Data-Independent Acquisition-Based Quantitative Proteomic Analysis of M.3243A>G MELAS Reveals Novel Potential Pathogenesis An

Total Page:16

File Type:pdf, Size:1020Kb

Data-Independent Acquisition-Based Quantitative Proteomic Analysis of M.3243A>G MELAS Reveals Novel Potential Pathogenesis An Data-Independent Acquisition-Based Quantitative Proteomic Analysis of m.3243A>G MELAS Reveals Novel Potential Pathogenesis and Therapeutic Targets Xueli Chang First Hospital of Shanxi Medical University Wei Zhang First Hospital of Shanxi Medical University Chuanqiang Pu Chinese PLA General Hospital Qiang Shi Chinese PLA General Hospital Juan Wang First Hospital of Shanxi Medical University Jing Zhang First Hospital of Shanxi Medical University Li Yan First Hospital of Shanxi Medical University Wenqu Yang Shanxi Datong University Hui Zhang First Hospital of Shanxi Medical University Junhong Guo ( [email protected] ) First Hospital of Shanxi Medical University Research Keywords: mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS), skeletal muscle, proteomics, DIA Posted Date: July 2nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-38357/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Background The pathogenesis of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS) syndrome is not completely understood. The m.3243A > G mutation responsible for 80% MELAS patients affects proteins with undetermined functions. Therefore, we performed quantitative proteomic analysis on skeletal muscle specimens from MELAS patients. Methods We recruited 10 patients with denitive MELAS and 10 controls matched by age and gender of MELAS patients for comparison. We performed nanospray liquid chromatography-mass spectrometry (LC-MS) based proteomic analysis in the data-independent acquisition (DIA) modes, followed by the statistical analysis to reveal the differentially expressed proteins. Results We identied 128 differential proteins between MELAS and controls, including 68 for down-regulation and 60 for up-regulation. We studied the differential proteins involved in oxidative stress and indicated a highly signicant up-regulation of heat shock protein beta-1 (HSPB1), alpha-crystallin B chain (CRYAB) and heme oxygenase 1 (HMOX1) but a decrease of glucose-6-phosphate dehydrogenase (G6PD) and selenoprotein P (SEPP1). KEGG pathway analysis and gene ontology (GO) evaluation revealed that the phagosome, proliferator-activated receptors (PPAR) signaling pathway and ribosome showed signicant enrichment. Conclusions The results revealed that the imbalance between oxidative stress and antioxidant defense, activation of autophagosomes and abnormal metabolism of mitochondrial ribosome proteins played an important role in m.3243A > G MELAS. The combination of proteomic proling and bioinformatics analysis could contribute novel molecular networks to the pathogenesis of MELAS in a comprehensive manner. 1. Introduction The mitochondrial diseases are one of the most common congenital metabolic defects, with a minimum prevalence of 1:50001, 2. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS) is one of the relatively common mitochondrial diseases affecting the central nervous system. MELAS can affect multiple systems, with a wide range of clinical manifestations including stroke, recurrent headaches, epilepsy, hearing impairment, myopathy, dementia, ataxia and diabetes3. Almost 80% of MELAS patients are caused by the m.3243A > G mutation in the MT-TL1 gene4, 5. The mutation disturbs mitochondrial protein synthesis and ultimately affect the assembly of Complexes I, III and IV on oxidative respiration chains6. The molecular mechanism underlying the pathogenesis of MELAS is not fully understood. Finding out more Page 2/25 effective diagnostic methods, and fully understanding the pathogenesis at molecular level, can prevent and reduce the complications of MELAS in a more effective manner. Mitochondrial proteome is co-encoded by mtDNA and nuclear genome. The mtDNA only encodes 13 OXPHOS proteins; the nuclear genome encodes the remaining roughly 1500 protein and these proteins are transferred to the mitochondria through complex import systems7. The mutations of mitochondrial diseases affect proteins with undetermined functions. These proteins might shed light on the pathogenesis of mitochondrial diseases. Finding these proteins could help us gain valuable insight into pathophysiology of mitochondrial diseases. Recently, the