REGENERATION FREQUENCES in GECKOS of TWO ECOLOGICAL TYPES (REPTILIA : GEKKONIDJE) Yehudah Werner

Total Page:16

File Type:pdf, Size:1020Kb

REGENERATION FREQUENCES in GECKOS of TWO ECOLOGICAL TYPES (REPTILIA : GEKKONIDJE) Yehudah Werner REGENERATION FREQUENCES IN GECKOS OF TWO ECOLOGICAL TYPES (REPTILIA : GEKKONIDJE) Yehudah Werner To cite this version: Yehudah Werner. REGENERATION FREQUENCES IN GECKOS OF TWO ECOLOGICAL TYPES (REPTILIA : GEKKONIDJE). Vie et Milieu , Observatoire Océanologique - Laboratoire Arago, 1968, pp.199-222. hal-02952708 HAL Id: hal-02952708 https://hal.sorbonne-universite.fr/hal-02952708 Submitted on 29 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REGENERATION FREQUENCES IN GECKOS OF TWO ECOLOGICAL TYPES (REPTILIA : GEKKONIDJE) by Yehudah L. WERNER Department of Zoology, The Hebrew University of Jérusalem, Jérusalem, Israël CONTENTS ABSTKACT 200 INTRODUCTION 200 HISTORICAL 201 Frequency of regenerated tails in différent species 201 Sexual and ontogenetic différences 201 Anatomical basis of caudal autotomy and régénération .... 201 MATERIAL AND METHODS 202 FREQUENCY OF REGENERATED TAILS 203 Différences between species 203 Sexual and ontogenetic différences 204 AUTOTOMY 205 Hemidactylus turcicus 205 Stenodactylus sthenodactylus 206 Ceramodactylus doriae 207 DISCUSSION 209 Structure and function 209 Longevity and behaviour 210 Adaptation to environment 211 Convergence among geckos 215 SUMMARY 216 RÉSUMÉ 217 ZUSAMMENFASSUNG 218 ACKNOWLEDGEMENTS 218 REFERENCES 219 ABSTRACT Certain psammophile geckos differ from typical Gekkonidae in possessing a reduced autotomy System. Only 1-2 functional mid- vertebral autotomy splits occur at the base of the tail. Expérimental autotomy is difficult to induce, and natural régénération frequency is low. §|he tail may be of particular importance in the locomotion of thèse geckos. Cases of convergence in geckos of other ecological types are mentioned. INTRODUCTION The fréquent occurrence of regenerated tails in gekkonid lizards has been mentioned in many herpetological texts. Such regenerated tails resuit from the loss, usually through autotomy, of part of the original tail. Thus LOVERIDGE (1946) states that | in the matter of discarding tails, few lizards can compete with the geckos. Some species are so prodigal in this respect that it is diffi- cult to find one with original tail intact. Of the nearly 700 kinds of geckos, probably less than a dozen fail to make use of this défense ". The extent of this specialization may be seen from WAITE'S (1929) report of species which only occasionally include adults with complète tails, at least in muséum collections. In spite of this extensive emphasis, accurate reports on the frequency of regenerated tails are scarce. This paper describes différences in the frequency of regenerated tails between four species of geckos (Hemidactylus turcicus, Ptyodactylus hassel- quistii, Stenodactylus sthenodactylus and Ceramodactylus doriae), assignable to two ecological types. Thèse frequencies are correlated both to anatomical data and to experiments on autotomy. Some of the ecological and evolutionary implications are discussed. — 201 — HISTORICAL FREQUENCY OF REGENERATED TAILS IN DIFFÉRENT SPECIES The rare geckos of the genus Agamura apparently will not lose their tail, to judge from BLANFORD'S (1876) description of 13 spécimens ail with original tails. In other geckos the frequency of régénérâtes may vary considerably from species to species. Among the 200 Hemi- dactylus flaviviridis used in WOODLAND'S (1920) experiments, over 50 % bore regenerated tails. In Tarentola mauritanica, FURIERI (1956) found that 33 % had regenerated tails. BRAIN (1958) reports that 40 % or more of the spécimens of Hemidactylus mabouia and other nocturnal climbing geckos may have regenerated tails, while only 19 % (N = 82) of the ground dwelling Palmatogecko rangei had regenerated tails, ail of thèse having started at the base of the tail. A comparably low percentage of régénérâtes was found by BRAIN in two other ground dwelling species : Chondrodactylus angulifer and Ptenopus garrulus. Recently BUSTARD (1964) found only 9 % (N = 80) regenerated tails in the Australian Diplodactylus williamsi, which has a peculiarly specialized tail. BRAIN'S observations, supported by the earlier ones of BLANFORD, WOODLAND, and FURIERI, suggested a test whether the relation that ground dwelling désert geckos have fewer regenerated