Support for Harvest Strategy Development in SA Lakes And

Total Page:16

File Type:pdf, Size:1020Kb

Support for Harvest Strategy Development in SA Lakes And SUPPORT FOR HARVESTING STRATEGY DEVELOPMENT FOR SOUTH AUSTRALIA’S LAKES AND COORONG FISHERY FOR PIPI (DONAX DELTOIDES) Final report to the Fisheries Research and Development Corporation GJ Ferguson and TM Ward FRDC Project No. 2008/008 ISBN: 978-1-921563-56-0 April 2014 This report may be cited as: Ferguson, G.J., and Ward, T.M. (2014). Support for harvest strategy development in South Australia’s Lakes and Coorong Fishery for pipi (Donax deltoides). Final report to the Fisheries Research and Development Corporation. Prepared by the South Australian Research and Development Institute (Aquatic Sciences), Adelaide. FRDC Project No. 2008/008. 153pp. Date: 10 April 2014 Published by: South Australia Research and Development Institute © Copyright Fisheries Research and Development Corporation and South Australia Research and Development Institute, 2014 This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Information may not be stored electronically in any form whatsoever without such permission. Disclaimer The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. Material presented in these Administrative Reports may later be published in formal peer-reviewed scientific literature. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. ISBN: 978-1-921563-56-0 TABLE OF CONTENTS 1. NON-TECHNICAL SUMMARY 6 2. ACKNOWLEDGEMENTS 11 3. BACKGROUND 12 4. NEED 15 5. OBJECTIVES 17 6. METHODS 18 6.1 Fishery biology 18 6.1.1 Reproduction 18 6.1.2 Intra-annual trends in size distributions of pipi 20 6.1.3 Intra-annual trends in relative biomass of pipi 20 6.2 Improvement to fishery catch and effort reporting 21 6.2.1 Modified catch and effort reporting logbook 22 6.2.2 Evaluation of a digital method for catch and effort reporting 22 6.3 Market information 22 6.3.1 Inter-annual trends in pipi price 22 6.3.2 Intra-annual trends in pipi price 22 6.3.3 Market strategy for the LCF for pipi 24 6.4 Development of fishery performance indicators 25 7. RESULTS/DISCUSSION 26 7.1 Fishery biology 26 7.1.1 Reproduction 26 7.1.2 Intra-annual trends in size distributions of pipi 27 7.1.3 Intra-annual trends in relative biomass of pipi 30 7.1.4 Discussion of fishery biology of pipi 30 7.2 Market information for pipi in South Australia 32 7.2.1 Inter-annual trends in market price of pipi 32 7.2.2 Intra-annual trends in market price of pipi 33 7.2.3 Discussion of market information for pipi 39 7.3 Optimising the harvest period for pipi 40 7.3.1 Markets 40 7.3.2 Biology 41 7.3.3 Discussion of harvest period optimisation 42 7.4 Development of fishery performance indicators 42 7.4.1 Fishery-independent relative biomass 42 7.4.2 Presence/absence of pre-recruits 44 7.4.3 Economic performance 45 7.4.4 Discussion of performance indicators for pipi 46 8. BENEFITS AND ADOPTION 47 9. FURTHER DEVELOPMENT 49 10. PLANNED OUTCOMES 51 11. CONCLUSION 53 12. REFERENCES 55 13. APPENDIX 1: INTELLECTUAL PROPERTY 59 14. APPENDIX 2: STAFF 59 1 15. APPENDIX 3: MODIFIED CATCH AND EFFORT RETURN FOR PIPI 16. APPENDIX 4: MODIFIED DECKHAND DIGITAL CATCH AND EFFORT REPORTING SYSTEM 17. APPENDIX 5: DATA FORMS FOR WINTER-HARVESTING TRIAL 18. APPENDIX 6: COORONG PIPI MARKETING STUDY 19. APPENDIX 7: COORONG PIPI INDUSTRY DEVELOPMENT OPTIONS 20. APPENDIX 8: HARVEST STRATEGY FOR THE LAKES AND COORONG FISHERY FOR