1 Table S1. Details of Material Examined. Family Names
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nature Conservation (Wildlife) Regulation 2006
Queensland Nature Conservation Act 1992 Nature Conservation (Wildlife) Regulation 2006 Current as at 1 September 2017 Queensland Nature Conservation (Wildlife) Regulation 2006 Contents Page Part 1 Preliminary 1 Short title . 5 2 Commencement . 5 3 Purpose . 5 4 Definitions . 6 5 Scientific names . 6 Part 2 Classes of native wildlife and declared management intent for the wildlife Division 1 Extinct in the wild wildlife 6 Native wildlife that is extinct in the wild wildlife . 7 7 Declared management intent for extinct in the wild wildlife . 8 8 Significance of extinct in the wild wildlife to nature and its value 8 9 Proposed management intent for extinct in the wild wildlife . 8 10 Principles for the taking, keeping or use of extinct in the wild wildlife 9 Division 2 Endangered wildlife 11 Native wildlife that is endangered wildlife . 10 12 Declared management intent for endangered wildlife . 10 13 Significance of endangered wildlife to nature and its value . 10 14 Proposed management intent for endangered wildlife . 11 15 Principles for the taking, keeping or use of endangered wildlife . 12 Division 3 Vulnerable wildlife 16 Native wildlife that is vulnerable wildlife . 13 17 Declared management intent for vulnerable wildlife . 13 18 Significance of vulnerable wildlife to nature and its value . 13 19 Proposed management intent for vulnerable wildlife . 14 20 Principles for the taking, keeping or use of vulnerable wildlife . 15 Nature Conservation (Wildlife) Regulation 2006 Contents Division 4 Near threatened wildlife 26 Native wildlife that is near threatened wildlife . 16 27 Declared management intent for near threatened wildlife . 16 28 Significance of near threatened wildlife to nature and its value . -
Lizards & Snakes: Alive!
LIZARDSLIZARDS && SNAKES:SNAKES: ALIVE!ALIVE! EDUCATOR’SEDUCATOR’S GUIDEGUIDE www.sdnhm.org/exhibits/lizardsandsnakeswww.sdnhm.org/exhibits/lizardsandsnakes Inside: • Suggestions to Help You Come Prepared • Must-Read Key Concepts and Background Information • Strategies for Teaching in the Exhibition • Activities to Extend Learning Back in the Classroom • Map of the Exhibition to Guide Your Visit • Correlations to California State Standards Special thanks to the Ellen Browning Scripps Foundation and the Nordson Corporation Foundation for providing underwriting support of the Teacher’s Guide KEYKEY CONCEPTSCONCEPTS Squamates—legged and legless lizards, including snakes—are among the most successful vertebrates on Earth. Found everywhere but the coldest and highest places on the planet, 8,000 species make squamates more diverse than mammals. Remarkable adaptations in behavior, shape, movement, and feeding contribute to the success of this huge and ancient group. BEHAVIOR Over 45O species of snakes (yet only two species of lizards) An animal’s ability to sense and respond to its environment is are considered to be dangerously venomous. Snake venom is a crucial for survival. Some squamates, like iguanas, rely heavily poisonous “soup” of enzymes with harmful effects—including on vision to locate food, and use their pliable tongues to grab nervous system failure and tissue damage—that subdue prey. it. Other squamates, like snakes, evolved effective chemore- The venom also begins to break down the prey from the inside ception and use their smooth hard tongues to transfer before the snake starts to eat it. Venom is delivered through a molecular clues from the environment to sensory organs in wide array of teeth. -
Geyle, H.M., Tingley, R., Amey, A.P
Geyle, H.M., Tingley, R., Amey, A.P., Cogger, H., Couper, P.J., Cowan, M., Craig, M.D., Doughty, P., DriscollI, D.A., Ellis, R.J., Emery, J-P., Fenner, A., Gardner, M.G., Garnett, S.T., Gillespie, G.R., Greenlees, M.J., Hoskin, C.J., Keogh, J.S., Lloyd, R., Melville, J., McDonald, P., Michael, D.R., Mitchell, N.J., Sanderson, C., Shea, G.M., Sumner, J., Wapstra, E., Woinarski, J.C.Z. & Chapple D. (2020) Reptiles on the brink: identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pacific Conservation Biology. DOI: https://doi.org/10.1071/PC20033 1 Reptiles on the brink: identifying the Australian terrestrial snake and 2 lizard species most at risk of extinction 3 4 Hayley M. GeyleA, Reid TingleyB, Andrew P. AmeyC, Hal CoggerD, Patrick