tails than climb- ing forms, held for Israeli species as well. SEXUAL AND ONTOGENETIC DIFFÉRENCES M. SMITH (1954) has reported that in British lizards regenerated tails are equally common in both sexes. In contrast, GAGLE (1946) found that among 126 Hemidactylus garnotii, 33 % of the maies and 29 % of the females (and 10 % of the juvéniles) had regenerated tails. A significant différence between sexes would suggest a structural différence, a beha- vioural différence perhaps influencing the exposure of the sexes to outside dangers, or intra-specific factors (like fighting between maies). A finding of equal proportions of régénérâtes in both sexes would not exclude intra-specific factors. ANATOMICAL RASIS OF CAUDAL AUTOTOMY AND REGENERATION The caudal vertebrae of the geckos used in this investigation have been described elsewhere (WERNER, 1965b). In Hemidactylus turcicus and Ptyodactylus hasselquistii the tail begins with 5 non-autotomous pygal vertebrae, behind which ail postpygals (excepting the 1-3 last — 202 — ones) are autotomous. Each autotomous vertebra is cleft in the mid- vertebral plane by a preformed ' autotomy split ', which divides the osseous tissue of the vertebra into anterior and posterior ' halves '. Information on the anatomy of nonskeletal caudal structures in Hemi- dactylus and similar geckos is also available (SCHMIDT, 1912; WOODLAND, 1920; other références in WERNER 1961, 1965b, 1967a). In essence, each autotomy plane manifests itself in ail caudal organs and tissues, ex- cepting perhaps the spinal cord. It is generally accepted that in the autotomy of such a tail fracture takes place at one of thèse predetermined intersegmental planes of weakness, rather than between vertebrae (BEL- LAIRS, 1957). Incidentally, it has recently been shown that the process of régénération is independent of thèse autotomy planes, and that normal régénération never starts from thèse planes (WERNER, 1967a). In Stenodactylus sthenodactylus and Ceramodactylus doriae there similarly are 4-5 and 6 pygal vertebrae respectively, but only the first, or first and second, post-pygals are autotomous — or rather semiauto- tomous, since the split fails to divide the apex of the neural arch. In thèse species the non-skeletal organs of the tail have apparently never been investigated. Furthermore, no information seems available con- cerning the relation of autotomy and régénération to the few (incom- plète) autotomy splits. MATERIAL AND METHODS The frequency of regenerated tails was determined from material in the collection of the Hebrew University of Jérusalem for 250 spéci- mens of Hemidactylus turcicus (Linnaeus, 1758); 218 spécimens of Ptyo- dactylus hasselquistii guttatus von Heyden, 1827; 61 spécimens of Steno- dactylus sthenodactylus (Lichtenstein, 1823); and 28 spécimens of Cera- modactylus doriae Blanford, 1874. AH spécimens were collected in Israël. The samples are random, since, as far as known, there had been no bias in selecting spécimens for préservation. The whole contents of each jar were used. Regenerated tails were externally distinguished from original ones by their différent scaltaion and coloration. Most spécimens with seem- ingly entire tails were radiographed. The regenerated part of a lizard's tail never contains vertebrae, but only an unsegmented cartilage tube. Thus radiography disclosed in a few spécimens of Hemidactylus externally undetectable regenerated tail tips; such spécimens were recorded as having regenerated tails. Spécimens of Hemidactylus were sexed by the présence ( $ 3 ) or absence ( 9 S ) of preanal pores. When spécimens with original tails were radiographed, sex was confirmed by the présence of postanal bones in S <?. In the absence of life history data, spécimens were arbitrarily designated as juvéniles when under 40 mm. (Adults of Hemidactylus reach snout-vent lengths of 52-56 mm in Israël). Ptyodactylus lacks — 203 — preanal or fémoral pores, and samples of the other species were too small to be split. The facility with which autotomy occurs was tested in spécimens of Hemidactylus, mostly collected in Jérusalem, at night, by hand, and kept a few days or weeks until used; and in Stenodactylus and Ceramo- dactylus collected in the Negev (Stenodactylus under stones, Ceramo- dactylus at night on the dunes) up to two years prior to expérimenta- tion. Ail autotomy experiments were made in the room housing the cages, at varying températures which had been kept constant for at least 30 minutes. The signiflcance of counts and results was tested by the X2 test for independent distribution, and checked for the signiflcance levels (a) 0.05 and 0.01 (ARKIN and COLTON, 1950). FREQUENCY OF REGENERATED TAILS DIFFÉRENCES BETWEEN SPECIES Figure 1 présents frequencies of original and regenerated tails for the species examined. Tail loss may occur after collection as the