PIPI 2 LIST OF FIGURES Figure 3-1. Map of South Australia (inset) showing the location of the Coorong region 12 (red box). The main map shows the location of the fishery for pipi on Younghusband Peninsula including the Coorong Classified Area (yellow shading) from which pipi for human consumption must be taken. Numbers in red are fishery reporting blocks. Figure 6-1. Developmental stages of pipi gonads: (1) no visible gonad; (2) gonad 18 visible at visceral margin; (3) gonad extending from viscera into foot; (4) gonad fills foot and has grainy appearance; and (5) gonad extends to apex of foot. Figure 7-1. Monthly gonad development of pipis measured as percentage mature 26 (pipi >30 mm, n=1034). Figure 7-2. Size at maturity for pipi from the Coorong Classified Area on 27 Younghusband Peninsula, in 2010 (red) and 2011 (black). Horizontal reference lines represent size at 50% (SAM50, black dashes) and 95% maturity (SAM95, blue dashes). Figure 7-3. Size distribution of pipi during annual surveys (green) and from winter- 29 harvesting trials (blue) in 2010 and 2011. Vertical dashed line (red) indicates legal minimum size. Figure 7-4. Comparison of monthly estimates of relative biomass of pipi from winter- 30 harvesting trials with annual estimates of relative biomass. Figure 7-5. Total annual value of pipi from South Australia. 32 Figure 7-6. Total annual catch and local market price for 10 years from 2000-01 to 33 2008-9. Figure 7-7. Destination markets for pipi from 2008-09 to 2011-12. 33 Figure 7-8. Total catch per month from winter-harvesting trials in (A) 2010 and (B) 35 2011. Dashed red lines indicate mean price ($/kg) from pipi fishing season in 2010-11 (A) and 2011-12 (B). Figure 7-9. Sizes of pipi placed on market during winter-harvesting trials in (A) 2010 36 and (B) 2011. (S=small, SM=small-medium, M=medium, L=large). Figure 7-10. Size distribution of commercial catches from (A) Section B (20 to < 40 39 km) and (B) Section C (40 to <60 km), compared to size distribution from research catch. Figure 7-11. Annual estimates for fishery-independent relative biomass. Time-series 43 available as reference period during harvest strategy development (orange) and recent estimates (blue). Figure 7-12. Pre-recruit indicator based on presence/absence of pre-recruits in size 45 frequency distributions from 2007 to 2012. Upper left of each graph shows year, month of pre-season survey and percentage of sample below legal minimum size of 35 mm (all samples n~1000). 3 LIST OF TABLES Table 6-1. Criteria used to determine gonad development (after Gorman et al 2010, 19 Edwards 1999). Table 6-2. Winter-harvesting of pipi during closed season. “X” marks location and time 23 of fishing. Table 7-1. Estimates of SAM and SAM for pipi from Younghusband Peninsula in 50 95 27 2010, 2011 and both years combined. Table 7-2. Days fished in winter-harvesting trials in 2010 and 2011 (SFA, Southern 34 Fishermen’s Association; GPHA, Goolwa Pipi Harvester’s Association). Table 7-3. Contribution to total catch by three size classes of pipi during winter- 36 harvesting trials in 2010 and, 2011. Table 7-4. Key results of General Linear Model (GLM) comparing daily price ($/kg) of pipi from Sydney and Melbourne fish markets, month and pipi size class during the 37 winter-harvesting trial in 2010. (nsnot significant, *significant) Table 7-5. Average price ($/kg) for pipi placed on Sydney and Melbourne fish markets 37 during the winter-harvesting trial for in 2010. Table 7-6. Key results of General Linear Model (GLM) comparing daily price ($/kg) of pipi from Sydney and Melbourne fish markets, month and pipi size class during the 38 winter-harvesting trial in 2011. (nsnot significant, *significant). Table 7-7. Average price ($/kg) for pipi placed on Sydney and Melbourne fish markets 38 during the winter-harvesting trial in 2011. Table 7-8. Annual estimates of fishery-independent relative biomass. 