Exploring Bridge-Grafting As Technique to Restore Growth in Girdled Ocotea Bullata and Curtisia Dentata in the Southern Cape Forest Area

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Bridge-Grafting As Technique to Restore Growth in Girdled Ocotea Bullata and Curtisia Dentata in the Southern Cape Forest Area Exploring bridge-grafting as technique to restore growth in girdled Ocotea bullata and Curtisia dentata in the Southern Cape forest area by ANNA SUSANNA VAN WYK submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject NATURE CONSERVATION at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: MRS. E.M. VAN STADEN CO-SUPERVISORS: PROF. W.A.J. NEL DR. G PRINSLOO MAY 2017 ii ACKNOWLEDGEMENTS I would first and foremost like to express my sincerest appreciation to my supervisors, Mrs. E.M. van Staden and Prof. W.A.J. Nel, for their professional guidance and unequivocal support, and the trust shown in me during the entire study period. I would furthermore like to thank Dr. Gerhard Prinsloo for introducing me to metabolomics as a method for analyzing plant metabolites and for the training and assistance provided regarding the analysis of the bark samples. A special thank you to UNISA as an institution, for the opportunities I was presented with during this study period, with special reference to Professor Nel, Mrs. Van Staden and Dr. Prinsloo who made these opportunities possible. I would like to extend my gratitude to the SANParks staff involved in making this study possible – Dr. Wessel Vermeulen and his team of scientists at Scientific Services in Knysna, Jessica Hayes, regional ecologist, Sandra Taljaard, Park Manager of the Wilderness National Park, and Leslie-Ann Meyer, Park Manager of the Tsitsikamma National Park. Your inputs are highly valued and appreciated. My appreciation goes further to include all SANParks staff members who assisted me during the entire study period. The National Research Fund assisted in the funding of this project. Without this assistance, it would not have been possible to complete this study as it was an extremely expensive study. I thank you with the highest sincerity. My children Bianca, Jean, Renier and Madeleine and their respective families, and my brother, Dr. Dirk de Klerk, thank you for the support during all my years of study. iii ABSTRACT In South Africa, there is a growing concern regarding the sustainability of bark harvesting due to the reduced availability of medicinal trees in natural areas and the slow growing and slow-reproducing nature of South Africa’s indigenous trees, of which some have specific habitat requirements and a limited distribution. With an estimated 80% of all Africans in South Africa still relying on plant material for their basic healthcare needs, approximately 200 000 traditional healers and an estimated 63 000 commercial harvesters, medicinal plants are being exploited to extinction. The aim of the study was to determine whether bridge-grafting could be used to restore growth in girdled Ocotea bullata and Curtisia dentata trees as these two medicinal tree species are listed on the South African Red List as ‘endangered’ and ‘near threatened’ due to overexploitation. These trees were also historically used in furniture production and general carpentry, which increased these trees’ vulnerability to extinction. Bridge-grafting is a technique widely described in horticultural literature but has not been used to restore growth in medicinal tree species with extensive harvesting damage. Metabolomics as analytical method is a relatively new science, but it is very useful, accurate and repeatable in obtaining knowledge on the metabolites present in a plant, and for determining the concentrations of metabolites. NMR metabolomics is, however, not sensitive enough to quantify metabolites with very low concentrations such as plant hormones. The results achieved showed that O. bullata and C. dentata responded differently to girdling and bridge-grafting regarding location of callus initiation, callus development, rate of callus development, basal shoot initiation and development and their sucrose source-sink relationships. NMR metabolomics showed that seasonality was an important factor affecting metabolite responses in both species. NMR metabolomics also showed that after one year, there were no differences in responses above and below the girdle wounds, nor were there differences between the grafted trees and the normal control trees. iii Although the