combination of high-throughput omics techniques and complex bioinformatics analysis have brought new hope for revealing the pathogenesis and therapeutic targets about mitochondrial diseases. Increasingly, the quantitative proteomics and bioinformatics analysis can improve our understanding to the role of post-translational modications8. Compared to data-dependent-acquisition (DDA) method, the use of data-independent acquisition (DIA) method can obtain more reliable results and require a smaller samples size. So, the DDA-based proteomics is gradually replaced by DIA-based proteomics. In recent years, as a new tool, DIA-based proteomics is increasingly applied to the study of various diseases9. In this study, we performed nanospray liquid chromatography-mass spectrometry (LC-MS) based proteomic analysis in the DIA modes on skeletal muscle specimens from patients with MELAS. The purpose of this study was to reveal the differentially expressed proteins in skeletal muscle tissue. Subsequently, we performed bioinformatics analysis for potential signaling pathways in the hope of gaining a better understanding of the pathogenesis. 2. Materials And Methods 2.1 Characteristics of individuals and muscle biopsy The diagnostic criteria of MELAS study committee in Japan were adopted in this study10. Page 3/25 Category A: Clinical ndings of stroke-like episodes 1. headache with vomiting 2. seizure 3. hemiplegia 4. cortical blindness or hemianopsia 5. acute focal lesion observed via brain imaging Category B: evidence of mitochondrial dysfunction including 1. high lactate levels (2 mmol/L or more) in plasma and/or cerebral spinal uid or deciency of mitochondrial-related enzyme activities 2. mitochondrial abnormalities in muscle biopsy 3. denitive gene mutation related to MELAS Denitive MELAS two items of Category A and two items of Category B (four items or more). Suspicion of MELAS one item of Category A and two items of Category B (at least three items). In this study, all subjects underwent muscle biopsy for diagnostic purposes. We selected the MELAS patients positive point mutation for m.3243 A > G in genetic screening. We selected the age- and gender-matched subjects who were ultimately deemed to be free of neuromuscular diseases through muscle biopsies as controls. All collecting samples of muscle biopsies were informed consent of patients and controls. All procedures were approved by the Ethics committee of First Hospital of Shanxi Medical University (Taiyuan, China) and carried out in accordance with the principles of Helsinki Declaration. 2.2 Mitochondrial sequencing analysis The entire mitochondrial genome was isolated and mitochondrial m.3243A > G mutation was detected by next- generation sequencing (NGS). Briey, DNA was isolated from 200 mg muscle tissue by use of a DNA Kit CWE9600 (Beijing ComWin Biotech Co., Ltd), and mtDNA was amplied by long-range PCR using specic primer. Next-generation sequencing libraries were constructed by KAPA LTP Library Preparation Kit (KK8234, VWR, USA), and amplied libraries were used in Illumina NovaSeq High-throughput sequencing system (Illumina, USA). Sequenced data was assessed to be qualied by Sequencing Control Software (Illumina, USA) and analyzed by bioinformatic analysis referring human mitochondrial genome database. Mitochondrial m.3243A > G mutation was later conrmed by Sanger Sequencing using specic DNA primers anking MT-TL1 gene. 2.3 Protein Digestion 100 µg of protein from each sample was solubilized in a new Eppendorf tube containing 8 M urea to achieve a nal volume of 100 µL. Then, 2 µL of 0.5 M TCEP was added for incubation for 1 h at 37℃. After 40 minutes of incubation with 4 µL of 1 M iodoacetamide in the dark at room temperature, samples were then precipitated Page 4/25 by addition of -20℃ pre-chilled acetone at the ration of 1:5 at -20℃ overnight and centrifuged for 20 min at 12,000 G. Precipitates were washed and centrifuged again treated with 1 mL pre-chilled 90% acetone aqueous solution. Samples were re-dissolved in 100µL 100 mM TEAB and digested by Sequence grade modied trypsin (Promega, Madison, WI) containing 1:50 enzyme : protein (weight : weight) at 37℃ overnight. The peptide mixture was desalted by C18 ZipTip followed by quantication with Pierce™ Quantitative Colorimetric Peptide Assay (23275). SpeedVac was used for lyophilization. 