43 4 LIST OF ACRONYMS CCA Coorong Classified Area DEWNR Department of Water and Natural Resources ESD Ecologically Sustainable Development FGM Fishery Gross Margin FRDC Fisheries Research and Development Corporation GPHA Goolwa Pipi Harvester’s Association RIADF Rural Industries Adjustment and Development Fund LCF Lakes and Coorong Fishery LMS Legal Minimum Size MSC Marine Stewardship Council MSF Marine Scale Fishery PFWG Pipi Fishery Working Group PIRSA Primary Industries and Regions South Australia SARDI South Australian Research and Development Institute SASQAP South Australian Shellfish Quality Assurance Program SFA Southern Fishermen’s Association TACC Total Allowable Commercial Catch 5 1. NON-TECHNICAL SUMMARY 2008/008 Harvesting Strategy development for South Australia’s Lakes and Coorong Fishery for pipi (Donax deltoides) PRINCIPAL INVESTIGATOR: Dr G. J. Ferguson ADDRESS: South Australian Research and Development Institute (Aquatic Sciences) PO Box 120 Henley Beach, SA 5022 Telephone: 08 8207 5467 Facsimile: 08 8207 5406 OBJECTIVES: 1. Protect sustainability by developing an index of relative biomass for pipi/clam populations; 2.
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Recent Trends in Marine Phycotoxins from Australian Coastal Waters
    Review Recent Trends in Marine Phycotoxins from Australian Coastal Waters Penelope Ajani 1,*, D. Tim Harwood 2 and Shauna A. Murray 1 1 Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW 2007, Australia; [email protected] 2 Cawthron Institute, The Wood, Nelson 7010, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +61‐02‐9514‐7325 Academic Editor: Lucio G. Costa Received: 6 December 2016; Accepted: 29 January 2017; Published: 9 February 2017 Abstract: Phycotoxins, which are produced by harmful microalgae and bioaccumulate in the marine food web, are of growing concern for Australia. These harmful algae pose a threat to ecosystem and human health, as well as constraining the progress of aquaculture, one of the fastest growing food sectors in the world. With better monitoring, advanced analytical skills and an increase in microalgal expertise, many phycotoxins have been identified in Australian coastal waters in recent years. The most concerning of these toxins are ciguatoxin, paralytic shellfish toxins, okadaic acid and domoic acid, with palytoxin and karlotoxin increasing in significance. The potential for tetrodotoxin, maitotoxin and palytoxin to contaminate seafood is also of concern, warranting future investigation. The largest and most significant toxic bloom in Tasmania in 2012 resulted in an estimated total economic loss of ~AUD$23M, indicating that there is an imperative to improve toxin and organism detection methods, clarify the toxin profiles of species of phytoplankton and carry out both intra‐ and inter‐species toxicity comparisons. Future work also includes the application of rapid, real‐time molecular assays for the detection of harmful species and toxin genes.
