P41-47 Looking Forwards Layout 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  The Sustainable Harvesting of Non-Timber Forest ProductsTHE SUSTAINABLE HARVESTING OF NON-TIMBER FOREST PRODUCTS FROM NATURAL FORESTS IN THE SOUTHERN CAPE, SOUTH AFRICA: DEVELOPMENT OF HARVEST SYSTEMS AND MANAGEMENT PRESCRIPTIONS Wessel Johannes Vermeulen Dissertation presented for the degree of Doctor of Philosophy (Conservation Ecology) at Stellenbosch University Promoters: Prof. K.J. Esler Prof. C.J. Geldenhuys March 2009 DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 13 February 2009 Copyright © 2009 Stellenbosch University All rights reserved ii ABSTRACT There is a growing appreciation of the importance of non-timber forest products (NTFPs) and the role they play in the socio-economic wellbeing of rural communities and other stakeholders. Harvest systems to ensure sustainable harvesting are largely still lacking and overutilisation is of growing concern worldwide. In this study the science needed to underwrite management for sustainable use of NTFPs was explored. This was done using case studies of three different products harvested from natural forest in the southern Cape, South Africa viz. fern (Rumohra adiantiformis) fronds (leaves) as greenery in the florist industry, medicinal tree bark, and the corm (stem) of the geophyte Bulbine latifolia for medicinal use. The research approach enabled insight into the complexities of developing harvest systems for NTFPs, the input and expertise required to conduct applied research, and the variation in approach required for different products and plant growth forms.
- 
												  Vegetation Survey of Mount GorongosaVEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.
- 
												  Exploring Bridge-Grafting As Technique to Restore Growth in Girdled Ocotea Bullata and Curtisia Dentata in the Southern Cape Forest AreaExploring bridge-grafting as technique to restore growth in girdled Ocotea bullata and Curtisia dentata in the Southern Cape forest area by ANNA SUSANNA VAN WYK submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject NATURE CONSERVATION at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: MRS. E.M. VAN STADEN CO-SUPERVISORS: PROF. W.A.J. NEL DR. G PRINSLOO MAY 2017 ii ACKNOWLEDGEMENTS I would first and foremost like to express my sincerest appreciation to my supervisors, Mrs. E.M. van Staden and Prof. W.A.J. Nel, for their professional guidance and unequivocal support, and the trust shown in me during the entire study period. I would furthermore like to thank Dr. Gerhard Prinsloo for introducing me to metabolomics as a method for analyzing plant metabolites and for the training and assistance provided regarding the analysis of the bark samples. A special thank you to UNISA as an institution, for the opportunities I was presented with during this study period, with special reference to Professor Nel, Mrs. Van Staden and Dr. Prinsloo who made these opportunities possible. I would like to extend my gratitude to the SANParks staff involved in making this study possible – Dr. Wessel Vermeulen and his team of scientists at Scientific Services in Knysna, Jessica Hayes, regional ecologist, Sandra Taljaard, Park Manager of the Wilderness National Park, and Leslie-Ann Meyer, Park Manager of the Tsitsikamma National Park. Your inputs are highly valued and appreciated. My appreciation goes further to include all SANParks staff members who assisted me during the entire study period.