2.4 Establish Spectrum Database 2.4.1 High PH reverse phase separation The mixed peptides were re-dissolved in buffer A (buffer A: 20 mM ammonium formate in water, pH 10.0, adjusted with ammonium hydroxide) and then loaded onto a reverse phase column (XBridge C18 column, 4.6 mm x 250 mm, 5 µm, Waters Corporation, MA, USA) using Ultimate 3000 HPLC system (Thermo Fisher scientic, MA, USA). High pH separation was achieved in 40 min with a linear gradient starting from 5% B to 45% B (B: 20 mM ammonium formate in 80% ACN, pH 10.0, adjusted with ammonium hydroxide). The column was re-equilibrated at 30℃ for 15 min (ow rate: 1 mL/min). A total of 10 fractions were obtained and dried by vacuum concentrator for future use. 2.4.2 nano-HPLC-MS/MS Analysis The peptides were re-dissolved in solvent A (A: 0.1% formic acid in water) and on-line nanospray LC-MS/MS was performed for analysis
Recommended publications
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Supplementary Figures 1-14 and Supplementary References
    SUPPORTING INFORMATION Spatial Cross-Talk Between Oxidative Stress and DNA Replication in Human Fibroblasts Marko Radulovic,1,2 Noor O Baqader,1 Kai Stoeber,3† and Jasminka Godovac-Zimmermann1* 1Division of Medicine, University College London, Center for Nephrology, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK. 2Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia 3Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, UK †Present Address: Shionogi Europe, 33 Kingsway, Holborn, London WC2B 6UF, UK TABLE OF CONTENTS 1. Supplementary Figures 1-14 and Supplementary References. Figure S-1. Network and joint spatial razor plot for 18 enzymes of glycolysis and the pentose phosphate shunt. Figure S-2. Correlation of SILAC ratios between OXS and OAC for proteins assigned to the SAME class. Figure S-3. Overlap matrix (r = 1) for groups of CORUM complexes containing 19 proteins of the 49-set. Figure S-4. Joint spatial razor plots for the Nop56p complex and FIB-associated complex involved in ribosome biogenesis. Figure S-5. Analysis of the response of emerin nuclear envelope complexes to OXS and OAC. Figure S-6. Joint spatial razor plots for the CCT protein folding complex, ATP synthase and V-Type ATPase. Figure S-7. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated by GO to nucleocytoplasmic transport (GO:0006913). Figure S-8. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated to endocytosis (GO:0006897). Figure S-9. Joint spatial razor plots for 401-set proteins annotated by GO to small GTPase mediated signal transduction (GO:0007264) and/or GTPase activity (GO:0003924).
    [Show full text]
  • Open FINAL GRAD SCHOOL.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science PHOSPHOPROTEOMIC ANALYSIS OF RIBOSOMAL PROTEINS: IMPLICATIONS IN TRANSLATION AND APOPTOSIS A Dissertation in Biochemistry, Microbiology, and Molecular Biology by Jennifer Lynn Miller © 2009 Jennifer Lynn Miller Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2009 The dissertation of Jennifer Lynn Miller was reviewed and approved* by the following: Emine C. Koc Assistant Professor Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee Robert A. Schlegel Professor of Biochemistry and Molecular Biology Wendy Hanna-Rose Assistant Professor Biochemistry and Molecular Biology Ming Tien Professor of Biochemistry Erin D. Sheets Assistant Professor of Chemistry Richard J. Frisque Professor of Molecular Virology Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School. ABSTRACT Mammalian mitochondrial ribosomes synthesize thirteen proteins that are essential for oxidative phosphorylation. Besides having a major role in ATP synthesis, mitochondria also contribute to biochemical processes coordinating apoptosis, mitochondrial diseases, and aging in eukaryotic cells. This unique class of ribosomes is protein-rich and distinct from cytoplasmic ribosomes. However, mitochondrial ribosomes (55S) share a significant homology to bacterial ribosomes (70S), particularly in size, the general mechanism of translation, and ribosomal protein content. Due to the overall resemblance between the two systems and the earlier reports of post-translational modifications, we investigated how phosphorylation of ribosomal proteins from bacteria and mitochondria regulates translation and other acquired roles. Identification of twenty- four phosphorylated 70S and 55S ribosomal proteins as well as the potential endogenous kinase was achieved using 2D-gel electrophoresis and tandem mass spectrometry.