J. CouperC, 5 Mark CowanE, Michael D. CraigF,G, Paul DoughtyH, Don A. DriscollI, Ryan J. EllisH,J, Jon- 6 Paul EmeryF, Aaron FennerK, Mike G. GardnerK,L, Stephen T. GarnettA, Graeme R. 7 GillespieM, Matthew J. GreenleesN, Conrad J. HoskinO, J. Scott KeoghP, Ray LloydQ, Jane 8 MelvilleR, Peter McDonaldS, Damian R. MichaelT, Nicola J. MitchellF, Chris SandersonU,V, 9 Glenn M. SheaW,X, Joanna SumnerR, Erik WapstraY, John C.Z. WoinarskiA and David G. 10 ChappleB,Z, 11 12 Author affiliations 13 A Threatened Species Recovery Hub, National Environmental Science Program, Research 14 Institute for the Environment and Livelihoods, Charles Darwin University, NT 0909, 15 Australia. 16 B School of Biological Sciences, Monash University, Clayton, Vic 3800, Australia. 17 C Biodiversity Program, Queensland Museum, South Brisbane, Qld 4101, Australia. -
Genetic Differentiation and Species Status of the Large-Bodied Leaf-Tailed Geckos Uroplatus Fimbriatus and U
SALAMANDRA 54(2) 132–146 15 May 2018Philip-SebastianISSN 0036–3375 Gehring et al. Genetic differentiation and species status of the large-bodied leaf-tailed geckos Uroplatus fimbriatus and U. giganteus Philip-Sebastian Gehring1, Souzanna Siarabi2, Mark D. Scherz3,4, Fanomezana M. Ratsoavina5, Andolalao Rakotoarison4,5, Frank Glaw3 & Miguel Vences4 1) Faculty of Biology / Biologiedidaktik, University Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany 2) Molecular Ecology and Conservation Genetics Lab, Department of Biological Application and Technology, University of Ioannina, 45110 Ioannina, Greece 3) Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 4) Technical University of Braunschweig, Division of Evolutionary Biology, Zoological Institute, Mendelssohnstr. 4, 38106 Braunschweig, Germany 5) Zoologie et Biodiversité Animale, Université d’Antananarivo, BP 906, Antananarivo, 101 Madagascar Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 27 December 2017 Accepted: 14 February 2018 by Jörn Köhler Abstract. The taxonomy of the Malagasy leaf-tailed geckos Uroplatus fimbriatus and U. giganteus is in need of revision since a molecular study casted doubt on the species status of U. giganteus from northern Madagascar. In this study we sepa- rately analyse DNA sequences of a mitochondrial gene (12S rRNA) and of four nuclear genes (CMOS, KIAA1239, RAG1, SACS), to test for concordant differentiation in these independent markers. In addition to the molecular data we provide a comprehensive review of colour variation of U. fimbriatusand U. giganteus populations from the entire distribution area based on photographs. The molecular evidence clearly supports a two-species taxonomy, with U. fimbriatus correspond- ing to a southern clade and U. -
Cop13 Prop. 27
CoP13 Prop. 27 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of Uroplatus spp. in Appendix II. The most recent update of the species list applicable to the genus Uroplatus (Duméril, 1805) is Raxworthy’s from 2003, published in The natural history of Madagascar by Goodman and Benstead, University of Chicago Press. This update recognized 10 species within the genus Uroplatus, commonly known by its vernacular name of leaf-tailed gecko. These are: U. alluaudi Mocquard, 1894; U. ebenaui Boettger, 1879; U. fimbriatus Schneider, 1797; U. guentheri Mocquard, 1908; U. henkeli Böhme and Ibish, 1990; U. lineatus Duméril and Bibron, 1836; U. malama Nussbaum and Raxworthy, 1995; U. malahelo Nussbaum and Raxworthy, 1994; U. phantasticus Boulenger, 1888 and U. sikorae Boettger, 1913. However, a new species was described in the same year in an issue of Salamandra. This is Uroplatus pietschmanni, identified by Böhle and Schönecker (2003). This species, which closely resembles U. sikorae, was for a long time confused with it and indeed continues to be so. Since this confusion could lead to problems relating not only to population and range limits, but also to how the quantity traded is divided up, and in the absence of proper verification and review on the ground, we take the view that it is preferable to leave it out of consideration for the present. Furthermore, several other forms are under study, and these may constitute new species. Leaf-tailed geckos are among the reptiles which are traded internationally to differing extents, depending on the species concerned. The export data for 2001, 2002 and 2003 supplied by the Ministry of Water and Forests (MEF) make this point very clearly (see the analytical details in the section covering each individual species). -