- 
												  2Nd International Congress of Alpine and Arctic Botanical GardensProceedings of the 2nd International Congress of Alpine and Arctic Botanical Gardens München 22-25 April 2009 CONTENTS • Introduction........................................................ 5 • Christine Freitag (Freising, Germany) Educative tools to connect an alpine garden Diversification of Collections to the surrounding vegetation......................... 35 • Katie Price (Kew, United Kingdom) • Jenny Wainwright-Klein (München, Germany) Kew’s Alpine House - what’s the point?......... 39 Experiences with the introduction of southern hemisphere alpines.............................................. 6 Research and Conservation Activities • Richard Hurstel, Pascal Salze, Christophe Per- rier, Rolland Douzet & Serge Aubert (Grenoble, • Gunter Karste (Wernigerode, Germany) France) Investigation on renaturation of the subalpine Experiences with the introduction of southern meadow vegetation on top of Brocken mountain hemisphere alpines: Southern Andes and Pata- ............................................................................. 44 gonia...................................................................... 9 • Andreas Gröger & Annette Menzel (München & • Anne Humburg (Seligenstadt, Germany) Freising, Germany) Betty Ford Alpine Gardens: the many faces of Detection of climate change impacts in alpine North America’s highest botanical garden...... 13 and arctic botanic gardens: a long-term pheno- logy observation program............................... 47 Horticultural Practices • George Nakhutsrishvili, Sh. Sikharulidze (Tbilisi, Georgia)
- 
												  Summary: Monitoring for Sustainable Indigenous ForestMONITORING FOR SUSTAINABLE INDIGENOUS FOREST MANAGEMENT IN THE GARDEN ROUTE NATIONAL PARK Knysna 2014 ii CONTENTS Page 1 INTRODUCTION 1 2 FOREST DYNAMICS MONITORING 2 2.1 Diepwalle Research Areas 2 2.2 Tsitsikamma strip plots 3 2.3 Permanent Sample Plots (PSPs) in nature reserves 3 2.4 National system of forest plots 3 3 FOREST DISTURBANCE AND RECOVERY 4 3.1 Gap dynamics research 5 3.2 Storms River big tree 5 3.3 Photo-monitoring of burnt forest 6 3.4 Koomansbos fire gap 7 3.5 Forest establishment 7 3.6 Forest succession on a burnt forest margin 7 4 UTILISATION OF FOREST PRODUCTS 8 4.1 Timber utilization 8 Permanent sample plots (PSPs) 9 Post-harvesting audit 11 4.2 Ferns 12 4.3 Bulbine 13 4.4 Bark 13 5 PLANT SPECIES OF CONSERVATION CONCERN 14 6 BLACKWOOD 15 6.1 Incidence of spread monitoring 15 6.2 Success of control action monitoring 16 6.3 Harkerville blackwood plot 16 iii 7 FAUNA 16 7.1 Antelope population monitoring 16 7.2 Rare mammal monitoring 16 7.3 Crowned eagle monitoring 17 7.4 The Knysna elephants 18 8 CULTURAL HERITAGE RESOURCE MANAGEMENT 19 9 SOCIAL MONITORING 19 9.1 Broad Based Black Economic Empowerment 19 9.2 Employment Equity 19 9.3 People and Conservation Park Based Education and Youth Development Programmes 20 9.4 Expanded Public Works Programmes (EPWP’s) 20 10 WASTE DISPOSAL 20 10.1 Hazardous waste 20 10.2 Household waste 21 11 CHEMICAL USAGE 21 12 COSTS, PRODUCTIVITY AND EFFICIENCY OF FOREST MANAGEMENT 21 13 CONCLUSION 22 APPENDIX 1: HARVEST TREE SELECTION CRITERIA APPLIED IN THE INDIGENOUS FORESTS OF THE GARDEN ROUTE NATIONAL PARK 23 APPENDIX 2: TREE LIST FOR THE INDIGENOUS FORESTS OF THE GARDEN ROUTE 24 1 1 INTRODUCTION The Garden Route National Park (GRNP) consists of a mosaic of diverse terrestrial, freshwater, estuarine and marine ecosystems, landscapes, and cultural heritage.
