Recent Trends in Marine Phycotoxins from Australian Coastal Waters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
You Are What You Eat: a Genomic Analysis of the Gut Microbiome of Captive and Wild Octopus Vulgaris Paralarvae and Their Zooplankton Prey
ORIGINAL RESEARCH published: 31 May 2017 doi: 10.3389/fphys.2017.00362 You Are What You Eat: A Genomic Analysis of the Gut Microbiome of Captive and Wild Octopus vulgaris Paralarvae and Their Zooplankton Prey Álvaro Roura 1, 2*, Stephen R. Doyle 1, 3, Manuel Nande 4, 5 and Jan M. Strugnell 1, 6 1 Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC, Australia, 2 Ecología y Biodiversidad Marina, Instituto de Investigaciones Marinas (CSIC), Vigo, Spain, 3 Parasite Genomic Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom, 4 Grupo de Acuicultura Marina, Instituto Español de Oceanografía, Vigo, Spain, 5 Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, Vigo, Spain, 6 Marine Biology and Aquaculture, James Cook University, Townsville, QLD, Australia The common octopus (Octopus vulgaris) is an attractive species for aquaculture, however, several challenges inhibit sustainable commercial production. Little is known Edited by: about the early paralarval stages in the wild, including diet and intestinal microbiota, Giovanna Ponte, CephRes and SZN, Italy which likely play a significant role in development and vitality of this important life stage. Reviewed by: High throughput sequencing was used to characterize the gastrointestinal microbiome Muthugounder S. Shivakumar, of wild O. vulgaris paralarvae collected from two different upwelling regions off the coast Periyar University, India Andrea Tarallo, of North West Spain (n = 41) and Morocco (n = 35). These were compared to that Stazione Zoologica Anton Dohrn, Italy of paralarvae reared with Artemia for up to 25 days in captivity (n = 29). In addition, *Correspondence: the gastrointestinal microbiome of zooplankton prey (crabs, copepod and krill) was Álvaro Roura also analyzed to determine if the microbial communities present in wild paralarvae are [email protected] derived from their diet. -
For the Determination of Diarrhetic Shellfish Toxins In
toxins Article A Comparative Analysis of Methods (LC-MS/MS, LC-MS and Rapid Test Kits) for the Determination of Diarrhetic Shellfish Toxins in Oysters, Mussels and Pipis Penelope A. Ajani 1,* , Chowdhury Sarowar 2, Alison Turnbull 3 , Hazel Farrell 4, Anthony Zammit 4, Stuart Helleren 5, Gustaaf Hallegraeff 3 and Shauna A. Murray 1 1 School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia; [email protected] 2 Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, NSW 2088, Australia; [email protected] 3 Institute for Marine and Antarctic Science, University of Tasmania, 15-21 Nubeena Crescent, Taroona, TAS 7053, Australia; [email protected] (A.T.); [email protected] (G.H.) 4 NSW Food Authority, NSW Department of Primary Industries, P.O. Box 232, Taree, NSW 2430, Australia; [email protected] (H.F.); [email protected] (A.Z.) 5 Dalcon Environmental, Building 38, 3 Baron-Hay Ct, South Perth, WA 6151, Australia; [email protected] * Correspondence: [email protected] Abstract: Rapid methods for the detection of biotoxins in shellfish can assist the seafood industry and safeguard public health. Diarrhetic Shellfish Toxins (DSTs) are produced by species of the dinoflagellate genus Dinophysis, yet the comparative efficacy of their detection methods has not been systematically determined. Here, we examined DSTs in spiked and naturally contaminated shellfish– Citation: Ajani, P.A.; Sarowar, C.; Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Magallana gigas/Crassostrea gigas), Blue Turnbull, A.; Farrell, H.; Zammit, A.; Mussels (Mytilus galloprovincialis) and Pipis (Plebidonax deltoides/Donax deltoides), using LC-MS/MS Helleren, S.; Hallegraeff, G.; Murray, and LC-MS in 4 laboratories, and 5 rapid test kits (quantitative Enzyme-Linked Immunosorbent S.A. -
Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo -
Experimental Harvesting of Juvenile Common Octopus Octopus Vulgaris, for Commercial Ongrowing in the Azores