Recommended publications
  • Mapping the Distributions of Ancient Plant and Animal Lineages in Southern Africa
    Mapping the distributions of ancient plant and animal lineages in southern Africa Ashlyn Levadia Padayachee 209514118 Submitted in fulfilment of the requirements for the degree of Master of Science, In the school of Agriculture, Earth and Environmental Science University of KwaZulu-Natal, Durban November 2014 Supervisor: Prof. Şerban Procheş 2014 Preface: Declaration of plagiarism I hereby declare that this dissertation, submitted in fulfilment of the requirements for the degree of Master of Science in Environmental Science, to the University of KwaZulu-Natal, is a result of my own research and investigation, which has not been previously submitted, by myself, for a degree at this or any other institution. I hereby declare that this work is my own, unaided work; appropriately referenced where others’ work has been used. ________________________ _________________________ Ashlyn Levadia Padayachee Date ________________________ __________________________ Prof. Şerban Procheş Date ii Acknowledgements: The success of this study would not have been possible without the help, guidance and direction given to me by the members of staff of the School of Agriculture, Earth and Environmental Science (University of KwaZulu-Natal), family and friends. I would like to acknowledge the following people: God Almighty for blessing me with the courage and determination to complete this project Prof. Şerban Procheş, my supervisor and the man with the brilliant ideas. Very sincere and heartfelt thanks for the motivation, guidance and direction throughout this project, for which without it, it would not have been accomplished. Thank you Prof, the ‘pep-talks’ which were much needed, especially towards the end. Dr. Sandun Perera, who in the absence of my supervisor, stepped into the role of ‘interim supervisor’.
    [Show full text]
  • An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
    Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007).
    [Show full text]
  • Lista Patrón De Los Anfibios Y Reptiles De España (Actualizada a Diciembre De 2014)
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/272447364 Lista patrón de los anfibios y reptiles de España (Actualizada a diciembre de 2014) TECHNICAL REPORT · DECEMBER 2014 CITATIONS READS 2 383 4 AUTHORS: Miguel A. Carretero Inigo Martinez-Solano University of Porto Estación Biológica de Doñana 256 PUBLICATIONS 1,764 CITATIONS 91 PUBLICATIONS 1,158 CITATIONS SEE PROFILE SEE PROFILE Enrique Ayllon Gustavo A. Llorente ASOCIACION HERPETOLOGICA ESPAÑOLA University of Barcelona 30 PUBLICATIONS 28 CITATIONS 210 PUBLICATIONS 1,239 CITATIONS SEE PROFILE SEE PROFILE Available from: Inigo Martinez-Solano Retrieved on: 13 November 2015 Lista patrón de los anfibios y reptiles de España | Diciembre 2014 Lista patrón de los anfibios y reptiles de España (Actualizada a diciembre de 2014) Editada por: Miguel A. Carretero Íñigo Martínez-Solano Enrique Ayllón Gustavo Llorente (Comisión permanente de taxonomía de la AHE) La siguiente lista patrón tiene como base la primera lista patrón: MONTORI, A.; LLORENTE, G. A.; ALONSO-ZARAZAGA, M. A.; ARRIBAS, O.; AYLLÓN, E.; BOSCH, J.; CARRANZA, S.; CARRETERO, M. A.; GALÁN, P.; GARCÍA-PARÍS, M.; HARRIS, D. J.; LLUCH, J.; MÁRQUEZ, R.; MATEO, J. A.; NAVARRO, P.; ORTIZ, M.; PÉREZ- MELLADO, V.; PLEGUEZUELOS, J. M.; ROCA, V.; SANTOS, X. & TEJEDO, M. (2005): Conclusiones de nomenclatura y taxonomía para las especies de anfibios y reptiles de España. MONTORI, A. & LLORENTE, G. A. (coord.). Asociación Herpetológica Española, Barcelona. En caso de aquellos ítems sin comentarios, la información correspondiente se encuentra en esta primera lista, que está descargable en: http://www.magrama.gob.es/es/biodiversidad/temas/inventarios- nacionales/lista_herpetofauna_2005_tcm7-22734.pdf Para aquellos ítems con nuevos comentarios, impliquen o no su modificación, se adjunta la correspondiente explicación con una clave numerada (#).