    [Show full text]
  • For the Determination of Diarrhetic Shellfish Toxins In
    toxins Article A Comparative Analysis of Methods (LC-MS/MS, LC-MS and Rapid Test Kits) for the Determination of Diarrhetic Shellfish Toxins in Oysters, Mussels and Pipis Penelope A. Ajani 1,* , Chowdhury Sarowar 2, Alison Turnbull 3 , Hazel Farrell 4, Anthony Zammit 4, Stuart Helleren 5, Gustaaf Hallegraeff 3 and Shauna A. Murray 1 1 School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia; [email protected] 2 Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, NSW 2088, Australia; [email protected] 3 Institute for Marine and Antarctic Science, University of Tasmania, 15-21 Nubeena Crescent, Taroona, TAS 7053, Australia; [email protected] (A.T.); [email protected] (G.H.) 4 NSW Food Authority, NSW Department of Primary Industries, P.O. Box 232, Taree, NSW 2430, Australia; [email protected] (H.F.); [email protected] (A.Z.) 5 Dalcon Environmental, Building 38, 3 Baron-Hay Ct, South Perth, WA 6151, Australia; [email protected] * Correspondence: [email protected] Abstract: Rapid methods for the detection of biotoxins in shellfish can assist the seafood industry and safeguard public health. Diarrhetic Shellfish Toxins (DSTs) are produced by species of the dinoflagellate genus Dinophysis, yet the comparative efficacy of their detection methods has not been systematically determined. Here, we examined DSTs in spiked and naturally contaminated shellfish– Citation: Ajani, P.A.; Sarowar, C.; Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Magallana gigas/Crassostrea gigas), Blue Turnbull, A.; Farrell, H.; Zammit, A.; Mussels (Mytilus galloprovincialis) and Pipis (Plebidonax deltoides/Donax deltoides), using LC-MS/MS Helleren, S.; Hallegraeff, G.; Murray, and LC-MS in 4 laboratories, and 5 rapid test kits (quantitative Enzyme-Linked Immunosorbent S.A.
    [Show full text]
  • Assessment of the South Australian Pipi (Donax Deltoides) Fishery in 2016/17
    Ferguson, G.J. and Hooper, G.E. (2017) Assessment of the Pipi Fishery (Donax deltoides) Assessment of the South Australian Pipi (Donax deltoides) Fishery in 2016/17 G J Ferguson and G E Hooper SARDI Publication No. F2007/000550-2 SARDI Research Report Series No. 957 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 August 2017 Fishery Assessment Report for PIRSA Fisheries and Aquaculture i Ferguson, G.J. and Hooper, G.E. (2017) Assessment of the Pipi Fishery (Donax deltoides) Assessment of the South Australian Pipi (Donax deltoides) Fishery in 2016/17 Fishery Assessment Report for PIRSA Fisheries and Aquaculture G J Ferguson and G E Hooper SARDI Publication No. F2007/000550-2 SARDI Research Report Series No. 957 August 2017 ii Ferguson, G.J. and Hooper, G.E. (2017) Assessment of the Pipi Fishery (Donax deltoides) This publication may be cited as: Ferguson, G. J. and Hooper, G.E. (2017). Assessment of the South Australian Pipi (Donax deltoides) Fishery in 2016/17. Fishery Assessment Report for PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2007/000550-2. SARDI Research Report Series No. 957. 47pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.pir.sa.gov.au/research DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences.
    [Show full text]
  • 1 Oct 06 IPP Final
    INTRODUCTION OF NEW STOCKS INTO THE QUOTA MANAGEMENT SYSTEM ON 1 OCTOBER 2006 CONSULTATION DOCUMENT 9 August 2005 TABLE OF CONTENTS INTRODUCTION........................................................................................................1 COCKLE, PIPI AND TUATUA IN FMA10................................................................15 DEEPWATER CLAM (PZL).....................................................................................17 KNOBBED WHELK (KWH).....................................................................................25 i ii INTRODUCTION 1 In accordance with sections 17B(3) and 19(7) of the Fisheries Act 1996 (the Act), the purpose of this document is to consult on behalf of the Minister of Fisheries on those species or stocks proposed for introduction into the Quota Management System (QMS) on 1 October 2006 (refer Table 1). The Ministry of Fisheries (MFish) requests that you provide your comments on the introduction of these species or stocks into the QMS, their proposed Quota Management Areas (QMAs), fishing year, unit of measure and assessment of the legislative criteria, as outlined in this document. 2 MFish requests that you provide your written comments in response to this consultation document no later than 16 September 2005. Your comments should be in response to the proposals for the species or stocks outlined in Table 1 in relation to: · The assessment of the legislative criteria; · The QMAs, including alternative options, for each stock; · The fishing year for each stock; and · The unit
