Associations Between Sex‐Organ

Total Page:16

File Type:pdf, Size:1020Kb

Associations Between Sex‐Organ RESEARCH ARTICLE AMERICAN JOURNAL OF BOTANY Associations between sex-organ deployment and morph bias in related heterostylous taxa with diff erent stylar polymorphisms 1 Victoria Ferrero 2,3,8 , Spencer C. H. Barrett 4 , Danny Rojas 5,6 , Juan Arroyo 7 , and Luis Navarro2 PREMISE OF THE STUDY: Populations of heterostylous species are characterized by two or three fl oral morphs with reciprocal positioning of stigmas and anthers. Theoretical models predict equal morph frequencies (isoplethy) when disassortative mating is prevalent in populations, but biased morph ratios may occur when variation in the expression of heterostyly causes deviations from intermorph mating. METHODS: We explore the role of sex-organ deployment in governing morph ratios in two closely related genera of Boraginaceae, exhibiting striking varia- tion in fl oral traits associated with the heterostylous syndrome. We sampled 66 populations of six species of Glandora and 39 populations of three species of Lithodora across their distributional range in the Mediterranean. In each population we estimated morph ratios and measured several fl oral traits. We used phylogenetically corrected and noncorrected regressions to test the hypothesis that diff erences in sex-organ reciprocity and herkogamy are associ- ated with deviations from isoplethy. KEY RESULTS: Biased morph ratios occurred in 24% of populations, particularly in Lithodora . Populations biased for the long-styled morph (L-morph) were more frequent than the short-styled morph (S-morph). Distylous species were less likely to exhibit biased ratios than species with stigma-height dimor- phism. In Lithodora fruticosa , a species lacking reciprocity, decreased herkogamy in the S-morph was associated with increasing L-morph bias, perhaps resulting from self-interference. CONCLUSION: Striking variation in the expression of heterostyly in Glandora and Lithodora is associated with biased morph ratios, which probably result from pollinator-mediated mating asymmetries within populations. KEY WORDS disassortative mating; distyly; fl oral morph ratios; Glandora ; heterostyly; Lithodora ; Mediterranean plants; stigma-height dimorphism Heterostyly is a genetic polymorphism in which populations are ( Darwin, 1877 ; Barrett, 1992 ). Th e genetic control of the polymor- composed of two (distyly) or three (tristyly) fl oral morphs that dif- phism in distylous plants usually involves a single Mendelian dial- fer in the reciprocal placement of stigmas and anthers within fl owers lelic locus in which the long-styled morph is of genotype ss and the short-styled morph is of genotype Ss , although in several species the dominance relations at the S -locus are reversed (Lewis and 1 Manuscript received 28 September 2016; revision accepted 29 November 2016. 2 Department of Plant Biology and Soil Sciences, Faculty of Biology, University of Vigo, As Jones, 1992 ). Th e fl oral morphs are maintained in populations by Lagoas-Marcosende 36200 Vigo, Spain; negative frequency-dependent selection resulting from intermorph 3 CFE, Centre for Functional Ecology and Department of Life Sciences, University of (disassortative) mating. With this genetic system and disassortative Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; mating, a 1:1 morph ratio (isoplethy; Finney, 1953 ) is expected in 4 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks equilibrium populations. Street, Toronto, Ontario, Canada M5S 3B2; 5 Department of Biology and Centre for Environmental and Marine Studies, University of Th e classic textbook depiction of heterostyly as a balanced poly- Aveiro, 3810-193 Aveiro, Portugal; morphism (e.g., Roughgarden, 1979 ; Silvertown and Charlesworth, 6 Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building 2009 ; Charlesworth and Charlesworth, 2010 ) is largely based on Stony Brook, New York 11794 USA; and knowledge of distyly in Primula and emphasizes how the reciprocal 7 Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095 41080 Sevilla, Spain positioning of sex organs (reciprocal herkogamy) associated with a 8 Author for correspondence (e-mail: [email protected]) self and intramorph incompatibility system (heteromorphic incom- doi:10.3732/ajb.1600345 patibility) promotes outcrossing in populations. Th e heterostylous 50 • AMERICAN JOURNAL OF BOTANY 104 (1): 50 – 61 , 2017; http://www.amjbot.org/ © 2017 Botanical