Guk Jin2, Yun Kyung Shin3 and Jung Jun Park4 1Dept. of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Korea 2South Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Yeosu 556-823, Korea 3Aquaculture Management Division, National Fisheries Research and Development Institute, Busan 619-705, Korea 4Pathology Division, National Fisheries Research and Development Institute, Busan 619-705, Korea ABSTRACT : This study attempted to verify the possibility of using germ cell aspiration (GCA) method as a non-fatal technique in studying the life-history of equilateral venus, Gomphina veneriformis (Veneridae) and granular ark, Tegillarca granosa (Arcidae). Using twenty-six gauge 1/2" (12.7㎜) needle, GCA was carried out in equilateral venus through external ligament. In granular ark, GCA was performed by preventing closure of the shells by inserting a tongue depressor between the shells while still open. The success rate of sex identification using the GCA method was 95.6% for the equilateral venus (n=650/680) and 94.3% for the granular ark (n=707/750). Mortality of equilateral venus, which spent 33 days under wild conditions, was 13.8% (n=90/650) while the mortality of granular ark, which spent 390 days under wild conditions, was 2.4% (n=17/707). Although we believe that GCA does not appear to cause death in equilateral venus or granular ark, the success rate in employing of this methodology may differ depending on the level of proficiency of the researcher and reproductive stage of the bivalve.
    [Show full text]
  • INFORMATION to USERS the Most Advanced Technology Has Been
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University M'ProCms International A Ben & Howe'' Information Company 300 North Zeeb Road Ann Arbor Ml 40106-1346 USA 3-3 761-4 700 800 501 0600 Order Numb e r 9022566 S o m e aspects of the functional morphology of the shell of infaunal bivalves (Mollusca) Watters, George Thomas, Ph.D.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Zhang Et Al., 2015
    Estuarine, Coastal and Shelf Science 153 (2015) 38e53 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity * Xinzhong Zhang a, , Dale Haidvogel a, Daphne Munroe b, Eric N. Powell c, John Klinck d, Roger Mann e, Frederic S. Castruccio a, 1 a Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA b Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ 08349, USA c Gulf Coast Research Laboratory, University of Southern Mississippi, Ocean Springs, MS 39564, USA d Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA 23529, USA e Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062, USA article info abstract Article history: To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic Received 19 February 2014 surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Accepted 30 November 2014 Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based Available online 10 December 2014 surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and Keywords: recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The surfclam (Spisula solidissima) model results show a typical along-shore connectivity pattern from the northeast to the southwest individual-based model larval transport among the surfclam populations distributed from Georges Bank west and south along the MAB shelf.
    [Show full text]
  • AEBR 114 Review of Factors Affecting the Abundance of Toheroa Paphies
    Review of factors affecting the abundance of toheroa (Paphies ventricosa) New Zealand Aquatic Environment and Biodiversity Report No. 114 J.R. Williams, C. Sim-Smith, C. Paterson. ISSN 1179-6480 (online) ISBN 978-0-478-41468-4 (online) June 2013 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY ....................................................................................................... 1 1. INTRODUCTION ............................................................................................................ 2 2. METHODS ....................................................................................................................... 3 3. TIME SERIES OF ABUNDANCE .................................................................................. 3 3.1 Northland region beaches .......................................................................................... 3 3.2 Wellington region beaches ........................................................................................ 4 3.3 Southland region beaches .........................................................................................
    [Show full text]
  • Recent Trends in Marine Phycotoxins from Australian Coastal Waters
    Review Recent Trends in Marine Phycotoxins from Australian Coastal Waters Penelope Ajani 1,*, D. Tim Harwood 2 and Shauna A. Murray 1 1 Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW 2007, Australia; [email protected] 2 Cawthron Institute, The Wood, Nelson 7010, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +61‐02‐9514‐7325 Academic Editor: Lucio G. Costa Received: 6 December 2016; Accepted: 29 January 2017; Published: 9 February 2017 Abstract: Phycotoxins, which are produced by harmful microalgae and bioaccumulate in the marine food web, are of growing concern for Australia. These harmful algae pose a threat to ecosystem and human health, as well as constraining the progress of aquaculture, one of the fastest growing food sectors in the world. With better monitoring, advanced analytical skills and an increase in microalgal expertise, many phycotoxins have been identified in Australian coastal waters in recent years. The most concerning of these toxins are ciguatoxin, paralytic shellfish toxins, okadaic acid and domoic acid, with palytoxin and karlotoxin increasing in significance. The potential for tetrodotoxin, maitotoxin and palytoxin to contaminate seafood is also of concern, warranting future investigation. The largest and most significant toxic bloom in Tasmania in 2012 resulted in an estimated total economic loss of ~AUD$23M, indicating that there is an imperative to improve toxin and organism detection methods, clarify the toxin profiles of species of phytoplankton and carry out both intra‐ and inter‐species toxicity comparisons. Future work also includes the application of rapid, real‐time molecular assays for the detection of harmful species and toxin genes.