    [Show full text]
  • IAN Symbol Library Catalog
    Overview The IAN symbol libraries currently contain 2976 custom made vector symbols The Libraries Include designed specifically for enhancing science communication skills. Download the complete set or create a custom packaged version. 2976 science/ecology symbols Our aim is to make them a standard resource for scientists, resource managers, 55 albums in 6 categories community groups, and environmentalists worldwide. Easily create diagrammatic representations of complex processes with minimal graphical skills. Currently Vector (SVG & AI) versions downloaded by 91068 users in 245 countries and 50 U.S. states. Raster (PNG) version The IAN Symbol Libraries are provided completely cost and royalty free. Please acknowledge as: Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/). Acknowledgements The IAN symbol libraries have been developed by many contributors: Adrian Jones, Alexandra Fries, Amber O'Reilly, Brianne Walsh, Caroline Donovan, Catherine Collier, Catherine Ward, Charlene Afu, Chip Chenery, Christine Thurber, Claire Sbardella, Diana Kleine, Dieter Tracey, Dvorak, Dylan Taillie, Emily Nastase, Ian Hewson, Jamie Testa, Jan Tilden, Jane Hawkey, Jane Thomas, Jason C. Fisher, Joanna Woerner, Kate Boicourt, Kate Moore, Kate Petersen, Kim Kraeer, Kris Beckert, Lana Heydon, Lucy Van Essen-Fishman, Madeline Kelsey, Nicole Lehmer, Sally Bell, Sander Scheffers, Sara Klips, Tim Carruthers, Tina Kister , Tori Agnew, Tracey Saxby, Trisann Bambico. From a variety of institutions, agencies, and companies: Chesapeake
    [Show full text]
  • Spatial Variability and Depuration of Tetrodotoxin in the Bivalve Paphies Australis from New Zealand T
    Toxicon: X 2 (2019) 100008 Contents lists available at ScienceDirect Toxicon: X journal homepage: www.journals.elsevier.com/toxicon-x Spatial variability and depuration of tetrodotoxin in the bivalve Paphies australis from New Zealand T ∗ Laura Biessya,b,c, , Kirsty F. Smitha, D. Tim Harwooda,c, Michael J. Boundya, Ian Hawesb, Susanna A. Wooda a Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand b Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand c New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand ARTICLE INFO ABSTRACT Keywords: Tetrodotoxin (TTX) is a potent neurotoxin responsible for many human intoxications globally. Despite its po- Biotoxin tency and widespread occurrence in taxonomically diverse species, the primary source of TTX remains uncertain. Clam Paphies australis, an endemic clam found in New Zealand, has been found to contain TTX in several locations. Emerging threat However, it is unknown if this represents endogenous production or accumulation from an external source. To Geographic variability address this question, the concentrations of TTX in whole P. australis and dissected organs (siphons, foot, di- Marine bivalves gestive gland and the ‘rest’) from thirteen sites around New Zealand were determined using liquid chromato- Neurotoxin graphy-tandem quadrupole mass spectrometry analysis (LC-MS/MS). Depuration rate of TTX was also in- vestigated by harvesting and measuring concentrations in P. australis maintained in captivity on a toxin-free diet every three to 15 days for 150 days. The LC-MS/MS analyses of the spatial samples showed that TTX was present − in P. australis from all regions tested, with significantly (p < 0.001) higher concentrations (15–50 μgkg 1) − observed at lower latitudes of the North Island compared with trace levels (0.5–3 μgkg 1) in the South Island of New Zealand.