Society of America JANUARY 2017 , VOLUME 104 • FERRERO ET AL. —MORPH RATIOS IN SPECIES WITH DIFFERENT STYLAR POLYMORPHISMS • 51 syndrome has evolved on numerous occasions in unrelated animal- siring opportunities through illegitimate pollen transfer should se- pollinated families of fl owering plants ( Ganders, 1979 ; Lloyd and lect for greater sex-organ reciprocity and greater herkogamy. In Webb, 1992a ; Barrett et al., 2000 ), and is perhaps the most well- contrast, in species in which intramorph mating is permitted, because studied discrete fl oral polymorphism. of the absence of heteromorphic incompatibility, pollen wastage Investigations of heterostyly have broadened since Darwin’s does not occur and we might expect less stringent selection for re- seminal work on Primula and Lythrum ( Darwin, 1877 ) to include ciprocal herkogamy and perhaps smaller herkogamy distances. many more families. It is now evident that reciprocal herkogamy Recent investigations of the fl oral biology of several heteromor- may vary considerably in expression and can be associated with phic genera have revealed an unusual combination of reproductive diverse compatibility systems, while still functioning to promote features not evident in previously studied heterostylous taxa. In varying degrees of disassortative pollen transfer (Barrett and several species of Anchusa , Lithodora, Glandora (Boraginaceae), Richards, 1990 ; Dulberger, 1992 ; Lloyd and Webb, 1992a , b ; Barrett and Narcissus (Amaryllidaceae) the style morphs are self-incom- and Cruzan, 1994 ; Ferrero et al., 2012 ; Zhou et al., 2015 ). Moreover, patible but intramorph compatible—a pattern inconsistent with although the frequencies of style morphs in populations are gov- heteromorphic incompatibility and indicative that they possess dis- erned by the aggregate patterns of mating in preceding generations, tinct self-recognition systems ( Anchusa — Dulberger, 1970 ; Philipp a variety of stochastic and deterministic processes can result in morph and Schou, 1981; Schou and Philipp, 1984 ; Lithodora and Glan- ratios that deviate signifi cantly from equality. Founder events and dora — Ferrero et al., 2011a , 2012 ; Narcissus — Dulberger, 1964 ; genetic drift commonly result in biased morph ratios (anisoplethy), Barrett et al., 1997; Arroyo et al., 2002; Baker et al., 2000b ; Simón- especially in species in which features of the life history (e.g., Porcar et al., 2015b ). In Anchusa ( Schou and Philipp, 1983 ) and clonality and episodic sexual recruitment) slow progress to the iso- Narcissus ( Dulberger, 1964 ; Sage et al., 1999 ; Santos-Gally et al., plethic equilibrium ( Ornduff , 1972; Morgan and Barrett, 1988 ; 2015 ; Simón-Porcar et al., 2015b ) self-rejection involves late-acting Eckert and Barrett, 1995). Although less commonly documented, ovarian incompatibility. Signifi cantly, sex-organ reciprocity is less morph-specifi c diff erences in reproductive fi tness can also cause well developed in these taxa despite clear polymorphism for style biased morph ratios in heterostylous populations (Barrett et al., length. Anther heights are usually less well diff erentiated between 1983 ; 2004 ; Brys et al., 2008a ; Weber et al., 2013 ). Th us, determin- the style morphs, and where this occurs in dimorphic taxa, the poly- ing the causes of anisoplethic morph ratios in heterostylous popu- morphism is referred to as stigma-height dimorphism, with popula- lations is a complex problem that usually commences with a study tions composed of L- and S-morphs (reviewed in Barrett et al., 2000 ). of the reproductive correlates of morph-ratio variation, an approach Th eoretical models of the evolution of distyly include stigma- we use here. height dimorphism as an intermediate stage in the transition from Haldane (1936) fi rst recognized that distylous populations stylar monomorphism to distyly ( Charlesworth and Charlesworth, should proceed more rapidly than tristylous populations to an iso- 1979 ; Lloyd and Webb, 1992b ). Comparative evidence in Narcissus plethic equilibrium. He pointed out that in the absence of “illegiti- and Lithodora involving phylogenetic reconstructions of the evolu- mate unions” (self and intramorph mating) in distylous populations, tionary history of stylar polymorphisms generally support these the frequencies of the L- and S-morphs should be fully restored to models (Graham and Barrett, 2004 ; Pérez-Barrales et al., 2006 ; equality in one generation aft er any particular perturbation ( Haldane, Ferrero et al., 2009). However, stigma-height dimorphism is clearly 1936 , p. 396). Th is inference assumed a tight association between a stable polymorphism in each of these taxa because it is reported the stamen and style polymorphism and heteromorphic incompat- from a signifi cant number of species. Moreover, at least in Narcis- ibility. However, not all species with stylar polymorphism possess sus , there is experimental evidence that despite incomplete sex- strong heteromorphic incompatibility, and in species in which self organ reciprocity and intramorph compatibility,