    [Show full text]
  • Systematics and Biogeography of Stenodactylus Geckos
    Metallinou et al. BMC Evolutionary Biology 2012, 12:258 http://www.biomedcentral.com/1471-2148/12/258 RESEARCH ARTICLE Open Access Conquering the Sahara and Arabian deserts: systematics and biogeography of Stenodactylus geckos (Reptilia: Gekkonidae) Margarita Metallinou1, Edwin Nicholas Arnold2, Pierre-André Crochet3, Philippe Geniez4, José Carlos Brito5, Petros Lymberakis6, Sherif Baha El Din7, Roberto Sindaco8, Michael Robinson9 and Salvador Carranza1* Abstract Background: The evolutionary history of the biota of North Africa and Arabia is inextricably tied to the complex geological and climatic evolution that gave rise to the prevalent deserts of these areas. Reptiles constitute an exemplary group in the study of the arid environments with numerous well-adapted members, while recent studies using reptiles as models have unveiled interesting biogeographical and diversification patterns. In this study, we include 207 specimens belonging to all 12 recognized species of the genus Stenodactylus. Molecular phylogenies inferred using two mitochondrial (12S rRNA and 16S rRNA) and two nuclear (c-mos and RAG-2) markers are employed to obtain a robust time-calibrated phylogeny, as the base to investigate the inter- and intraspecific relationships and to elucidate the biogeographical history of Stenodactylus, a genus with a large distribution range including the arid and hyper-arid areas of North Africa and Arabia. Results: The phylogenetic analyses of molecular data reveal the existence of three major clades within the genus Stenodactylus, which is supported by previous studies based on morphology. Estimated divergence times between clades and sub-clades are shown to correlate with major geological events of the region, the most important of which is the opening of the Red Sea, while climatic instability in the Miocene is hypothesized to have triggered diversification.
    [Show full text]
  • Lizards & Snakes: Alive!
    LIZARDSLIZARDS && SNAKES:SNAKES: ALIVE!ALIVE! EDUCATOR’SEDUCATOR’S GUIDEGUIDE www.sdnhm.org/exhibits/lizardsandsnakeswww.sdnhm.org/exhibits/lizardsandsnakes Inside: • Suggestions to Help You Come Prepared • Must-Read Key Concepts and Background Information • Strategies for Teaching in the Exhibition • Activities to Extend Learning Back in the Classroom • Map of the Exhibition to Guide Your Visit • Correlations to California State Standards Special thanks to the Ellen Browning Scripps Foundation and the Nordson Corporation Foundation for providing underwriting support of the Teacher’s Guide KEYKEY CONCEPTSCONCEPTS Squamates—legged and legless lizards, including snakes—are among the most successful vertebrates on Earth. Found everywhere but the coldest and highest places on the planet, 8,000 species make squamates more diverse than mammals. Remarkable adaptations in behavior, shape, movement, and feeding contribute to the success of this huge and ancient group. BEHAVIOR Over 45O species of snakes (yet only two species of lizards) An animal’s ability to sense and respond to its environment is are considered to be dangerously venomous. Snake venom is a crucial for survival. Some squamates, like iguanas, rely heavily poisonous “soup” of enzymes with harmful effects—including on vision to locate food, and use their pliable tongues to grab nervous system failure and tissue damage—that subdue prey. it. Other squamates, like snakes, evolved effective chemore- The venom also begins to break down the prey from the inside ception and use their smooth hard tongues to transfer before the snake starts to eat it. Venom is delivered through a molecular clues from the environment to sensory organs in wide array of teeth.