method of bridge-grafting was successful in restoring the growth of O. bullata and C. dentata with this study, much more research needs to be conducted to prevent endangered girdled medicinal trees from becoming extinct, to maintain tree species diversity, genetic diversity and biodiversity. Key terms: Commercial bark harvesting, Medicinal trees, Girdling, Bridge-grafting, Callus tissue, Bark recovery, Sucrose concentrations iv ABBREVIATIONS AND ACRONYMS AIDS : Acquired Immuno-Deficiency Syndrome CBD : Convention on Biological Diversity CITES : Convention on the Trade of Endangered Species C.S.I.R. : Council for Scientific and Industrial Research DBH : Diameter at Breast Height IAA : Indole-3-Acetic Acid IAM : Indole-3-Acetamide IBA : Indole-3-Butyric Acid IAOx : Indole-3-Acetaldoxime IPA : Indole-3-Pyruviv Acid GC-MS : Gas chromatography – Mass spectroscopy HPLC-PDA : High Performance Liquid Chromatography – Photo Diode Array Detector IUCN : International Union for the Conservation of Nature LC-MS : Liquid chromatography – Mass spectroscopy NEMBA : National Environmental Management: Biodiversity Act NEMBA ToPS : National Environmental Management: Biodiversity Act: Trade of Protected species NEMPA : National Environmental Management: Protected Areas Act NGO : Non-Governmental Organization NMR : Nuclear Magnetic Resonance (spectroscopy) v OPLS : Orthogonal Partial Least squares or Orthogonal Projections of Latent structures OSC : Orthogonal Signal Correction PAA : Phenol Acetic Acid PCA : Principle Component Analysis ppm : parts per million SANBI : South African National Biodiversity Institute SANParks : South African National Parks WCMC : World Conservation Monitoring Centre UNEP : United Nations Environmental Program. UNESCO : United Nations Educational, Scientific and Cultural Organization WCED : World Commission on Environment and Development WHO : World Health Organization WWF : World Wide Fund for Nature vi GLOSSARY Abscission: A leaf or fruit in which the cells at the base of the organ dies and tears, permitting the organ to fall cleanly way from the stem with a minimum of damage (Mauzeth, 1995: G - 1). Alleles: The alternative forms of a gene (Hartl, 2000:2). Anomalous secondary growth: Any form of secondary growth that does not conform to that typically occurring in gymnosperms or dicots (Mauzeth, 1995: G - 2). Anticlinal cell division: Cell division perpendicular to the surface of the meristem (Hopkins and Hüner, 2009:490). Apical dominance: Inhibiting effect of a terminal bud upon the development of lateral buds (Tainton, 1999:412). Apoplastic movement of water: Water movement that takes place through the non- living cell-walls and intercellular spaces of the plant (Moore, 2013:90). Auxin: A plant hormone produced in the apical meristemic regions of plants and in actively growing coleoptile apices, germinating seeds, root tips and the apical buds of growing stems (Hopkins and Hüner, 2009:306). Biodiversity: The complete range of species, biological communities, and their ecosystem interactions and genetic variation within a species (Primack, 2012:315). vii Biparental inbreeding: Mating between genetically related individuals or biparental inbreeding occurring because of spatial genetic structuring within populations. Plant populations are likely to develop spatial structure because gene dispersal through pollen and seed is often localized around the female parent (Nason and Ellstrand, 1995:307). Bulbs: A short subterranean, vertical stem that has fleshy, scale-like leaves such as an onion (Mauzeth, 1995: G - 3). Callus tissue: A term used to describe undifferentiated tissue in tissue cultures and wound healing (Hopkins and Hüner, 2009:491). Carbohydrate metabolism: Denotes the various biochemical processes responsible for the formation, breakdown and interconversion of carbohydrates in living organisms (Chapman and Reiss, 1999:307). Carrying capacity: Potential of an area to support life through the production of plant material for consumption over an extended number of years without deterioration of the overall ecosystem (Tainton, 1999:413). Chloroplast: Plastids in the leaves of plants in which chlorophyll occurs and where the process of photosynthesis takes place (Mauzeth, 1995: G - 4). Coleoptile: It is the pointed protective sheath covering the emerging shoot in a germinating monocot seed viii such as maize or grass (Hopkins and Hüner, 2009:492). Cultural harvesting methods: The harvesting methods applied