    [Show full text]
  • Physiological Effects and Biotransformation of Paralytic
    PHYSIOLOGICAL EFFECTS AND BIOTRANSFORMATION OF PARALYTIC SHELLFISH TOXINS IN NEW ZEALAND MARINE BIVALVES ______________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Environmental Sciences in the University of Canterbury by Andrea M. Contreras 2010 Abstract Although there are no authenticated records of human illness due to PSP in New Zealand, nationwide phytoplankton and shellfish toxicity monitoring programmes have revealed that the incidence of PSP contamination and the occurrence of the toxic Alexandrium species are more common than previously realised (Mackenzie et al., 2004). A full understanding of the mechanism of uptake, accumulation and toxin dynamics of bivalves feeding on toxic algae is fundamental for improving future regulations in the shellfish toxicity monitoring program across the country. This thesis examines the effects of toxic dinoflagellates and PSP toxins on the physiology and behaviour of bivalve molluscs. This focus arose because these aspects have not been widely studied before in New Zealand. The basic hypothesis tested was that bivalve molluscs differ in their ability to metabolise PSP toxins produced by Alexandrium tamarense and are able to transform toxins and may have special mechanisms to avoid toxin uptake. To test this hypothesis, different physiological/behavioural experiments and quantification of PSP toxins in bivalves tissues were carried out on mussels ( Perna canaliculus ), clams ( Paphies donacina and Dosinia anus ), scallops ( Pecten novaezelandiae ) and oysters ( Ostrea chilensis ) from the South Island of New Zealand. Measurements of clearance rate were used to test the sensitivity of the bivalves to PSP toxins. Other studies that involved intoxication and detoxification periods were carried out on three species of bivalves ( P.
    [Show full text]
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]
  • Ripiro Beach
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. The modification of toheroa habitat by streams on Ripiro Beach A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Research) in Environmental Science at The University of Waikato by JANE COPE 2018 ―We leave something of ourselves behind when we leave a place, we stay there, even though we go away. And there are things in us that we can find again only by going back there‖ – Pascal Mercier, Night train to London i Abstract Habitat modification and loss are key factors driving the global extinction and displacement of species. The scale and consequences of habitat loss are relatively well understood in terrestrial environments, but in marine ecosystems, and particularly soft sediment ecosystems, this is not the case. The characteristics which determine the suitability of soft sediment habitats are often subtle, due to the apparent homogeneity of sandy environments.
    [Show full text]
  • Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
    Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration.
    [Show full text]
  • Surf Clams 1. Introduction
    SURF CLAMS SURF CLAMS Surf clam is a generic term used here to cover the following seven species: Deepwater tuatua, Paphies donacina (PDO) Fine (silky) dosinia, Dosinia subrosea (DSU) Frilled venus shell, Bassina yatei (BYA) Large trough shell, Mactra murchisoni (MMI) Ringed dosinia, Dosinia anus (DAN) Triangle shell, Spisula aequilatera (SAE) Trough shell, Mactra discors (MDI) The same FMAs apply to all these species and this introduction will cover issues common to all of these species. All surf clams were introduced into the Quota Management System on 1 April 2004. The fishing year is from 1 April to 31 March and commercial catches are measured in greenweight. There is no minimum legal size (MLS) for surf clams. Surf clams are managed under Schedule 6 of the Fisheries Act 1996. This allows them to be returned to the sea soon after they are taken provided they are likely to survive. 1. INTRODUCTION Commercial surf clam harvesting before 1995–96 was managed using special permits. From 1995–96 to 2002–03 no special permits were issued because of uncertainty about how best to manage these fisheries. New Zealand operates a mandatory shellfish quality assurance programme for all bivalve shellfish grown and harvested in areas for human consumption. Shellfish caught outside this programme can only be sold for bait. This programme is based on international best practice and is managed by the New Zealand Food Safety Authority (NZFSA), in cooperation with the District Health Board Public Health Units and the shellfish industry1. This involves surveying the water catchment area for 1. For full details of this programme, refer to the Animal Products (Regulated Control Scheme-Bivalve molluscan Shellfish) Regulations 2006 and the Animal Products (Specifications for Bivalve Molluscan 1270 SURF CLAMS pollution, sampling water and shellfish microbiologically over at least 12 months, classifying and listing areas for harvest, regular monitoring of the water and shellfish, biotoxin testing, and closure after rainfall and when biotoxins are detected.
    [Show full text]
  • Annotated Bibliography of Fishing Impacts on Habitat - September 2003 Update
    ANNOTATED BIBLIOGRAPHY OF FISHING IMPACTS ON HABITAT - SEPTEMBER 2003 UPDATE Gulf States Marine Fisheries Commission SEPTEMBER 2003 GSMFC No.: 115 Annotated Bibliography of Fishing Impacts on Habitat - September 2003 Update Edited by Jeffrey K. Rester Gulf States Marine Fisheries Commission Gulf States Marine Fisheries Commission September 2003 Introduction This is the third in a series of updates to the Gulf States Marine Fisheries Commission’s Annotated Bibliography of Fishing Impacts on Habitat originally produced in February 2000. The Commission’s Habitat Subcommittee felt that the gathering of pertinent literature should continue. The third update contains 52 new articles since the publication of the last update. The update uses the same criteria that the original bibliography and first and second updates used to compile articles. It attempts to compile a listing of papers and reports that address the many effects and impacts that fishing can have on habitat and the marine environment. The bibliography is not limited to scientific literature only. It includes technical reports, state and federal agency reports, college theses, conference and meeting proceedings, popular articles, and other forms of nonscientific literature. This was done in an attempt to gather as much information on fishing impacts as possible. Researchers will be able to decide for themselves whether they feel the included information is valuable. Fishing, both recreational and commercial, can have many varying impacts on habitat and the marine environment. Whether a fisher prop scars seagrass, drops an anchor on a coral reef, or drags a trawl across the bottom, each act can alter habitat and affect fish populations.
    [Show full text]