- 
												  Cambo Plant Sales - June 2020CAMBO PLANT SALES - JUNE 2020 In addition to items on this list, we have the gift shop products available too. Please add a note to your order and Charlotte will call you from the giftshop to talk you through some of our lovely local handmade gifts and products. (eg. A birthday card for a female and a small gift for around £10) Category (from KT Item Size Description Price Availability original spreadsheet) 1 Garden product Bee Bomb Bee bomb flower seeds contain 1000s of seeds 7.99 Now from 18 native wildflower species, mixed with protective clay and top soil. 1 pack provides coverage for roughly 21 sq ft / 2m². 2 Garden product Buds Garden Gloves - Childrens XXS (4-6 A durable and easy to wear kids glove that will 3.99 Now yrs) keep little hands safe whilst gardening outside. 3 Garden product Buds Garden Gloves - Childrens XS (7-9 yrs) A durable and easy to wear kids glove that will 3.99 Now keep little hands safe whilst gardening outside. 4 Garden product Darlac Bypass Pruner (Expert Little pressure is required in pruning of this nature 25.99 Now Bypass Pruner) so the pruners are lightweight. SK5 high carbon steel. 5 Garden product Darlac garden trowel For general gardening and potting. Eco friendly 9.95 Now bamboo handle & stainless steel head 6 Garden product Darlac lightweight sheers Extra long handles for greater reach, replaceable 17.99 Now carbon steel blades, Razor sharp 8" carbon steel blades, For grass, hedge trimming and topiary 7 Garden product Melcourt peat-free Sylvagrow 50L Used in the gardens at Cambo 11.50 Now compost Category (from KT Item Size Description Price Availability original spreadsheet) 8 Garden product Nutscene twine spool - Nutscene Twist Garden Twine.
- 
												  PERENNIAL PLANTS Plant Name Common Name Height Colour Bl Time Special Conditions Country SPERENNIAL PLANTS Plant Name Common Name Height Colour Bl Time Special Conditions Country S. Europe, NW Acanthus mollis Bear's Breeches to 5' (1.5m) white fls. with purple shaded bracts l summer z7 sun/pt.shade,well drained, moist good soil Africa Acanthus spinosus Bear's Breeches to 5' (150cm) white flowers with purple bracts lsp-msum z5 sun/pt.shade, good soil, tolerates dry heat Italy to W Turkey Aconitum Monkshood large dark blue flowers l summer z5 sun/part shade, cool moist fertile soil Aconitum Monkshood dark blue flowers l summer z5 sun/part shade, cool moist fertile soil Monkshood (all parts are Aconitum carmichaelii to 6' (190cm) violet or blue flowers l sp to fall z3 sun/pt.shade, cool, moist, fertile soil Russia poisonous) Monkshood (all parts are Aconitum carmichaelii 'Barker's Variety' to 6' (190cm) deep violet flowers early fall z3 sun/pt.shade, cool, moist, fertile soil poisonous) Aconitum 'Ivorine' (syn.A.septentrionale Monkshpood (all parts are to 36" (90cm) ivory flowers l spring z5 sun/pt.shade, cool, moist, fertile soil garden origin 'Ivorine') poisonous) Aconitum lycoctonum ssp.vulparia Monkshood (all parts are to 5' (1.5m) pale yellow flowered form sum/e fall z4 sun/pt.shade, cool, moist, fertile soil Europe (A.orientale of gardens) poisonous) Acorus gramineus 'Variegatus' Variegated Japanese Rush to 10" (25 cm) creamy white and green striped leaves summer z5 full sun, wet or very moist soil E Asia z4 shade/pt.sh.moist mod-fertile soil.Survives under Actaea erythrocarpa (syn. A.spicata var. rubra) 24" (60cm) racemes of white flowers,red berries late spring Euro.