by traditional healers for many years. Includes limitations regarding harvesting methods, harvesting sizes, times collected, tools collected with, the rituals performed before collection, to name a few (Kambizi and Afolayan, 2006:28). Cytokinin: A plant hormone produced in the roots of plants and is primary responsible for regulation cell division and delayed senescence (Hopkins and Hüner, 2009:493). Cytoplasm: Protoplasm consists of nucleus, vacuoles and cytoplasm, or fluid (Mauzeth, 1995: G - 5). Dedifferentiation: A process whereby structures that were specialized for a specific function lose their specialization and become simplified or generalized. (www.dictionary.com/browse/dedifferentiation, viewed 30 September 2016). Embolisms: An obstruction caused by the formation of gas bubbles in the xylem (Hopkins and Hüner, 2009:493). Endangered Species: One of the categories which
Recommended publications
  • The Sustainable Harvesting of Non-Timber Forest Products
    THE SUSTAINABLE HARVESTING OF NON-TIMBER FOREST PRODUCTS FROM NATURAL FORESTS IN THE SOUTHERN CAPE, SOUTH AFRICA: DEVELOPMENT OF HARVEST SYSTEMS AND MANAGEMENT PRESCRIPTIONS Wessel Johannes Vermeulen Dissertation presented for the degree of Doctor of Philosophy (Conservation Ecology) at Stellenbosch University Promoters: Prof. K.J. Esler Prof. C.J. Geldenhuys March 2009 DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 13 February 2009 Copyright © 2009 Stellenbosch University All rights reserved ii ABSTRACT There is a growing appreciation of the importance of non-timber forest products (NTFPs) and the role they play in the socio-economic wellbeing of rural communities and other stakeholders. Harvest systems to ensure sustainable harvesting are largely still lacking and overutilisation is of growing concern worldwide. In this study the science needed to underwrite management for sustainable use of NTFPs was explored. This was done using case studies of three different products harvested from natural forest in the southern Cape, South Africa viz. fern (Rumohra adiantiformis) fronds (leaves) as greenery in the florist industry, medicinal tree bark, and the corm (stem) of the geophyte Bulbine latifolia for medicinal use. The research approach enabled insight into the complexities of developing harvest systems for NTFPs, the input and expertise required to conduct applied research, and the variation in approach required for different products and plant growth forms.
    [Show full text]
  • Bark Medicines Used in Traditional Healthcare in Kwazulu-Natal, South Africa: an Inventory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 2003, 69(3): 301–363 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory OM Grace1, HDV Prendergast2, AK Jäger3 and J van Staden1* 1 Research Centre for Plant Growth and Development, School of Botany and Zoology, University of Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa 2 Centre for Economic Botany, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom 3 Department of Medicinal Chemistry, Royal Danish School of Pharmacy, 2 Universitetsparken, 2100 Copenhagen 0, Denmark * Corresponding author, e-mail: [email protected] Received 13 June 2002, accepted in revised form 14 March 2003 Bark is an important source of medicine in South Overlapping vernacular names recorded in the literature African traditional healthcare but is poorly documented. indicated that it may be unreliable in local plant identifi- From thorough surveys of the popular ethnobotanical cations. Most (43%) bark medicines were documented literature, and other less widely available sources, 174 for the treatment of internal ailments. Sixteen percent of species (spanning 108 genera and 50 families) used for species were classed in threatened conservation cate- their bark in KwaZulu-Natal, were inventoried. gories, but conservation and management data were Vernacular names, morphological and phytochemical limited or absent from a further 62%. There is a need for properties, usage and conservation data were captured research and specialist publications to address the in a database that aimed to synthesise published infor- gaps in existing knowledge of medicinal bark species mation of such species.
    [Show full text]
  • Phylogeny and Historical Biogeography of Lauraceae
    PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group
    [Show full text]
  • Vegetation Survey of Mount Gorongosa
    VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.