    [Show full text]
  • Food Safety Plans for Abalone Farms Hazards and Risks in Abalone Farming and Processing
    Food safety plans for abalone farms Hazards and risks in abalone farming and processing Contents • Hazards and risks in abalone farming and processing 2 Biotoxins in abalone farming: an assessment of risk 3 Abalone farming • Standard Sanitation Operating Procedures (SSOPs) • Process control manual • HACCP manual 4 Abalone processing • Standard Sanitation Operating Procedures (SSOPs) • Process control manual • HACCP manual 2 Hazards and risks in abalone farming and processing Food safety plans for abalone farms Background Food Safety Plans (FSPs) are fast becoming a prerequisite for domestic and international trade. In the present context, abalone farmers applied to the Fisheries Research and Development Corporation (FRDC) for funding with the Abalone Aquaculture Subprogram for development of FSP to cover all aspects of farming and processing of abalone. The program began in April, 2000 and a generic set of plans for a mythical farm, Aussie Abs Pty Ltd, is presented. The system comprises three major elements: Risk Assessment Hazards and risks associated with the abalone business Abalone processing system Abalone farmingsystem • Standard Sanitation Operating • Standard Sanitation Operating Procedures (SSOPs) Procedures (SSOPs) • Process control manual • Process control manual • HACCP manual • HACCP manual HACCP The system is based on the Hazard Analysis Critical Control Point (HACCP) concept, the elements of which are presented below, with the seven HACCP principles contained within the box. Assemble the HACCP team Describe each product
    [Show full text]
  • Safefish Annual Report
    SafeFish Annual 2019 Report CEL EB R A T I N G SafeFishYE AR S O F INDUSTRY TESTIMONIALS ON SAFEFISH SafeFish operates through a partnership approach, working closely with industry, government and research stakeholders. Below are some testimonials from these stakeholders to demonstrate the value that SafeFish provides to these organisations. “The FSANZ SafeFish partnership is strong and has been in place since 2010. FSANZ views SafeFish as an important partner in providing a key network to the seafood industry, researchers and regulators to facilitate risk assessment, management and standards considerations by FSANZ at both the domestic and international (Codex) level.” Dr. Glenn Stanley, Deputy Section Manager, Standards and Surveillance Food Standards, Australia New Zealand © 2019 SARDI This work is copyright. Apart from any use as permitted under the Copyright Act 1968 (Cth), no part may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owner. Neither may information be stored electronically in any form whatsoever without such permission. 2 “The risk of becoming ill from consuming seafood is very low. From 2005 to 2015, there were 1533 documented outbreaks in Australia involving 23,628 cases of illness across all food categories: seafood accounted for only 10.7% of these (or 6.7% of total cases). These outbreaks came from a staggering estimate of 1.7 billion 200g seafood meals consumed annually. The work that SafeFish does helps to ensure that this risk continues to be low.” Mr. Mark Boulter Safe Sustainable Seafood Executive Officer, Seafood Importers Association of Australasia Inc. “Our industry relies on several key factors being maintained to allow market access and continuance of operation.