Recommended publications
  • Two New Genera in the Omphalodes Group (Cynoglosseae, Boraginaceae)
    Nova Acta Científica Compostelana (Bioloxía),23 : 1-14 (2016) - ISSN 1130-9717 ARTÍCULO DE INVESTIGACIÓN Two new genera in the Omphalodes group (Cynoglosseae, Boraginaceae) Dous novos xéneros no grupo Omphalodes (Cynoglosseae, Boraginaceae) M. SERRANO1, R. CARBAJAL1, A. PEREIRA COUTINHO2, S. ORTIZ1 1 Department of Botany, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela , Spain 2 CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal *[email protected]; [email protected]; [email protected]; [email protected] *: Corresponding author (Recibido: 08/06/2015; Aceptado: 01/02/2016; Publicado on-line: 04/02/2016) Abstract Omphalodes (Boraginaceae, Cynoglosseae) molecular phylogenetic relationships are surveyed in the context of the tribe Cynoglosseae, being confirmed that genusOmphalodes is paraphyletic. Our work is focused both in the internal relationships among representatives of Omphalodes main subgroups (and including Omphalodes verna, the type species), and their relationships with other Cynoglosseae genera that have been related to the Omphalodes group. Our phylogenetic analysis of ITS and trnL-trnF molecular markers establish close relationships of the American Omphalodes with the genus Mimophytum, and also with Cynoglossum paniculatum and Myosotidium hortensia. The southwestern European annual Omphalodes species form a discrete group deserving taxonomic recognition. We describe two new genera to reduce the paraphyly in the genus Omphalodes, accommodating the European annual species in Iberodes and Cynoglossum paniculatum in Mapuchea. The pollen of the former taxon is described in detail for the first time. Keywords: Madrean-Tethyan, phylogeny, pollen, systematics, taxonomy Resumo Neste estudo analisamos as relacións filoxenéticas deOmphalodes (Boraginaceae, Cynoglosseae) no contexto da tribo Cynoglosseae, confirmándose como parafilético o xéneroOmphalodes .
    [Show full text]
  • And Related Taxa: Evolutionary Relationships and Character Evolution
    Cladistics Cladistics 27 (2011) 559–580 10.1111/j.1096-0031.2011.00352.x A phylogenetic analysis of morphological and molecular characters of Lithospermum L. (Boraginaceae) and related taxa: evolutionary relationships and character evolution James I. Cohen* Department of Biology and Chemistry, Texas A&M International University, LBVSC 379E, 5201 University Blvd, Laredo, TX 78041, USA Accepted 12 January 2011 Abstract Lithospermum (Boraginaceae) includes ca. 60 species and exhibits a wide range of floral, palynological, and vegetative diversity. Phylogenetic analyses based on 10 chloroplast DNA regions and 22 morphological characters were conducted in order to (i) examine evolutionary relationships within Lithospermum and among related genera of Boraginaceae, and (ii) investigate patterns of morphological evolution. Several morphological features, such as long-funnelform corollas, faucal appendages, reciprocal herkogamy, and evident secondary leaf venation, have evolved multiple times within the genus. In contrast, other morphological features, including the presence of glands and the position and number of pollen pores, are less plastic and tend to characterize larger clades. Some features, including the presence of glands, are interpreted as symplesiomorphic for Lithospermum, while others, such as evident secondary leaf venation, appear to have originated repeatedly. The range of structural diversity that occurs among the species of Lithospermum suggests the potential utility of this genus as a model for integrative studies of evolution, development, and molecular biology. Ó The Willi Hennig Society 2011. Lithospermum L., a genus in the family Boraginaceae, the other New World members of Lithospermeae, previ- comprises ca. 60 species, with a centre of diversity in ously placed in Lasiarrhenum I.M.