    [Show full text]
  • Supplementary Dataset S2
    mitochondrial translational termination MRPL28 MRPS26 6 MRPS21 PTCD3 MTRF1L 4 MRPL50 MRPS18A MRPS17 2 MRPL20 MRPL52 0 MRPL17 MRPS33 MRPS15 −2 MRPL45 MRPL30 MRPS27 AURKAIP1 MRPL18 MRPL3 MRPS6 MRPS18B MRPL41 MRPS2 MRPL34 GADD45GIP1 ERAL1 MRPL37 MRPS10 MRPL42 MRPL19 MRPS35 MRPL9 MRPL24 MRPS5 MRPL44 MRPS23 MRPS25 ITB ITB ITB ITB ICa ICr ITL original ICr ICa ITL ICa ITL original ICr ITL ICr ICa mitochondrial translational elongation MRPL28 MRPS26 6 MRPS21 PTCD3 MRPS18A 4 MRPS17 MRPL20 2 MRPS15 MRPL45 MRPL52 0 MRPS33 MRPL30 −2 MRPS27 AURKAIP1 MRPS10 MRPL42 MRPL19 MRPL18 MRPL3 MRPS6 MRPL24 MRPS35 MRPL9 MRPS18B MRPL41 MRPS2 MRPL34 MRPS5 MRPL44 MRPS23 MRPS25 MRPL50 MRPL17 GADD45GIP1 ERAL1 MRPL37 ITB ITB ITB ITB ICa ICr original ICr ITL ICa ITL ICa ITL original ICr ITL ICr ICa translational termination MRPL28 MRPS26 6 MRPS21 PTCD3 C12orf65 4 MTRF1L MRPL50 MRPS18A 2 MRPS17 MRPL20 0 MRPL52 MRPL17 MRPS33 −2 MRPS15 MRPL45 MRPL30 MRPS27 AURKAIP1 MRPL18 MRPL3 MRPS6 MRPS18B MRPL41 MRPS2 MRPL34 GADD45GIP1 ERAL1 MRPL37 MRPS10 MRPL42 MRPL19 MRPS35 MRPL9 MRPL24 MRPS5 MRPL44 MRPS23 MRPS25 ITB ITB ITB ITB ICa ICr original ICr ITL ICa ITL ICa ITL original ICr ITL ICr ICa translational elongation DIO2 MRPS18B MRPL41 6 MRPS2 MRPL34 GADD45GIP1 4 ERAL1 MRPL37 2 MRPS10 MRPL42 MRPL19 0 MRPL30 MRPS27 AURKAIP1 −2 MRPL18 MRPL3 MRPS6 MRPS35 MRPL9 EEF2K MRPL50 MRPS5 MRPL44 MRPS23 MRPS25 MRPL24 MRPS33 MRPL52 EIF5A2 MRPL17 SECISBP2 MRPS15 MRPL45 MRPS18A MRPS17 MRPL20 MRPL28 MRPS26 MRPS21 PTCD3 ITB ITB ITB ITB ICa ICr ICr ITL original ITL ICa ICa ITL ICr ICr ICa original
    [Show full text]
  • 2021.03.09.21253187V1.Full.Pdf
    medRxiv preprint doi: https://doi.org/10.1101/2021.03.09.21253187; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Title Integration of proteomics with genomics and transcriptomics increases the diagnostic rate of Mendelian disorders Authors Robert Kopajtich†1,2, Dmitrii Smirnov†1,2, Sarah L. Stenton†1,2, Stefan Loipfinger3, Chen Meng4, Ines F. Scheller5, Peter Freisinger6, Robert Baski7, Riccardo Berutti1,2, Jürgen Behr4, Martina Bucher8, Felix Distelmaier9, Mirjana Gusic1,2, Maja Hempel10, Lea Kulterer1,2, Johannes Mayr11, Thomas Meitinger1, Christian Mertes3, Metodi D. Metodiev12, Agnieszka Nadel1,2, Alessia Nasca13,14, Akira Ohtake15, Yasushi Okazaki16, Rikke Olsen17, Dorota Piekutowska-Abramczuk18, Agnès Rötig12, René Santer19, Detlev Schindler20, Abdelhamid Slama21, Christian Staufner22, Tim Strom1, Patrick Verloo23, Jürgen-Christoph von Kleist- Retzow24, Saskia B. Wortmann11,25, Vicente A. Yépez1,3, Costanza Lamperti13, Daniele Ghezzi13,14, Kei Murayama26, Christina Ludwig4, Julien Gagneur3,27, Holger Prokisch*1,2 † These authors contributed equally to this work * Corresponding author Affiliations 1. Institute of Human Genetics, Technical University of Munich, Munich, Germany 2. Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany 3. Department of Informatics, Technical University of Munich, Garching, Germany NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.03.09.21253187; this version posted March 12, 2021.