Experimental harvesting of juvenile common octopus Octopus vulgaris, for commercial ongrowing in the Azores CHRISTOPHER K. PHAM & EDUARDO ISIDRO Pham, C.K. & E. Isidro 2010. Experimental harvesting of juvenile common octopus Octopus vulgaris, for commercial ongrowing in the Azores. Arquipelago. Life and Marine Sciences 27: 41-47. Octopus aquaculture is currently restricted to ongrowing of sub-adult to commercial size because culture of paralarvae remains a bottleneck. In most countries, commercial ongrowing rely upon existing pot fisheries for octopuses for obtaining their specimens. In the Azores, such fishery does not exist and effective methods of harvest are required if farming is to be implemented. In this study, we investigated the potential of obtaining sub- adult octopuses on the coast of Faial Island, Azores. Two sets of traps (n=30) consisting of 3 PVC tubes within cement blocks were set-up on two different substrates; soft sediment (Pedro Miguel) and rocky-sand (Pasteleiro) at depth varying between 10 and 30 metres. From June to August 2006, 11 hauls per site were performed. A total of 191 octopuses (from 1.1 to 989 g; average = 135.3 g) were captured. Catches in the soft sediment site were significantly higher than in the other location (CPUE: mean ± SD: 0.33 ± 0.17 vs. 0.15 ± 0.17 octopus trap-1 hour-1*100). The catch was initially dominated by octopus of 300-400 g but as fishing continued, this size classes disappeared and was replaced by smaller individuals. As a result, half of the catch at both sites (51.8%) was composed of specimens with a weight equal or inferior to 50 grams. -
Assessment of the South Australian Pipi (Donax Deltoides) Fishery in 2016/17
Ferguson, G.J. and Hooper, G.E. (2017) Assessment of the Pipi Fishery (Donax deltoides) Assessment of the South Australian Pipi (Donax deltoides) Fishery in 2016/17 G J Ferguson and G E Hooper SARDI Publication No. F2007/000550-2 SARDI Research Report Series No. 957 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 August 2017 Fishery Assessment Report for PIRSA Fisheries and Aquaculture i Ferguson, G.J. and Hooper, G.E. (2017) Assessment of the Pipi Fishery (Donax deltoides) Assessment of the South Australian Pipi (Donax deltoides) Fishery in 2016/17 Fishery Assessment Report for PIRSA Fisheries and Aquaculture G J Ferguson and G E Hooper SARDI Publication No. F2007/000550-2 SARDI Research Report Series No. 957 August 2017 ii Ferguson, G.J. and Hooper, G.E. (2017) Assessment of the Pipi Fishery (Donax deltoides) This publication may be cited as: Ferguson, G. J. and Hooper, G.E. (2017). Assessment of the South Australian Pipi (Donax deltoides) Fishery in 2016/17. Fishery Assessment Report for PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2007/000550-2. SARDI Research Report Series No. 957. 47pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.pir.sa.gov.au/research DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. -
* Denotes Student Presenter P Denotes Non First‐Author Presenter
MONDAY March 30th 2020 STUDENT BREAKFAST (STUDENTS ONLY) 6:30-8:00 AM Hall of Fame PLENARY: Roger Mann – Managing fisheries in the mid-Atlantic in the coming decades – reflections on a period as a fisheries management council member 8:00-8:50 AM International A, B, C ROOM International A International B International C Carroll SESSION ONE HEALTH EPIGENOMES AND SHELLFISH RESTORATION AND SHELLFISH GENETICS AND GENOMICS MUSSELS TITLE MICROBIOMES: FROM SOIL TO PEOPLE CONSERVATION Louis Plough & Jon Puritz Paul Rawson WORKSHOP Peter Kingsley-Smith & Dave Bushek Acacia Alcivar-Warren & Kathy F.J. Tang 9:00 AM ONE HEALTH EPIGENOMICS AND MICROBIOMES: FROM SOIL TO LARGE-SCALE OYSTER RESTORATION IN THE CHESAPEAKE BAY, A PRELIMINARY WHOLE-GENOME TEST FOR ADAPTIVE INTER-INDIVIDUAL VARIABILITY OF FEEDING RATES AND FEEDING- PEOPLE WORKSHOP: RECOGNITION TO WINNERS OF STUDENT USA DIFFERENTIATION IN AN ISOLATED LOW-SALINITY EASTERN OYSTER DIGESTIVE FEEDBACKS IN MYTILUS EDULIS TRAVEL AWARDS AND OUTSTANDING RESEARCHERS IN Westby POPULATION Steeves*, Strohmeier, Filgueira, Strand AQUACULTURE – ONE HEALTH PIONEERS ADDRESSING Hare, Kutsumi ECOSYSTEM, ANIMAL, AND PUBLIC HEALTH Alcivar-Warren 9:15 AM TOWARDS TESTING THE HYPOTHESIS OF TRANSGENERATIONAL PRINCIPLES FOR RESTORATION REEF MONITORING: ACCURACY AND WHOLE-GENOME RESEQUENCING REVEALS GENETIC VARIATIONS HABITAT TYPE INFLUENCES PHYSIOLOGICAL RESPONSE OF AN EPIGENETIC INHERITANCE (TGEI) OF HEALTH EFFECTS CAUSED BY PRECISION OF HABITAT-SPECIFIC ABUNDANCE AND DENSITY AND SELECTION SIGNATURES IN EASTERN OYSTER -