    [Show full text]
  • Water Use, Growth and Socio-Economic Value of the Biomass of Indigenous Trees
    Water use, growth and socio-economic value of the biomass of indigenous trees Mark Gush Willem de Lange - CSIR Peter Dye – WITS Tatenda Mapeto - NMMU Coert Geldenhuys - ForestWood 1 Background 2 Indigenous tree products 3 Photos: Vanessa Masterson, John Soderlund Background and Rationale • Demand for timber & non-timber forest products in SA is rising • Expansion of commercial forestry operations is restricted due to streamflow reduction impacts of introduced plantation tree species & available land • Little is known about the water-use and growth of South Africa’s 1000+ indigenous tree species • Water use efficiencies, and the net benefit of water used are important for sustainable land-use planning from ecohydrological and socio-economic perspectives • The numerous benefits of indigenous trees and forests, in terms of the goods and services that they offer, are widely recognised. • Need to quantify the economic value of their products • Develop recommendations for further establishment & sustainable use of indigenous tree resources 4 © CSIR 2014 Slide 4 Project Details Aim • To measure and model the water use and growth of indigenous trees in different tree systems, and to quantify the economic benefits and costs of the biomass production under a range of bio-climatic conditions in South Africa. • 6-year solicited WRC project (K5/1876) Approach • Sites and species selection • Data collection: Weather; Sap flow; ET; Soil Moisture; Growth • Modelling • Case study collection of economic data – field surveys • Data analysis • Comparison
    [Show full text]
  • Bark Re-Growth and Wood Decay in Response to Bark Stripping for Medicinal Use
    Bark re-growth and wood decay in response to bark stripping for medicinal use By Ntombizodwa Ngubeni Thesis presented in fulfillment of the requirements for the degree of Master of Science in Conservation Ecology at the Faculty of AgriSciences University of Stellenbosch Supervisor: Dr Shayne Jacobs Co-Supervisor: Prof. Thomas Seifert February, 2015 Stellenbosch University https://scholar.sun.ac.za Declaration ` By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: Date: 13/02/2015 Copyright © 2015 Stellenbosch University All rights res ii Stellenbosch University https://scholar.sun.ac.za Abstract Plants have been used for centuries to treat a wide range of ailments in the history of all civilizations. However, a growing interest in medicinal plants requires appropriate management to prevent over-exploitation of target species. The challenge for scientists is to find equilibrium between resource exploitation and the maintenance of viable populations of target species. Sustainability of use requires an understanding of the ecological, economic and socio-cultural aspects of resource use and the interaction between these factors. This research focuses on the ecological and socio-cultural aspects required to underwrite species-specific sustainable harvesting systems for bark used for traditional medicine. The social survey conducted in the form of structured interviews with traditional healers reported 69 plant species used for medicinal purposes in the southern Cape.
    [Show full text]
  • Summary: Monitoring for Sustainable Indigenous Forest
    MONITORING FOR SUSTAINABLE INDIGENOUS FOREST MANAGEMENT IN THE GARDEN ROUTE NATIONAL PARK Knysna 2014 ii CONTENTS Page 1 INTRODUCTION 1 2 FOREST DYNAMICS MONITORING 2 2.1 Diepwalle Research Areas 2 2.2 Tsitsikamma strip plots 3 2.3 Permanent Sample Plots (PSPs) in nature reserves 3 2.4 National system of forest plots 3 3 FOREST DISTURBANCE AND RECOVERY 4 3.1 Gap dynamics research 5 3.2 Storms River big tree 5 3.3 Photo-monitoring of burnt forest 6 3.4 Koomansbos fire gap 7 3.5 Forest establishment 7 3.6 Forest succession on a burnt forest margin 7 4 UTILISATION OF FOREST PRODUCTS 8 4.1 Timber utilization 8 Permanent sample plots (PSPs) 9 Post-harvesting audit 11 4.2 Ferns 12 4.3 Bulbine 13 4.4 Bark 13 5 PLANT SPECIES OF CONSERVATION CONCERN 14 6 BLACKWOOD 15 6.1 Incidence of spread monitoring 15 6.2 Success of control action monitoring 16 6.3 Harkerville blackwood plot 16 iii 7 FAUNA 16 7.1 Antelope population monitoring 16 7.2 Rare mammal monitoring 16 7.3 Crowned eagle monitoring 17 7.4 The Knysna elephants 18 8 CULTURAL HERITAGE RESOURCE MANAGEMENT 19 9 SOCIAL MONITORING 19 9.1 Broad Based Black Economic Empowerment 19 9.2 Employment Equity 19 9.3 People and Conservation Park Based Education and Youth Development Programmes 20 9.4 Expanded Public Works Programmes (EPWP’s) 20 10 WASTE DISPOSAL 20 10.1 Hazardous waste 20 10.2 Household waste 21 11 CHEMICAL USAGE 21 12 COSTS, PRODUCTIVITY AND EFFICIENCY OF FOREST MANAGEMENT 21 13 CONCLUSION 22 APPENDIX 1: HARVEST TREE SELECTION CRITERIA APPLIED IN THE INDIGENOUS FORESTS OF THE GARDEN ROUTE NATIONAL PARK 23 APPENDIX 2: TREE LIST FOR THE INDIGENOUS FORESTS OF THE GARDEN ROUTE 24 1 1 INTRODUCTION The Garden Route National Park (GRNP) consists of a mosaic of diverse terrestrial, freshwater, estuarine and marine ecosystems, landscapes, and cultural heritage.