    [Show full text]
  • Comparative Study of the Osteology and Locomotion of Some Reptilian Species
    International Journal Of Biology and Biological Sciences Vol. 2(3), pp. 040-058, March 2013 Available online at http://academeresearchjournals.org/journal/ijbbs ISSN 2327-3062 ©2013 Academe Research Journals Full Length Research Paper Comparative study of the osteology and locomotion of some reptilian species Ahlam M. El-Bakry2*, Ahmed M. Abdeen1 and Rasha E. Abo-Eleneen2 1Department of Zoology, Faculty of Science, Mansoura University, Egypt. 2 Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt. Accepted 31 January, 2013 The aim of this study is to show the osteological characters of the fore- and hind-limbs and the locomotion features in some reptilian species: Laudakia stellio, Hemidactylus turcicus, Acanthodatylus scutellatus, Chalcides ocellatus, Chamaeleo chamaeleon, collected from different localities from Egypt desert and Varanus griseus from lake Nassir in Egypt. In the studied species, the fore- and hind-feet show wide range of variations and modifications as they play very important roles in the process of jumping, climbing and digging which suit their habitats and their mode of life. The skeletal elements of the hand and foot exhibit several features reflecting the specialized methods of locomotion, and are related to the remarkable adaptations. Locomotion is a fundamental skill for animals. The animals of the present studies can take various forms including swimming, walking as well as some more idiosyncratic gaits such as hopping and burrowing. Key words: Lizards, osteology, limbs, locomotion. INTRODUCTION In vertebrates, the appendicular skeleton provides (Robinson, 1975). In the markedly asymmetrical foot of leverage for locomotion and support on land (Alexander, most lizards, digits one to four of the pes are essentially 1994).
    [Show full text]
  • In the Iranian Plateau
    Volume 29 (January 2019), 1-12 Herpetological Journal FULL PAPER https://doi.org/10.33256/hj29.1.112 Published by the British Taxonomic revision of the spider geckos of the genus AgamuraHerpetological Society senso lato Blanford, 1874 (Sauria: Gekkonidae) in the Iranian Plateau Seyyed Saeed Hosseinian Yousefkhani1, Mansour Aliabadian1,2, Eskandar Rastegar-Pouyani3 & Jamshid Darvish1,2 1Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran 2Research Department of Zoological Innovations (RDZI), Institute of Applied Zoology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran 3Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran In this study, we present an integrative systematic revision of the spider gecko, Agamura senso lato, in Iran. We sampled 56 geckos of this complex from its distributional range in Iran and western Pakistan and sequenced these for two mitochondrial markers, cytochrome b and 12S ribosomal RNA, and one nuclear marker, melano-cortin 1 receptor. We combined our molecular data with species distribution modelling and morphological examinations to clarify Agamura persica systematics and biogeography. Due to a lack of published data, we used only our data to investigate the spatial and temporal origin of spider geckos within a complete geographic and phylogenetic context. The phylogenetic analyses confirm the monophyly of Agamura. Among spider geckos, Rhinogekko diverged around the early-mid Miocene (17 Mya) from the Lut Block, and then Cyrtopodion diverged from the Agamura clade about 15 Mya in the mid-Miocene as a result of the uplifting of the Zagros Mountains. Subsequent radiation across the Iranian Plateau took place during the mid-Pliocene.
    [Show full text]
  • Genetic Differentiation and Species Status of the Large-Bodied Leaf-Tailed Geckos Uroplatus Fimbriatus and U
    SALAMANDRA 54(2) 132–146 15 May 2018Philip-SebastianISSN 0036–3375 Gehring et al. Genetic differentiation and species status of the large-bodied leaf-tailed geckos Uroplatus fimbriatus and U. giganteus Philip-Sebastian Gehring1, Souzanna Siarabi2, Mark D. Scherz3,4, Fanomezana M. Ratsoavina5, Andolalao Rakotoarison4,5, Frank Glaw3 & Miguel Vences4 1) Faculty of Biology / Biologiedidaktik, University Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany 2) Molecular Ecology and Conservation Genetics Lab, Department of Biological Application and Technology, University of Ioannina, 45110 Ioannina, Greece 3) Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 4) Technical University of Braunschweig, Division of Evolutionary Biology, Zoological Institute, Mendelssohnstr. 4, 38106 Braunschweig, Germany 5) Zoologie et Biodiversité Animale, Université d’Antananarivo, BP 906, Antananarivo, 101 Madagascar Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 27 December 2017 Accepted: 14 February 2018 by Jörn Köhler Abstract. The taxonomy of the Malagasy leaf-tailed geckos Uroplatus fimbriatus and U. giganteus is in need of revision since a molecular study casted doubt on the species status of U. giganteus from northern Madagascar. In this study we sepa- rately analyse DNA sequences of a mitochondrial gene (12S rRNA) and of four nuclear genes (CMOS, KIAA1239, RAG1, SACS), to test for concordant differentiation in these independent markers. In addition to the molecular data we provide a comprehensive review of colour variation of U. fimbriatusand U. giganteus populations from the entire distribution area based on photographs. The molecular evidence clearly supports a two-species taxonomy, with U. fimbriatus correspond- ing to a southern clade and U.