1 Oct 06 IPP Final
INTRODUCTION OF NEW STOCKS INTO THE QUOTA MANAGEMENT SYSTEM ON 1 OCTOBER 2006 CONSULTATION DOCUMENT 9 August 2005 TABLE OF CONTENTS INTRODUCTION........................................................................................................1 COCKLE, PIPI AND TUATUA IN FMA10................................................................15 DEEPWATER CLAM (PZL).....................................................................................17 KNOBBED WHELK (KWH).....................................................................................25 i ii INTRODUCTION 1 In accordance with sections 17B(3) and 19(7) of the Fisheries Act 1996 (the Act), the purpose of this document is to consult on behalf of the Minister of Fisheries on those species or stocks proposed for introduction into the Quota Management System (QMS) on 1 October 2006 (refer Table 1). The Ministry of Fisheries (MFish) requests that you provide your comments on the introduction of these species or stocks into the QMS, their proposed Quota Management Areas (QMAs), fishing year, unit of measure and assessment of the legislative criteria, as outlined in this document. 2 MFish requests that you provide your written comments in response to this consultation document no later than 16 September 2005. Your comments should be in response to the proposals for the species or stocks outlined in Table 1 in relation to: · The assessment of the legislative criteria; · The QMAs, including alternative options, for each stock; · The fishing year for each stock; and · The unit -
IAN Symbol Library Catalog
Overview The IAN symbol libraries currently contain 2976 custom made vector symbols The Libraries Include designed specifically for enhancing science communication skills. Download the complete set or create a custom packaged version. 2976 science/ecology symbols Our aim is to make them a standard resource for scientists, resource managers, 55 albums in 6 categories community groups, and environmentalists worldwide. Easily create diagrammatic representations of complex processes with minimal graphical skills. Currently Vector (SVG & AI) versions downloaded by 91068 users in 245 countries and 50 U.S. states. Raster (PNG) version The IAN Symbol Libraries are provided completely cost and royalty free. Please acknowledge as: Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/). Acknowledgements The IAN symbol libraries have been developed by many contributors: Adrian Jones, Alexandra Fries, Amber O'Reilly, Brianne Walsh, Caroline Donovan, Catherine Collier, Catherine Ward, Charlene Afu, Chip Chenery, Christine Thurber, Claire Sbardella, Diana Kleine, Dieter Tracey, Dvorak, Dylan Taillie, Emily Nastase, Ian Hewson, Jamie Testa, Jan Tilden, Jane Hawkey, Jane Thomas, Jason C. Fisher, Joanna Woerner, Kate Boicourt, Kate Moore, Kate Petersen, Kim Kraeer, Kris Beckert, Lana Heydon, Lucy Van Essen-Fishman, Madeline Kelsey, Nicole Lehmer, Sally Bell, Sander Scheffers, Sara Klips, Tim Carruthers, Tina Kister , Tori Agnew, Tracey Saxby, Trisann Bambico. From a variety of institutions, agencies, and companies: Chesapeake -
Spatial Variability and Depuration of Tetrodotoxin in the Bivalve Paphies Australis from New Zealand T