    [Show full text]
  • In Vitro Studies of Α-Glucosidase Inhibitors and Antiradical
    Food Chemistry 136 (2013) 1390–1398 Contents lists available at SciVerse ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem In vitro studies of a-glucosidase inhibitors and antiradical constituents of Glandora diffusa (Lag.) D.C. Thomas infusion ⇑ Federico Ferreres a, , Juliana Vinholes b, Angel Gil-Izquierdo a, Patrícia Valentão b, ⇑ Rui F. Gonçalves b, Paula B. Andrade b, a Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain b REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, n.° 228, 4050-313 Porto, Portugal article info abstract Article history: Glandora diffusa (Lag.) D.C. Thomas (Boraginaceae) is a species traditionally consumed as an infusion. The Received 25 June 2012 phenolic profile of its aqueous extract was assessed by HPLC–DAD–ESI/MSn. Twenty-seven compounds Received in revised form 12 August 2012 were identified, comprising caffeic and p-coumaric acids, seventeen polymers of caffeic acid and eight Accepted 24 September 2012 3-O-glycosylated flavonols. Caffeic, rosmarinic, and salvianolic acids were the most representative com- Available online 5 October 2012 pounds, accounting for more than 75% of the phenolic fraction. The potential of G. diffusa aqueous extract to act as radical scavenger was assessed against DPPHÅ, superoxide and nitric oxide. A dose-dependent Keywords: response was observed against all reactive species. Moreover, the extract showed promising results as Glandora diffusa (Lag.) D.C. Thomas inhibitor of -glucosidase, being almost 9 times more effective than acarbose.
    [Show full text]
  • (Rubiaceae), a Uniquely Distylous, Cleistogamous Species Eric (Eric Hunter) Jones
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 Floral Morphology and Development in Houstonia Procumbens (Rubiaceae), a Uniquely Distylous, Cleistogamous Species Eric (Eric Hunter) Jones Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES FLORAL MORPHOLOGY AND DEVELOPMENT IN HOUSTONIA PROCUMBENS (RUBIACEAE), A UNIQUELY DISTYLOUS, CLEISTOGAMOUS SPECIES By ERIC JONES A dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2012 Eric Jones defended this dissertation on June 11, 2012. The members of the supervisory committee were: Austin Mast Professor Directing Dissertation Matthew Day University Representative Hank W. Bass Committee Member Wu-Min Deng Committee Member Alice A. Winn Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii I hereby dedicate this work and the effort it represents to my parents Leroy E. Jones and Helen M. Jones for their love and support throughout my entire life. I have had the pleasure of working with my father as a collaborator on this project and his support and help have been invaluable in that regard. Unfortunately my mother did not live to see me accomplish this goal and I can only hope that somehow she knows how grateful I am for all she’s done. iii ACKNOWLEDGEMENTS I would like to acknowledge the members of my committee for their guidance and support, in particular Austin Mast for his patience and dedication to my success in this endeavor, Hank W.
    [Show full text]
  • Evolutionary Transitions of Style Polymorphisms in Lithodora (Boraginaceae) V
    ARTICLE IN PRESS Perspectives in Plant Ecology, Evolution and Systematics Perspectives in Plant Ecology, Evolution and Systematics 11 (2009) 111–125 www.elsevier.de/ppees Evolutionary transitions of style polymorphisms in Lithodora (Boraginaceae) V. Ferreroa,Ã, J. Arroyob, P. Vargasc, J.D. Thompsond, L. Navarroa aDepartamento de Biologı´a Vegetal y Ciencias del Suelo, Facultad de Biologı´a, Universidad de Vigo, As Lagoas-Marcosende 36200 Vigo, Spain bDepartamento de Biologı´a Vegetal y Ecologı´a, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain cReal Jardı´n Bota´nico de Madrid, CSIC, Plaza Murillo 2, 28014 Madrid, Spain dUMR 5175 Centre d’Ecologie Fonctionnelle et Evolutive, CNRS, 1919 Route de Mende, F-34293 Montpellier Cedex 5, France Received 22 September 2008; received in revised form 10 January 2009; accepted 19 January 2009 Abstract Floral polymorphisms provide suitable model systems to test hypotheses concerning the evolution of outbreeding in plants. Although heterostyly has evolved in more than 28 angiosperm families, the evolutionary pathways involving related floral conditions have not yet been fully resolved. In this study, the reconstruction of ancestral states of style polymorphism, with both parsimony and maximum likelihood methods, was carried out for Boraginaceae species in the tribe Lithospermeae, particularly in the genus Lithodora sensu lato, where species present a wide variety of stylar conditions. Detailed floral morphometric analysis confirm different types of style polymorphism within Lithodora. They also reveal a novel style polymorphism (relaxed style dimorphism) in which anther height is variable within a flower (each anther being at a different height), which contrasts to regular distyly (constant anther height within flowers).