Molecular Evidence for Gondwanan Origins of Multiple Lineages Within A
Journal of Biogeography (J. Biogeogr.) (2009) 36, 2044–2055 ORIGINAL Molecular evidence for Gondwanan ARTICLE origins of multiple lineages within a diverse Australasian gecko radiation Paul M. Oliver1,2* and Kate L. Sanders1 1Centre for Evolutionary Biology and ABSTRACT Biodiversity, University of Adelaide and Aim Gondwanan lineages are a prominent component of the Australian 2Terrestrial Vertebrates, South Australian Museum, North Terrace, Adelaide, SA, terrestrial biota. However, most squamate (lizard and snake) lineages in Australia Australia appear to be derived from relatively recent dispersal from Asia (< 30 Ma) and in situ diversification, subsequent to the isolation of Australia from other Gondwanan landmasses. We test the hypothesis that the Australian radiation of diplodactyloid geckos (families Carphodactylidae, Diplodactylidae and Pygopodidae), in contrast to other endemic squamate groups, has a Gondwanan origin and comprises multiple lineages that originated before the separation of Australia from Antarctica. Location Australasia. Methods Bayesian (beast) and penalized likelihood rate smoothing (PLRS) (r8s) molecular dating methods and two long nuclear DNA sequences (RAG-1 and c-mos) were used to estimate a timeframe for divergence events among 18 genera and 30 species of Australian diplodactyloids. Results At least five lineages of Australian diplodactyloid geckos are estimated to have originated > 34 Ma (pre-Oligocene) and basal splits among the Australian diplodactyloids occurred c. 70 Ma. However, most extant generic and intergeneric diversity within diplodactyloid lineages appears to post-date the late Oligocene (< 30 Ma). Main conclusions Basal divergences within the diplodactyloids significantly pre-date the final break-up of East Gondwana, indicating that the group is one of the most ancient extant endemic vertebrate radiations east of Wallace’s Line. -
A List of the Herpetological Type Specimens in the Zoologisches Forschungsmuseum Alexander Koenig, Bonn
Bonn zoological Bulletin Volume 59 pp. 79–108 Bonn, December 2010 A list of the herpetological type specimens in the Zoologisches Forschungsmuseum Alexander Koenig, Bonn Wolfgang Böhme Zoologisches Forschungsmuseum Alexander Koenig, Herpetology Section, Adenauerallee 160, D-53113 Bonn, Germany; E-mail: [email protected]. Abstract. In the herpetological collection of ZFMK 528 scientific species group names are represented by type materi- al. Of these, 304 names are documented by primary type specimens (onomatophores) while for 224 further names sec- ondary type specimens (typoids) are available, ranging chronologically from 1801 to 2010. The list is a shortened pred- ecessor of a comprehensive type catalogue in progress. It lists name bearing types with their catalogue numbers includ- ing information on further type series members also in other institutions, while secondary types are listed only by pres- ence, both in ZFMK and other collections including holotype repositories. Geographic origin and currently valid names are also provided. Key words. Amphibians and reptiles, type list, ZFMK Bonn. INTRODUCTION A first ZFMK herpetological type catalogue was published (currently section) in 1951, for many decades. Nonethe- (Böhme 1974) three years after I had entered Museum less, the present list does comprise some historical “pre- Koenig as a herpetological curator. It contained only 34 ZFMK” material which has been obtained after 1971 from reptilian names documented by type material, 22 of which smaller university museums, first of all from the Zoolog- were name-bearing type specimens (onomatophores), and ical Museum of the University of Göttingen (1977). Sin- 12 further names were documented by paratypes only. -
Reptiles on the Brink: Identifying the Australian Terrestrial Snake and Lizard Species Most at Risk of Extinction