Toxicon: X 2 (2019) 100008 Contents lists available at ScienceDirect Toxicon: X journal homepage: www.journals.elsevier.com/toxicon-x Spatial variability and depuration of tetrodotoxin in the bivalve Paphies australis from New Zealand T ∗ Laura Biessya,b,c, , Kirsty F. Smitha, D. Tim Harwooda,c, Michael J. Boundya, Ian Hawesb, Susanna A. Wooda a Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand b Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand c New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand ARTICLE INFO ABSTRACT Keywords: Tetrodotoxin (TTX) is a potent neurotoxin responsible for many human intoxications globally. Despite its po- Biotoxin tency and widespread occurrence in taxonomically diverse species, the primary source of TTX remains uncertain. Clam Paphies australis, an endemic clam found in New Zealand, has been found to contain TTX in several locations. Emerging threat However, it is unknown if this represents endogenous production or accumulation from an external source. To Geographic variability address this question, the concentrations of TTX in whole P. australis and dissected organs (siphons, foot, di- Marine bivalves gestive gland and the ‘rest’) from thirteen sites around New Zealand were determined using liquid chromato- Neurotoxin graphy-tandem quadrupole mass spectrometry analysis (LC-MS/MS). Depuration rate of TTX was also in- vestigated by harvesting and measuring concentrations in P. australis maintained in captivity on a toxin-free diet every three to 15 days for 150 days. The LC-MS/MS analyses of the spatial samples showed that TTX was present − in P. australis from all regions tested, with significantly (p < 0.001) higher concentrations (15–50 μgkg 1) − observed at lower latitudes of the North Island compared with trace levels (0.5–3 μgkg 1) in the South Island of New Zealand. -
Food Safety Plans for Abalone Farms Hazards and Risks in Abalone Farming and Processing
Food safety plans for abalone farms Hazards and risks in abalone farming and processing Contents • Hazards and risks in abalone farming and processing 2 Biotoxins in abalone farming: an assessment of risk 3 Abalone farming • Standard Sanitation Operating Procedures (SSOPs) • Process control manual • HACCP manual 4 Abalone processing • Standard Sanitation Operating Procedures (SSOPs) • Process control manual • HACCP manual 2 Hazards and risks in abalone farming and processing Food safety plans for abalone farms Background Food Safety Plans (FSPs) are fast becoming a prerequisite for domestic and international trade. In the present context, abalone farmers applied to the Fisheries Research and Development Corporation (FRDC) for funding with the Abalone Aquaculture Subprogram for development of FSP to cover all aspects of farming and processing of abalone. The program began in April, 2000 and a generic set of plans for a mythical farm, Aussie Abs Pty Ltd, is presented. The system comprises three major elements: Risk Assessment Hazards and risks associated with the abalone business Abalone processing system Abalone farmingsystem • Standard Sanitation Operating • Standard Sanitation Operating Procedures (SSOPs) Procedures (SSOPs) • Process control manual • Process control manual • HACCP manual • HACCP manual HACCP The system is based on the Hazard Analysis Critical Control Point (HACCP) concept, the elements of which are presented below, with the seven HACCP principles contained within the box. Assemble the HACCP team Describe each product -
Support for Harvest Strategy Development in SA Lakes And
SUPPORT FOR HARVESTING STRATEGY DEVELOPMENT FOR SOUTH AUSTRALIA’S LAKES AND COORONG FISHERY FOR PIPI (DONAX DELTOIDES) Final report to the Fisheries Research and Development Corporation GJ Ferguson and TM Ward FRDC Project No. 2008/008 ISBN: 978-1-921563-56-0 April 2014 This report may be cited as: Ferguson, G.J., and Ward, T.M. (2014). Support for harvest strategy development in South Australia’s Lakes and Coorong Fishery for pipi (Donax deltoides). Final report to the Fisheries Research and Development Corporation. Prepared by the South Australian Research and Development Institute (Aquatic Sciences), Adelaide. FRDC Project No. 2008/008. 153pp. Date: 10 April 2014 Published by: South Australia Research and Development Institute © Copyright Fisheries Research and Development Corporation and South Australia Research and Development Institute, 2014 This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Information may not be stored electronically in any form whatsoever without such permission. Disclaimer The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it.