    [Show full text]
  • CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS Anales Del Jardín Botánico De Madrid 70(1): 39-47, Enero-Junio 2013
    Volumen 70 N.º 1 enero-junio 2013 Madrid (España) ISSN: 0211-1322 REAL JARDÍN BOTÁNICO CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS Anales del Jardín Botánico de Madrid 70(1): 39-47, enero-junio 2013. ISSN: 0211-1322. doi: 10.3989/ajbm. 2350 Genome size variation and polyploidy incidence in the alpine flora from Spain João Loureiro*, Mariana Castro, José Cerca de Oliveira, Lucie Mota & Rubén Torices Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal [email protected]; [email protected]; [email protected]; [email protected]; [email protected] Abstract Resumen Loureiro, J., Castro, M., Cerca de Oliveira, J., Mota, L. & Torices, R. 2013. Loureiro, J., Castro, M., Cerca de Oliveira, J., Mota, L. & Torices, R. 2013. Genome size variation and polyploidy incidence in the alpine flora from Variación en el tamaño del genoma e incidencia de la poliploidía en la flo- Spain. Anales Jard. Bot. Madrid 70(1): 39-47. ra alpina española. Anales Jard. Bot. Madrid 70(1): 39-47 (en inglés). The interest to study genome evolution, in particular genome size varia- El interés en el estudio de la evolución del genoma, especialmente de la va- tion and polyploid incidence, has increased in recent years. Still, only a few riación en tamaño y de la incidencia de poliploidía, se ha incrementado en studies have been focused at a community level. Of particular interest are los últimos años. Sin embargo, sólo unos pocos estudios se han centrado high mountain species, because of the high frequency of narrow endemics en el nivel de comunidades.
    [Show full text]
  • Flowering Plants. Eudicots
    Edited by K. Kubitzki Volume XIV Flowering Plants. Eudicots Aquifoliales, Boraginales, Bruniales, Dipsacales, Escalloniales, Garryales, Paracryphiales, Solanales (except Convolvulaceae), Icacinaceae, Metteniusaceae, Vahliaceae Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 . The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Eudicots Aquifoliales, Boraginales, Bruniales, XIV Dipsacales, Escalloniales, Garryales, Paracryphiales, Solanales (except Convolvulaceae), Icacinaceae, Metteniusaceae, Vahliaceae Volume Editors: Joachim W. Kadereit Volker Bittrich With 76 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universit€at Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universit€at Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany ISBN 978-3-319-28532-0 ISBN 978-3-319-28534-4 (eBook) DOI 10.1007/978-3-319-28534-4 Library of Congress Control Number: 2016937409 # Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
    [Show full text]
  • Phylogeny and Historical Biogeography of Lithospermeae
    Molecular Phylogenetics and Evolution 141 (2019) 106626 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny and historical biogeography of Lithospermeae (Boraginaceae): T Disentangling the possible causes of Miocene diversifications ⁎ Juliana Chacóna,b, , Federico Lueberta,c, Federico Selvid, Lorenzo Cecchie, Maximilian Weigenda a Nees-Institut für Biodiversität der Pflanzen, Meckenheimer Allee 170, D-53115 Bonn, Germany b Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), D-80638 Munich, Germany c Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, Santiago, Chile d Department of Agriculture, Food, Environment and Forestry, Laboratories of Botany, University of Florence, P. le Cascine 28, I-50144 Firenze, Italy e Natural History Museum University of Florence, Section of Botany “Filippo Parlatore”, via G. La Pira 4, I-50121 Firenze, Italy ARTICLE INFO ABSTRACT Keywords: Studies about the drivers of angiosperm clade diversifications have revealed how the environment continuously Diversification rates alters the species chances to adapt or to go extinct. This process depends on complex interactions between Herkogamy abiotic and biotic factors, conditioned to the geological and tectonic settings, the genetic variability of species Irano-Turanian region and the rate at which speciation occurs. In this study, we aim to elucidate the timing of diversification of the Mediterranean Lithospermeae, the second largest tribe within Boraginaceae, and to identify the possible morphological and Serpentine soils ecological characters associated with shifts in diversification rates of the most species-rich clades. Lithospermeae includes ca. 470 species and 26 genera, among which are some of the largest genera of the family such as Onosma (150 spp.), Echium (60 spp.), and Lithospermum (80 spp.).