    [Show full text]
  • Forest Tree and Fern Species As Indicators of an Unnatural Fire Event in a Southern Cape Mountain Forest
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector South African Journal of Botany 2002, 68: 357–361 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Forest tree and fern species as indicators of an unnatural fire event in a southern Cape mountain forest LH Watson* and MJ Cameron Department of Nature Conservation, Port Elizabeth Technikon, Saasveld Campus, Private Bag X6531, George 6530, South Africa * Corresponding author, e-mail: [email protected] Received 14 March 2001, accepted in revised form 21 January 2002 Afromontane forests in the southern Cape are typically bullata in the margin from single stemmed to multi- surrounded by fire prone fynbos. Although the impact of stemmed trees and reduced the number of Cyathea fire on fynbos has been extensively studied, little is capensis in the margin by 68%. Using these species as known about the impact of fire on adjacent forest. Fire indicators, we argue that similar fires will reduce the swept through a mountain forest in the southern Cape structure and diversity of mountain forests as a whole. in 1996. Our study indicated that this fire was one of at The 1996 fire was fuelled by abnormally high fuel loads least two fires that influenced the recent history of this associated with surrounding pine plantations and forest; the other fire was probably the great fire of 1869. mountain fynbos invaded by woody aliens. Given that We consider the latter fire typical of fires that burn large areas of mountain fynbos are invaded by woody mountain forest and suggest a return period for these aliens, that large areas of the southern Cape are fires of between a 100 and 200 years.
    [Show full text]
  • Warburgia Salutaris) in Southern Mozambique
    Uses, Knowledge, and Management of the Threatened Pepper-Bark Tree (Warburgia salutaris) in Southern Mozambique ,1,2 1 3 ANNAE M. SENKORO* ,CHARLIE M. SHACKLETON ,ROBERT A. VOEKS , AND 4,5 ANA I. RIBEIRO 1Department of Environmental Science, Rhodes University, Grahamstown, 6140, South Africa 2Departmento de Ciências Biológicas, Universidade Eduardo Mondlane, CP 257, Maputo, Mozambique 3Department of Geography and the Environment, California State University, Fullerton, 800 N. State College Blvd, Fullerton, CA 92831, USA 4Linking Landscape, Environment, Agriculture and Food (LEAF), Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal 5Centro de Biotecnologia, Universidade Eduardo Mondlane, CP 257, Maputo, Mozambique *Corresponding author; e-mail: [email protected] Uses, Knowledge, and Management of the Threatened Pepper-Bark Tree (Warburgia salutaris)in Southern Mozambique. Warburgia salutaris, the pepper-bark tree, is one of the most highly valued medicinal plant species in southern Africa. Due to its popularity in folk medicine, it is overexploited in many regions and is deemed threatened throughout its range. We identified cultural and social drivers of use, compared knowledge distribution, determined management practices, and explored local ecological knowledge related to the species in the Lebombo Mountains, Tembe River, and Futi Corridor areas in southern Mozambique. Stratified random, semistructured interviews were con- ducted (182), complemented by 17 focus group discussions in the three study areas. W. salutaris was used medicinally to treat 12 health concerns, with the bark being the most commonly used part. Knowledge of the species varied between the three areas, but not with respondent gender or age. Harvesting was mostly through vertical bark stripping (71% of informants).
    [Show full text]
  • Competition Effects in an Afrotemperate Forest Thomas Seifert1*†, Stefan Seifert1†, Armin Seydack2, Graham Durrheim2 and Klaus Von Gadow1†
    Seifert et al. Forest Ecosystems 2014, 1:13 http://www.forestecosyst.com/content/1/1/13 RESEARCH ARTICLE Open Access Competition effects in an afrotemperate forest Thomas Seifert1*†, Stefan Seifert1†, Armin Seydack2, Graham Durrheim2 and Klaus von Gadow1† Abstract Background: Information about competition responses is mainly available for monospecific stands or mixed stands with a small number of species. Studies on complex multi-species and highly structured forest ecosystems are scarce. Accordingly, the objective of this study was to quantify competition effects and analyse competition responses in a species-diverse afrotemperate forest in South Africa, based on an observational study with mapped tree positions and long-term diameter increment records. Methods: The sensitivity to competition was analysed for individual species and involved the calculation of the slope of the linear relation between the value of a competition index (CI) and diameter growth as a measure of sensitivity. In a next step different competition indices were combined and tree diameters were grouped in three classes as surrogates for canopy status and ontogenetic stage. Results: Five competition indices were found to be effective in showing sensitivity to competition for a number of canopy and sub-canopy species. Significant linear regressions were fitted for 18 of a total of 25 species. Species reactions varied significantly in their sensitivity to the different CIs. The indices were classified as belonging to two groups, those that responded more to local crowding and those that are more sensitive to overtopping, which revealed species-specific sensitivities to both factors. The analysis based on diameter classes revealed that species clearly changed their sensitivity to crowding or overtopping depending on diameter.