    [Show full text]
  • NESP Project Southern Queensland Report Digsfish
    PROTECTION AND REPAIR OF AUSTRALIA’S SHELLFISH REEFS – SOUTHERN QUEENSLAND REPORT DigsFish Services Report: DF 15-01 30 September 2015 PROTECTION AND REPAIR OF AUSTRALIA’S SHELLFISH REEFS – SOUTHERN QUEENSLAND REPORT Prepared by: Ben Diggles PhD Prepared for: National Environmental Science Program DigsFish Services Pty. Ltd. 32 Bowsprit Cres, Banksia Beach Bribie Island, QLD 4507 AUSTRALIA Ph/fax +61 7 3408 8443 Mob 0403773592 [email protected] www.digsfish.com 2 Contents CONTENTS ......................................................................................................................................................3 10.1 EXECUTIVE SUMMARY..................................................................................................................4 10.2 PRESUMED EXTENT........................................................................................................................8 10.3 INDIGENOUS USE...........................................................................................................................12 10.4 EARLY SETTLEMENT ...................................................................................................................12 10.5 THE HARVEST YEARS...................................................................................................................13 10.6 ECOLOGICAL DECLINE ...............................................................................................................14 10.7 CURRENT EXTENT AND CONDITION........................................................................................19
    [Show full text]
  • Bivalvia: Hiatellidae), in Patagonia Variación En El Patrón Reproductivo a Escala Local De La Almeja Panopea, Panopea Abbreviata (Bivalvia: Hiatellidae), En Patagonia
    Revista de Biología Marina y Oceanografía Vol. 51, Nº2: 359-371, agosto 2016 DOI 10.4067/S0718-19572016000200013 ARTICLE Local scale variation in the reproductive pattern of the southern geoduck, Panopea abbreviata (Bivalvia: Hiatellidae), in Patagonia Variación en el patrón reproductivo a escala local de la almeja panopea, Panopea abbreviata (Bivalvia: Hiatellidae), en Patagonia Paula C. Zaidman1,3, Marina A. Kroeck1, Silvina Van der Molen2,3, Gabriela Williams2,3, Leilen Gracia-Villalobos2,3, Erica Oehrens-Kissner1 and Enrique M. Morsan1 1Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Alte. Storni (CIMAS), Universidad Nacional del Comahue, Provincia de Río Negro, CONICET Guemes 1030, San Antonio Oeste, Rio Negro, Argentina 2Centro para el Estudio de Sistemas Marinos, CONICET, Boulevard Brown 2850 (U9120ACV), Puerto Madryn, Chubut, Argentina 3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, (C1033AAJ) CABA, Argentina. *Corresponding author: [email protected] Resumen.- Durante el 2007 se realizaron estudios para explorar la variabilidad espacial a escala local, del ciclo reproductivo de Panopea abbreviata en 3 poblaciones presentes en los golfos Nord-patagónicos (El Sótano y Puerto Lobos, en el Golfo San Matías, y Punta Conos en el Golfo San José), Argentina. Estudios previos determinaron que P. abbreviata presenta un patrón reproductivo, en ambos sexos, caracterizado por una continua proliferación y evacuación de gametos durante todo el año. Sin embargo, el uso de indicadores cuantitativos (distribución de frecuencia de diámetros ovocitarios, ovocitos por campo ocular y área ovocitaria relativa) para las hembras permitió observar una ligera estacionalidad. Las variaciones en el ciclo reproductivo fueron relacionadas con el régimen anual de temperatura de cada sitio.
    [Show full text]
  • Innovative Mode of Action Based in Vitro Assays for Detection of Marine Neurotoxins
    Innovative mode of action based in vitro assays for detection of marine neurotoxins Jonathan Nicolas Thesis committee Thesis advisor Prof. Dr I.M.C.M. Rietjens Professor of Toxicology Wageningen UR Thesis co-supervisors Dr P.J.M. Hendriksen Project leader, BU Toxicology and Bioassays RIKILT - Institute of Food Safety, Wageningen UR Dr T.F.H. Bovee Expertise group leader Bioassays & Biosensors, BU Toxicology and Bioassays RIKILT - Institute of Food Safety, Wageningen UR Other members Prof. Dr D. Parent-Massin, University of Western Brittany, Brest, France Dr P. Hess, French Research Institute for Exploitation of the Sea (IFREMER), Nantes, France Prof. Dr A.J. Murk, Wageningen UR Prof. Dr A. Piersma, National Institute for Public Health and the Environment (RIVM), Bilthoven This research was conducted under the auspices of the Graduate School VLAG (Avanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Innovative mode of action based in vitro assays for detection of marine neurotoxins Jonathan Nicolas Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. ir. A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 07 October 2015 at 11 a.m. in the Aula. Jonathan Nicolas Innovative mode of action based in vitro assays for detection of marine neurotoxins, 214 pages, PhD thesis, Wageningen UR, Wageningen, NL (2015) With references, with summary in
    [Show full text]