    [Show full text]
  • Identification of Gene Expression Pattern Related to Breast Cancer Survival Using Integrated TCGA Datasets and Genomic Tools
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 878546, 10 pages http://dx.doi.org/10.1155/2015/878546 Research Article Identification of Gene Expression Pattern Related to Breast Cancer Survival Using Integrated TCGA Datasets and Genomic Tools Zhenzhen Huang,1 Huilong Duan,1 and Haomin Li2,3 1 College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhouyiqing Building No. 510, Yuquan Campus, Hangzhou 310027, China 2TheChildren’sHospital,ZhejiangUniversity,ZhouyiqingBuildingNo.510,YuquanCampus,Hangzhou310003,China 3The Institute of Translational Medicine, Zhejiang University, Zhouyiqing Building No. 510, Yuquan Campus, Hangzhou 310029, China Correspondence should be addressed to Haomin Li; [email protected] Received 3 July 2015; Revised 14 September 2015; Accepted 28 September 2015 Academic Editor: S´ılvia A. Sousa Copyright © 2015 Zhenzhen Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Several large-scale human cancer genomics projects such as TCGA offered huge genomic and clinical data for researchers to obtain meaningful genomics alterations which intervene in the development and metastasis of the tumor. A web-based TCGA data analysis platform called TCGA4U was developed in this study. TCGA4U provides a visualization solution for this study to illustrate the relationship of these genomics alternations with clinical data. A whole genome screening of the survival related gene expression patterns in breast cancer was studied. The gene list that impacts the breast cancer patient survival was divided into two patterns. Gene list of each of these patterns was separately analyzed on DAVID.
    [Show full text]
  • Transcriptomic and Proteomic Landscape of Mitochondrial
    TOOLS AND RESOURCES Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals Inge Ku¨ hl1,2†*, Maria Miranda1†, Ilian Atanassov3, Irina Kuznetsova4,5, Yvonne Hinze3, Arnaud Mourier6, Aleksandra Filipovska4,5, Nils-Go¨ ran Larsson1,7* 1Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany; 2Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC) UMR9198, CEA, CNRS, Univ. Paris-Sud, Universite´ Paris-Saclay, Gif- sur-Yvette, France; 3Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany; 4Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia; 5School of Molecular Sciences, The University of Western Australia, Crawley, Australia; 6The Centre National de la Recherche Scientifique, Institut de Biochimie et Ge´ne´tique Cellulaires, Universite´ de Bordeaux, Bordeaux, France; 7Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden Abstract Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative *For correspondence: analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five [email protected] knockout mouse strains deficient in essential factors required for mitochondrial DNA gene (IKu¨ ); expression, leading to OXPHOS dysfunction. Moreover,
    [Show full text]
  • Integrated Analysis of Weighted Gene Coexpression Network Analysis Identifying Six Genes As Novel Biomarkers for Alzheimer’S Disease
    Hindawi Oxidative Medicine and Cellular Longevity Volume 2021, Article ID 9918498, 16 pages https://doi.org/10.1155/2021/9918498 Research Article Integrated Analysis of Weighted Gene Coexpression Network Analysis Identifying Six Genes as Novel Biomarkers for Alzheimer’s Disease Tingting Zhang ,1 Nanyang Liu,2 Wei Wei,1 Zhen Zhang,2 and Hao Li 2 1College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China 2Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China Correspondence should be addressed to Hao Li; [email protected] Received 19 March 2021; Accepted 14 July 2021; Published 26 July 2021 Academic Editor: Qiangqiang Li Copyright © 2021 Tingting Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease; however, there are no comprehensive therapeutic interventions. Therefore, this study is aimed at identifying novel molecular targets that may improve the diagnosis and treatment of patients with AD. Methods. In our study, GSE5281 microarray dataset from the GEO database was collected and screened for differential expression analysis. Genes with a P value of <0.05 and ∣ log 2FoldChange∣ >0:5 were considered differentially expressed genes (DEGs). We further profiled and identified AD-related coexpression genes using weighted gene coexpression network analysis (WGCNA). Functional enrichment analysis was performed to determine the characteristics and pathways of the key modules. We constructed an AD-related model based on hub genes by logistic regression and least absolute shrinkage and selection operator (LASSO) analyses, which was also verified by the receiver operating characteristic (ROC) curve.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • Mitochondrial Ribosomal Proteins: Candidate Genes for Mitochondrial Disease James E