    [Show full text]
  • The Systematics of Lithospermum L
    The Systematics of Lithospermum L. (Boraginaceae) and the Evolution of Heterostyly by James Isaac Cohen This thesis/dissertation document has been electronically approved by the following individuals: Davis,Jerrold I (Chairperson) Geber,Monica Ann (Minor Member) Luckow,Melissa A (Minor Member) Miller,James Spencer (Additional Member) Gandolfo Nixon,Maria Alejandra (Additional Member) Turgeon,E G Robert (Field Appointed Member Exam) THE SYSTEMATICS OF LITHOSPERMUM L. (BORAGINACEAE) AND THE EVOLUTION OF HETEROSTYLY A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by James Isaac Cohen August 2010 © 2010 James Isaac Cohen 1 THE SYSTEMATICS OF LITHOSPERMUM L. (BORAGINACEAE) AND THE EVOLUTION OF HETEROSTYLY James Isaac Cohen, Ph.D. Cornell University 2010 Lithospermum L. (Boraginaceae) includes ca. 60 species. The genus has a nearly cosmopolitan distribution, being native to all continents except Australia and Antarctica. The center of diversity for the genus is Mexico and the southwestern United States, and approximately three-quarters of the species of Lithospermum are endemic to this region. Lithospermum and the tribe to which it is assigned, Lithospermeae, have been the subject of recent phylogenetic analyses, but these analyses have been limited in their scope. In order to examine critically the phylogenetics of Lithospermum and its relatives, three matrices, each consisting of 67 taxa, were constructed. The molecular matrix includes 10 chloroplast DNA regions, and the morphological matrix is composed of scores for 22 morphological characters. The combined matrix comprises the data from both of these matrices. Analyses of these matrices resolve Lithospermum as non-monophyletic, because members of other New World genera of Lithospermeae are found to be nested among species of Lithospermum.
    [Show full text]
  • Wonderful Plants Index of Names
    Wonderful Plants Jan Scholten Index of names Wonderful Plants, Index of names; Jan Scholten; © 2013, J. C. Scholten, Utrecht page 1 A’bbass 663.25.07 Adansonia baobab 655.34.10 Aki 655.44.12 Ambrosia artemisiifolia 666.44.15 Aalkruid 665.55.01 Adansonia digitata 655.34.10 Akker winde 665.76.06 Ambrosie a feuilles d’artemis 666.44.15 Aambeinwortel 665.54.12 Adder’s tongue 433.71.16 Akkerwortel 631.11.01 America swamp sassafras 622.44.10 Aardappel 665.72.02 Adder’s-tongue 633.64.14 Alarconia helenioides 666.44.07 American aloe 633.55.09 Aardbei 644.61.16 Adenandra uniflora 655.41.02 Albizia julibrissin 644.53.08 American ash 665.46.12 Aardpeer 666.44.11 Adenium obesum 665.26.06 Albuca setosa 633.53.13 American aspen 644.35.10 Aardveil 665.55.05 Adiantum capillus-veneris 444.50.13 Alcea rosea 655.33.09 American century 665.23.13 Aarons rod 665.54.04 Adimbu 665.76.16 Alchemilla arvensis 644.61.07 American false pennyroyal 665.55.20 Abécédaire 633.55.09 Adlumia fungosa 642.15.13 Alchemilla vulgaris 644.61.07 American ginseng 666.55.11 Abelia longifolia 666.62.07 Adonis aestivalis 642.13.16 Alchornea cordifolia 644.34.14 American greek valerian 664.23.13 Abelmoschus 655.33.01 Adonis vernalis 642.13.16 Alecterolophus major 665.57.06 American hedge mustard 663.53.13 Abelmoschus esculentus 655.33.01 Adoxa moschatellina 666.61.06 Alehoof 665.55.05 American hop-hornbeam 644.41.05 Abelmoschus moschatus 655.33.01 Adoxaceae 666.61 Aleppo scammony 665.76.04 American ivy 643.16.05 Abies balsamea 555.14.11 Adulsa 665.62.04 Aletris farinosa 633.26.14 American
    [Show full text]
  • CXXXVIII. BORAGINACEAE [Nom