- 
												  Plants at MCBGMendocino Coast Botanical Gardens All recorded plants as of 10/1/2016 Scientific Name Common Name Family Abelia x grandiflora 'Confetti' VARIEGATED ABELIA CAPRIFOLIACEAE Abelia x grandiflora 'Francis Mason' GLOSSY ABELIA CAPRIFOLIACEAE Abies delavayi var. forrestii SILVER FIR PINACEAE Abies durangensis DURANGO FIR PINACEAE Abies fargesii Farges' fir PINACEAE Abies forrestii var. smithii Forrest fir PINACEAE Abies grandis GRAND FIR PINACEAE Abies koreana KOREAN FIR PINACEAE Abies koreana 'Blauer Eskimo' KOREAN FIR PINACEAE Abies lasiocarpa 'Glacier' PINACEAE Abies nebrodensis SILICIAN FIR PINACEAE Abies pinsapo var. marocana MOROCCAN FIR PINACEAE Abies recurvata var. ernestii CHIEN-LU FIR PINACEAE Abies vejarii VEJAR FIR PINACEAE Abutilon 'Fon Vai' FLOWERING MAPLE MALVACEAE Abutilon 'Kirsten's Pink' FLOWERING MAPLE MALVACEAE Abutilon megapotamicum TRAILING ABUTILON MALVACEAE Abutilon x hybridum 'Peach' CHINESE LANTERN MALVACEAE Acacia craspedocarpa LEATHER LEAF ACACIA FABACEAE Acacia cultriformis KNIFE-LEAF WATTLE FABACEAE Acacia farnesiana SWEET ACACIA FABACEAE Acacia pravissima OVEN'S WATTLE FABACEAE Acaena inermis 'Rubra' NEW ZEALAND BUR ROSACEAE Acca sellowiana PINEAPPLE GUAVA MYRTACEAE Acer capillipes ACERACEAE Acer circinatum VINE MAPLE ACERACEAE Acer griseum PAPERBARK MAPLE ACERACEAE Acer macrophyllum ACERACEAE Acer negundo var. violaceum ACERACEAE Acer palmatum JAPANESE MAPLE ACERACEAE Acer palmatum 'Garnet' JAPANESE MAPLE ACERACEAE Acer palmatum 'Holland Special' JAPANESE MAPLE ACERACEAE Acer palmatum 'Inaba Shidare' CUTLEAF JAPANESE
- 
												  The Interplay Between Inflorescence Development and Function As the Crucible of Architectural DiversityAnnals of Botany Page 1 of 17 doi:10.1093/aob/mcs252, available online at www.aob.oxfordjournals.org REVIEW: PART OF A SPECIAL ISSUE ON INFLORESCENCES The interplay between inflorescence development and function as the crucible of architectural diversity Lawrence D. Harder1,* and Przemyslaw Prusinkiewicz2 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4 and 2Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4 * For correspondence. Email [email protected] Received: 27 July 2012 Returned for revision: 13 September 2012 Accepted: 17 October 2012 † Background Most angiosperms present flowers in inflorescences, which play roles in reproduction, primarily Downloaded from related to pollination, beyond those served by individual flowers alone. An inflorescence’s overall reproductive contribution depends primarily on the three-dimensional arrangement of the floral canopy and its dynamics during its flowering period. These features depend in turn on characteristics of the underlying branching structure (scaffold) that supports and supplies water and nutrients to the floral canopy. This scaffold is produced by devel- opmental algorithms that are genetically specified and hormonally mediated. Thus, the extensive inflorescence diversity evident among angiosperms evolves through changes in the developmental programmes that specify http://aob.oxfordjournals.org/ scaffold characteristics, which in turn modify canopy features that promote reproductive performance in a par- ticular pollination and mating environment. Nevertheless, developmental and ecological aspects of inflorescences have typically been studied independently, limiting comprehensive understanding of the relations between inflor- escence form, reproductive function, and evolution. † Scope This review fosters an integrated perspective on inflorescences by summarizing aspects of their devel- opment and pollination function that enable and guide inflorescence evolution and diversification.
- 
												  La Familia Malvaceae En La Flora Ornamental De SevillaUniversidad de Sevilla Facultad de Farmacia Grado en Farmacia La familia Malvaceae en la flora ornamental de Sevilla María del Valle García de Alvear Gómez de Terreros Ilustración de la portada: Brachychiton bidwillii Hook., en los jardines de la Universidad de Sevilla (Real Fábrica de Tabacos). Universidad de Sevilla Facultad de Farmacia Trabajo de Fin de Grado Grado en Farmacia La familia Malvaceae en la flora Ornamental de Sevilla MARÍA DEL VALLE GARCÍA DE ALVEAR GÓMEZ DE TERREROS Departamento de Biología Vegetal y Ecología Tutor: Dr. Felipe García Martín Septiembre de 2018 Trabajo experimental RESUMEN Desde febrero a finales de julio de 2018 se ha desarrollado una revisión experimental sobre las Malváceas presentes en la flora ornamental de la ciudad de Sevilla. En total, esta familia cuenta con 18 especies en el área de estudio; estas se incluyen en diez géneros que, a su vez, forman parte de cinco de las nueve subfamilias que actualmente integran las Malváceas. Se ha llevado a cabo una campaña de recolección por diversos enclaves de la ciudad, prestando especial atención a parques y jardines públicos. Simultáneamente a esa campaña, se ha buscado bibliografía para tener una idea de partida sobre qué especies de Malváceas han sido citadas alguna vez por la flora urbana de Sevilla. El material recolectado, depositado en el Herbario del Departamento de Botánica Vegetal y Ecología de la Universidad de Sevilla (SEV), ha sido la base para el desarrollo de esta revisión; a partir de él se ha elaborado una descripción original para cada especie y se han seleccionado los caracteres diagnósticos que han servido para construir claves dicotómicas de géneros y especies.