    March/April 2004 ⅐ Vol. 6 ⅐ No. 2 review Mitochondrial ribosomal proteins: Candidate genes for mitochondrial disease James E. Sylvester, PhD1, Nathan Fischel-Ghodsian, MD2, Edward B. Mougey, PhD1, and Thomas W. O’Brien, PhD3 Most of the energy requirement for cell growth, differentiation, and development is met by the mitochondria in the form of ATP produced by the process of oxidative phosphorylation. Human mitochondrial DNA encodes a total of 13 proteins, all of which are essential for oxidative phosphorylation. The mRNAs for these proteins are translated on mitochondrial ribosomes. Recently, the genes for human mitochondrial ribosomal proteins (MRPs) have been identified. In this review, we summarize their refined chromosomal location. It is well known that mutations in the mitochondrial translation system, i.e., ribosomal RNA and transfer RNA cause various pathologies. In this review, we suggest possible associations between clinical conditions and MRPs based on coincidence of genetic map data and chromosomal location. These MRPs may be candidate genes for the clinical condition or may act as modifiers of existing known gene mutations (mt-tRNA, mt-rRNA, etc.). Genet Med 2004:6(2):73–80. Key Words: mitochondrial, ribosomal proteins, oxidative phosphorylation, candidate genes, translation Most of the energy requirements for cell growth, differenti- THE MITORIBOSOME ation, and development are met by the mitochondrial ATP Human cells contain two genomes and two protein synthe- produced by the process of oxidative phosphorylation. Mito- sizing (translation) systems. The first is the nuclear genome of chondrial DNA encodes 13 essential proteins of this oxidative 3 ϫ 109 bp that has 30,000 to 40,000 genes coding a much phosphorylation system.
    [Show full text]
  • Hepatic Peroxisome and Its Implications on Cardiac Function, Inflammation and Aging
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Hepatic peroxisome and its implications on cardiac function, inflammation and aging Kerui Huang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Huang, Kerui, "Hepatic peroxisome and its implications on cardiac function, inflammation and aging" (2020). Graduate Theses and Dissertations. 18329. https://lib.dr.iastate.edu/etd/18329 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Hepatic peroxisome and its implications on cardiac function, inflammation and aging by Kerui Huang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics and Genomics Program of Study Committee: Hua Bai, Major Professor Stephen Howell Kristen Johansen Maura McGrail Marna Yandeau-Nelson The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Kerui Huang, 2020. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my parents, who always give me full support even under difficult times. Also, my husband, who endured the same level of stress as a PhD student yet managed to give guidance and encouragement.
    [Show full text]
  • Mitochondrial Functionality in Male Fertility: from Spermatogenesis to Fertilization
    antioxidants Review Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization Yoo-Jin Park and Myung-Geol Pang * Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; [email protected] * Correspondence: [email protected] Abstract: Mitochondria are structurally and functionally distinct organelles that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), to provide energy to spermatozoa. They can also produce reactive oxidation species (ROS). While a moderate concentration of ROS is critical for tyrosine phosphorylation in cholesterol efflux, sperm–egg interaction, and fertilization, excessive ROS generation is associated with male infertility. Moreover, mitochondria participate in diverse processes ranging from spermatogenesis to fertilization to regulate male fertility. This review aimed to summarize the roles of mitochondria in male fertility depending on the sperm developmen- tal stage (from male reproductive tract to female reproductive tract). Moreover, mitochondria are also involved in testosterone production, regulation of proton secretion into the lumen to maintain an acidic condition in the epididymis, and sperm DNA condensation during epididymal maturation. We also established the new signaling pathway using previous proteomic data associated with male fertility, to understand the overall role of mitochondria in male fertility. The pathway revealed that male infertility is associated with a loss of mitochondrial proteins in spermatozoa, which induces low sperm motility, reduces OXPHOS activity, and results in male infertility. Keywords: mitochondria; oxidative phosphorylation; spermatozoa; male infertility; testis; epididymis; capacitation; fertilization Citation: Park, Y.-J.; Pang, M.-G. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to 1. Introduction Fertilization. Antioxidants 2021, 10, 98.
    [Show full text]