    CXXXVIII. BORAGINACEAE [nom. cons.]* Hierbas o subarbustos –en especies extraibéricas también árboles– con indu- mento setoso-híspido, de setas unicelulares y blancas de base pustulado-tuber- culada, muy rara vez glabras o seríceas, a veces acompañadas de pelos plurice- lulares glandulíferos y eglandulosos. Tallo de sección circular, folioso. Hojas al- ternas, rara vez opuestas, enteras, rara vez sinuado-dentadas, con nerviación pinnada, sin estípulas, las inferiores normalmente pecioladas y frecuentemente formando una roseta ± marcada –en la base de plantas anuales o bienales–, las caulinares pecioladas o sésiles, a veces decurrentes por el tallo. Inflorescencia cimosa, con cimas escorpioides, frecuentemente geminadas, generalmente den- sas en la floración y laxas o densas en la fructificación. Flores hermafroditas, rara vez femeninas, pentámeras –en especies extraibéricas tetrámeras o 10-12- meras–, actinomorfas o zigomorfas, diclamídeas, hipóginas, pediceladas o sési- les, bracteadas o ebracteadas. Cáliz gamosépalo, con 5 sépalos –lóbulos– a ve- ces separados casi hasta la base, normalmente acrescente en la fructificación, muy rara vez dialisépalo con los sépalos en disposición helicoidal. Corola ga- mopétala, con 5 pétalos, rotácea, estrellada, campanulada, urceolada, en tubo, infundibuliforme o hipocrateriforme, generalmente con un tubo y un limbo bien diferenciados; tubo normalmente cerrado por 5 escamas o invaginaciones opuestas a los lóbulos de la corola o con un anillo de pelos o de papilas en la parte superior (garganta), a veces con un anillo interno de escamas en la base relacionadas con el acceso al néctar de la flor –escamas nectaríferas–; limbo con 5 lóbulos ± marcados en las flores actinomorfas, a veces muy pequeños y reflejos en las corolas campanuladas o urceoladas, o no muy bien definidos en las muy zigomorfas.
    [Show full text]
  • Jan Scholten Wonderful Plants Reading Excerpt Wonderful Plants of Jan Scholten Publisher: Alonnissos Verlag
    Jan Scholten Wonderful Plants Reading excerpt Wonderful Plants of Jan Scholten Publisher: Alonnissos Verlag http://www.narayana-verlag.com/b14446 In the Narayana webshop you can find all english books on homeopathy, alternative medicine and a healthy life. Copying excerpts is not permitted. Narayana Verlag GmbH, Blumenplatz 2, D-79400 Kandern, Germany Tel. +49 7626 9749 700 Email [email protected] http://www.narayana-verlag.com Table of Contents 0.9.06 Stage-6 40 0.1.1 Publication data 3 0.9.07 Stage-7 40 0.1.2 Table of Contents 13 0.9.08 Stage-8 40 0.1.3 Word of thanks 14 0.9.09 Stage-9 41 0.1.4 Foreword Klein 14 0.9.10 Stage-10 41 0.1.5 Foreword Kuiper 15 0.9.11 Stage-11 41 0.1.6 Introduction 16 0.9.12 Stage-12 42 0.1.7 Introduction use 16 0.9.13 Stage-13 42 0.1.8 Use 17 0.9.14 Stage-14 42 0.2 Goal 18 0.9.15 Stage-15 43 0.3.1 Method 19 0.9.16 Stage-16 43 0.3.2 Element Theory 19 0.9.17 Stage-17 43 0.3.3 Classification of Plants 20 0.9.18 Stage-18 44 0.3.4 Classes 20 000.00 Evolution 44 0.4 Result 21 000.00.00 Kingdom 45 0.4.0 Result 21 000.00.00 Plant Kingdom 47 0.4.1 Phyla and Series 21 000.00.20 Kingdom 49 0.4.2 Classes and Series 22 111.00.00 Archaeoplastidae 51 0.4.3 Subclasses and Series 22 111.02.20 Fucus vesiculosus 51 0.4.4 Orders and Phases 23 111.10.00 Rhodophyta 51 0.4.5 Families and Subphases 23 111.10.13 Helminthochortos 51 0.4.7 Number 23 111.10.20 Chondrus crispus 51 0.5 Discussion 24 111.10.20 Porphyra yezoensis 51 0.5.0 Discussion 24 112.20.00 Glaucophyta 51 0.5.1 Discussion Apg 3 24 210.00.00 Chlorophyta 51 0.5.1
    [Show full text]