CSIRO PUBLISHING Pacific Conservation Biology, 2021, 27, 3–12 https://doi.org/10.1071/PC20033 Reptiles on the brink: identifying the Australian terrestrial snake and lizard species most at risk of extinction Hayley M. Geyle A, Reid Tingley B, Andrew P. AmeyC, Hal CoggerD, Patrick J. CouperC, Mark CowanE, Michael D. CraigF,G, Paul DoughtyH, Don A. DriscollI, Ryan J. EllisH,J, Jon-Paul EmeryF, Aaron FennerK, Michael G. GardnerK,L, Stephen T. Garnett A, Graeme R. GillespieM, Matthew J. GreenleesN, Conrad J. HoskinO, J. Scott KeoghP, Ray LloydQ, Jane Melville R, Peter J. McDonaldS, Damian R. MichaelT, Nicola J. Mitchell F, Chris SandersonU,V, Glenn M. Shea W,X, Joanna Sumner R, Erik WapstraY, John C. Z. Woinarski A and David G. Chapple B,Z AThreatened Species Recovery Hub, National Environmental Science Program, Research Institute for the Environment and Livelihoods, Charles Darwin University, NT 0909, Australia. BSchool of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia. CBiodiversity Program, Queensland Museum, South Brisbane, Qld 4101, Australia. DAustralian Museum, Sydney, NSW 2010, Australia. EDepartment of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia. FSchool of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia. GSchool of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia. HDepartment of Terrestrial Zoology, Western Australian Museum, Welshpool, WA 6106, Australia. ICentre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic. 3125, Australia. JBiologic Environmental Survey, East Perth, WA 6004, Australia. KCollege of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia. LEvolutionary Biology Unit, South Australian Museum, Adelaide, SA 5000, Australia. -
1 §4-71-6.5 List of Restricted Animals [ ] Part A: For
§4-71-6.5 LIST OF RESTRICTED ANIMALS [ ] PART A: FOR RESEARCH AND EXHIBITION SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Hirudinea ORDER Gnathobdellida FAMILY Hirudinidae Hirudo medicinalis leech, medicinal ORDER Rhynchobdellae FAMILY Glossiphoniidae Helobdella triserialis leech, small snail CLASS Oligochaeta ORDER Haplotaxida FAMILY Euchytraeidae Enchytraeidae (all species in worm, white family) FAMILY Eudrilidae Helodrilus foetidus earthworm FAMILY Lumbricidae Lumbricus terrestris earthworm Allophora (all species in genus) earthworm CLASS Polychaeta ORDER Phyllodocida FAMILY Nereidae Nereis japonica lugworm PHYLUM Arthropoda CLASS Arachnida ORDER Acari FAMILY Phytoseiidae 1 RESTRICTED ANIMAL LIST (Part A) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Iphiseius degenerans predator, spider mite Mesoseiulus longipes predator, spider mite Mesoseiulus macropilis predator, spider mite Neoseiulus californicus predator, spider mite Neoseiulus longispinosus predator, spider mite Typhlodromus occidentalis mite, western predatory FAMILY Tetranychidae Tetranychus lintearius biocontrol agent, gorse CLASS Crustacea ORDER Amphipoda FAMILY Hyalidae Parhyale hawaiensis amphipod, marine ORDER Anomura FAMILY Porcellanidae Petrolisthes cabrolloi crab, porcelain Petrolisthes cinctipes crab, porcelain Petrolisthes elongatus crab, porcelain Petrolisthes eriomerus crab, porcelain Petrolisthes gracilis crab, porcelain Petrolisthes granulosus crab, porcelain Petrolisthes japonicus crab, porcelain Petrolisthes laevigatus crab, porcelain Petrolisthes -
Continental Speciation in the Tropics: Contrasting Biogeographic Patterns of Divergence in the Uroplatus Leaf-Tailed Gecko Radiation of Madagascar C
Journal of Zoology Journal of Zoology. Print ISSN 0952-8369 Continental speciation in the tropics: contrasting biogeographic patterns of divergence in the Uroplatus leaf-tailed gecko radiation of Madagascar C. J. Raxworthy1, R. G. Pearson1, B. M. Zimkus1,Ã, S. Reddy1,w, A. J. Deo1,2,z, R. A. Nussbaum3 & C. M. Ingram1 1 American Museum of Natural History, New York, NY, USA 2 Department of Biology, New York University, New York, NY, USA 3 Division of Amphibians and Reptiles, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA Keywords Abstract speciation; biogeography; systematics; Reptilia; Gekkonidae; Madagascar. A fundamental expectation of vicariance biogeography is for contemporary cladogenesis to produce spatial congruence between speciating sympatric clades. Correspondence The Uroplatus leaf-tailed geckos represent one of most spectacular reptile radia- Christopher J. Raxworthy, American tions endemic to the continental island of Madagascar, and thus serve as an Museum of Natural History, Central Park excellent group for examining patterns of continental speciation within this large West at 79th Street, New York, NY 10024- and comparatively isolated tropical system. Here we present the first phylogeny 5192, USA. Email: [email protected] that includes complete taxonomic sampling for the group, and is based on morphology and molecular (mitochondrial and nuclear DNA) data. This study ÃCurrent address: Department of includes all described species, and we also include data for eight new species. We Herpetology, Museum of Comparative find novel outgroup relationships for Uroplatus and find strongest support for Zoology, Harvard University, 26 Oxford Paroedura as its sister taxon. Uroplatus is estimated to have initially diverged Street, Cambridge, MA 02138, during the mid-Tertiary in Madagascar, and includes two major speciose radia- w USA. -