- 
												  Albany Thicket Biome% S % 19 (2006) Albany Thicket Biome 10 David B. Hoare, Ladislav Mucina, Michael C. Rutherford, Jan H.J. Vlok, Doug I.W. Euston-Brown, Anthony R. Palmer, Leslie W. Powrie, Richard G. Lechmere-Oertel, Şerban M. Procheş, Anthony P. Dold and Robert A. Ward Table of Contents 1 Introduction: Delimitation and Global Perspective 542 2 Major Vegetation Patterns 544 3 Ecology: Climate, Geology, Soils and Natural Processes 544 3.1 Climate 544 3.2 Geology and Soils 545 3.3 Natural Processes 546 4 Origins and Biogeography 547 4.1 Origins of the Albany Thicket Biome 547 4.2 Biogeography 548 5 Land Use History 548 6 Current Status, Threats and Actions 549 7 Further Research 550 8 Descriptions of Vegetation Units 550 9 Credits 565 10 References 565 List of Vegetation Units AT 1 Southern Cape Valley Thicket 550 AT 2 Gamka Thicket 551 AT 3 Groot Thicket 552 AT 4 Gamtoos Thicket 553 AT 5 Sundays Noorsveld 555 AT 6 Sundays Thicket 556 AT 7 Coega Bontveld 557 AT 8 Kowie Thicket 558 AT 9 Albany Coastal Belt 559 AT 10 Great Fish Noorsveld 560 AT 11 Great Fish Thicket 561 AT 12 Buffels Thicket 562 AT 13 Eastern Cape Escarpment Thicket 563 AT 14 Camdebo Escarpment Thicket 563 Figure 10.1 AT 8 Kowie Thicket: Kowie River meandering in the Waters Meeting Nature Reserve near Bathurst (Eastern Cape), surrounded by dense thickets dominated by succulent Euphorbia trees (on steep slopes and subkrantz positions) and by dry-forest habitats housing patches of FOz 6 Southern Coastal Forest lower down close to the river.
- 
												  Plant ScienceUniversity of Pretoria Natural and Agricultural Sciences Message from the Dean Prof Jean Lubuma Have you ever wondered who is responsible for the quality of the chocolates, canned beverages or pancake mixtures you buy in the shops? What is the science behind a cricket ball or pitch? What is nanotechnology? How do specialists treat cancer with nuclear technology, or tuberculosis with phytomedicine? Why are actuaries the highest paid professionals in the world? The Faculty of Natural and Agricultural Sciences offers graduate programmes that are not only at the forefront of the various disciplines, but also equip graduates to be leaders and problem-solvers in their chosen professions. The key to the Faculty’s success is the high premium it places on quality education, research and innovation. This is embodied in the Faculty’s approach to training and research–and above all, in the problem- solving mindsets it nurtures in students. The University of Pretoria aims to be internationally competitive, while being locally relevant at the same time. Its disciplines of plant and animal sciences are currently ranked the highest of all South African universities, based on citations (i.e. the number of times that an author’s work has been referred to in academic publications) and the number of research papers produced by academics in the Faculty (according to the essential science indicators of the ISI Web of Knowledge). Local relevance is assured through close cooperation with industry. In this field, the University has deployed a number of innovations. Its strategic alliance with the Council for Scientific and Industrial Research (CSIR), known as the Southern Education and Research Alliance (SERA), creates unequalled training and research opportunities for students and staff.