    [Show full text]
  • WOOD IDENTIFICATION -A REVIEW' Elisabeth A. Wheeler2 & Pieter Baas3
    IAWA Journal, Val. 19 (3), 1998: 241-264 WOOD IDENTIFICATION -A REVIEW' by Elisabeth A. Wheeler2 & Pieter Baas 3 SUMMARY Wood identification is of value in a variety of contexts - commercial, forensic, archaeological and paleontological. This paper reviews the basics of wood identification, including the problems associated with different types of materials, lists commonly used microscopic and mac­ roscopic features and recent wood anatomical atlases, discusses types ofkeys (synoptic, dichotomous, and multiple entry), and outlines some work on computer-assisted wood identification, Key words: Wood identification, keys, computer-aided wood identifi­ cation, INTRODUCTION In the last decade, computerized keys have made the identification of uncommon woods easier, Nevertheless, 'traditional' methods remain important because often they are more efficient and convenient, particularly for common commercial woods, This paper discusses some applications of wood identification, logistics, the macroscopic and microscopic features used for wood identification (particularly for hardwoods, i.e" dicotyledonous angiosperms), identification procedures, some recent computer­ aided wood identification projects, and the need for additional work. APPLICATIONS Proper processing of wood, especially drying, depends upon correct species identifi­ cation because different species and species groups require different protocols. When problems arise during wood processing (drying, machining, or finishing), one of the first questions asked is whether the wood was correctly identified. Customs officials need to know whether logs, timbers, or wood products are cor­ rectly labeled so that tariffs can be properly assessed and trade regulations enforced. The International Timber Trade Organization (ITTO) has proposed limiting interna­ tional trade to timber that is cut from sustainably managed concessions. Verifying the source and identity of timber in order to enforce bans on trade in woods of endan­ gered species will require wood identification skills (Baas 1994).
    [Show full text]
  • Aspects of Seed Propagation of Commonly Utilised
    ASPECTS OF SEED PROPAGATION OF COMMONLY UTILISED MEDICINAL TREES OF KWAZULU-NATAL by Thiambi Reuben Netshiluvhi Submitted in partial fulfilment of the requirements for the degree of Master of Science in the Department of Biology, University of Natal, Durban 1996 11 DECLARATION The experimental work described in this thesis was carried out in the Department of Biological Sciences, University of Natal, Durban, from January 1995 to November 1996, under the supervision of Professor Norman W. Pammenter and Professor John A. Cooke. These studies represent original work by the author and have not been submitted in any form to another University. Where use was made of the work of others it has been duly acknowledged in the text. T.R. Netshiluvhi December, 1996 III ACKNOWLEDGEMENTS I owe special gratitude to my supervisor Professor Norman W. Pammenter and co­ supervisor Professor John .A. Cooke for their excellent supervision and guidance. I also thank them for proof-reading my write-up. My special thanks go to Geoff Nichols, Keith Cooper and Rob Scott-Shaw for being so kind and resourceful pertaining to seeds of indigenous medicinal trees. I am compelled to thank Geoff Nichols once more for passing on some of his precious knowledge about seeds of indigenous medicinal trees. D. Pillay, M. Pillay, A. Naidoo and R. Padayachee for their general information about seeds of indigenous plants and the media used for germination. A traditional doctor at Isipingo informal herbal market, A.T. Fernandoh, organised gatherers and traders to be interviewed about the demand for herbal medicine. Finally, I would like to thank the Foundation for Research Development (FRD) for financial assistance they offered for a period of2 years ofthis study.
    [Show full text]