A New Leaf-Tailed Gecko of the Uroplatus Ebenaui Group (Squamata: Gekkonidae) from Madagascar's Central Eastern Rainforests
Zootaxa 4006 (1): 143–160 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4006.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:EB6E2A83-81F5-4091-B9EB-7A0233932D92 A new leaf-tailed gecko of the Uroplatus ebenaui group (Squamata: Gekkonidae) from Madagascar's central eastern rainforests FANOMEZANA MIHAJA RATSOAVINA1,2,6, FIADANANTSOA ANDRIANJA RANJANAHARISOA1, FRANK GLAW3, ACHILLE P. RASELIMANANA1,4, AURÉLIEN MIRALLES2,5 & MIGUEL VENCES2,6 1Département de Biologie Animale, Université d'Antananarivo, BP 906, Antananarivo, 101 Madagascar 2Technical University of Braunschweig, Zoological Institute, Mendelssohnstr. 4, 38106 Braunschweig, Germany 3Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 4Association Vahatra, BP3972, Antananarivo, 101 Madagascar 5CNRS-UMR5175 CEFE, Centre d’Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France 6Corresponding authors. E-mail: [email protected], [email protected] Abstract We describe a new leaf-tailed gecko species of the Uroplatus ebenaui group from the eastern central rainforests of Mada- gascar, which had previously been considered as a confirmed candidate species. Our description of Uroplatus fiera sp. nov. relies on integrating evidence from molecular and morphological characters and is based on newly collected material from two localities. A phylogenetic analysis based on multiple mitochondrial DNA fragments places the new species as sister to a lineage of uncertain status (Uroplatus ebenaui [Ca8]), and the clade consisting of these two lineages is sister to a further undescribed candidate species (U. ebenaui [Ca1]). This entire clade is sister to U. -
EC ) No 938/97 of 26 May 1997 Amending Council Regulation ( EC ) No 338/97 on the Protection of Species of Wild Fauna and Flora by Regulating Trade Therein
30 . 5 . 97 EN Official Journal of the European Communities No L 140/ 1 I (Acts whose publication is obligatory) COMMISSION REGULATION ( EC ) No 938/97 of 26 May 1997 amending Council Regulation ( EC ) No 338/97 on the protection of species of wild fauna and flora by regulating trade therein THE COMMISSION OF THE EUROPEAN COMMUNITIES , 1 . The following points are inserted after point 18 of the Notes on interpretation of Annexes A, B, C and D in the Annex : Having regard to the Treaty establishing the European Community , ' 19 . In respect of fauna species listed in Annex D , the provisions , shall apply only to live specimens and whole or substantially whole , dead specimens except for taxa which are annotated as follows Having regard to Council Regulation ( EC ) No 338/97 of to show that other parts and derivatives are also 9 December 1996 on the protection of species of wild covered : fauna and flora by regulating trade therein ( ] ) and in particular Article 19 ( 2 ) thereof, #1 Any whole or substantially whole skins , raw or tanned . Whereas Article 21 ( 3 ) ( b ) of Regulation ( EC ) No 338/97 provides that the Commission adopt a Regulation #2 Any feathers or any skin or other part with amending Annex D into a representative list of species feathers on it . meeting the criteria laid down in Article 3 ( 4 ) ( a ) of that Regulation; 20 . In respect of flora species listed in Annex D , the provisions shall apply only to live specimens except taxa which are annotated as follows to Whereas the Scientific Review Group has been consulted how that other parts and derivatives are also on the species to be included in Annex D ; covered : #3 Dried and fresh plants , including ; leaves , Whereas the measures provided for in this Regulation are roots/rootstock , stems , seeds/spores , bark in accordance with the opinion of the Committee and fruits .' established pursuant to Article 18 of Regulation ( EC ) No 338/97 , 2 .