    [Show full text]
  • The Burrowing Geckos of Southern Africa 5 1976.Pdf
    ANNALS OF THE TRANSVAAL MUSEUM ANNALE VAN DIE TRANSVAAL-MUSEUM- < VOL. 30 30 JUNE 1976 No. 6 THE BURROWING GECKOS OF SOUTHERN AFRICA, 5 (REPTILIA: GEKKONIDAE) By W.D. HAACKE Transvaal lvIllseum, Pretoria (With four Text-figures) ABSTRACT This study deals with the entirely terrestrial genera of southern African geckos and is published in five parts in this journal. In this part the phylogenetic and taxono­ mic affinities of these genera based on pupil shape and hand and foot structure are discussed. PHYLOGENETIC AND TAXONOMIC AFFINITIES In his classification of the Gekkonidae, Underwood (1954) placed six South African genera into the subfamily Diplodactylinae. These genera, i.e. Cho!ldrodac~ylus, Colopus, Palmatogecko, Rhoptropus, Rhoptropella and Ptmopus were supposed to share a peculiar variant of the straight vertical pupil which he called Rhoptropus-type. He notes that all of them occur in "desert or veldt" and appear to be adapted to the special conditions of South Africa. He further states that "Such a number of genera with several peculiar forms of feet in such a restricted area is somewhat surprising". At that time all except Rhoptropuswere considered to be monotypic genera. Since then two more species of Ptmopus and also the terrestrial, obviously related genus Kaokogecko have been described. In the present paper a special study has been made of the ground­ living, burrowing genera, which excludes Rhoptropus and Rhoptropella. Although it has been pointed out that the classification of the Gekkonidae according to the form of the digits (Boulenger, 1885) and the shape of the pupil (Underwood, 1954) is unsatisfactory (Stephenson, 1960; Kluge, 72 1964 and 1967) the possibilities of these characters as taxonomic indicators were reinvestigated in the genera in question and related forms.
    [Show full text]
  • The Chondrocranium Development of Stenodactylus Slevini (Squamata: Gekkonidae) I
    Research & Reviews: Journal of Zoological Sciences e-ISSN:2321-6190 p-ISSN:2347-2294 The Chondrocranium Development of Stenodactylus slevini (Squamata: Gekkonidae) I. Stage I Mai A Al-Mosaibih* and Samar MH Sulaiman Department of Zoology, College of Scientific Sections, King Abdulaziz University, Jeddah, Saudi Arabia Research Article Received date: 30/11/2018 ABSTRACT Accepted date: 06/12/2018 This study descriptions of the development the chondrocranium in Published date: 10/12/2018 Stenodactylus slevini (Squamata: Gekkonidae), Chondrocranium cartilage is one of the important things for evolution of the vertebrate head. The stage *For Correspondence of embryo development was determined by length 21.1 mm, based on the hatched embryo, and cleared and double- stained specimens. it has been Mai A Al-Mosaibih, Department of Zoology, used reconstructions by serial sections to formation and description in College of Scientific Sections, King Abdulaziz some regions: the olfactory region, orbital region, floor of the neurocranium University, Jeddah, Saudi Arabia. and auditory region. the olfactory region in this stage is reduce developed and the fenestra olfactoria is to large, the cupola anterior and parietotectal cartilage and paranasal cartilage connected to each other, sphenethmoid Tel: 8001152869 commissure also reduced development, present a features Jacobson's organ, it's chemical sensory organ that transfers pheromones to transmit E-mail: [email protected] signals between one species. The planum supraseptale is not yet formed but medial and lateral portion of planum supraseptal present. In addition, Keywords: Anatomy, Chondrocranium, Develop- the Taenia marginalis, taenia medialis, and pila metoptica that represent ment, Gecko, Gekkonidae, Stenodactylus slevini the roof of chondrocranium.
    [Show full text]
  • New Insights on the Morphology and Taxonomy of the Gecko Mediodactylus Ilamensis (Reptilia: Gekkonidae)
    Archive of SID Iranian Journal of Animal Biosystematics (IJAB) Vol.14, No.1, 55-64, 2018 ISSN: 1735-434X (print); 2423-4222 (online) DOI: 10.22067/ijab.v14i1.71209 New insights on the morphology and taxonomy of the gecko Mediodactylus ilamensis (Reptilia: Gekkonidae) Haidari, N.1, Rastegar-Pouyani, N.1*, Rastegar-Pouyani, E.2 and Fathinia, B.3 1Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran 2 Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran 3Department of Biology, Faculty of Science, Yasouj University, Yasouj, Iran (Received: 10 December 2017; Accepted: 10 July 2018) As a recently described species, Mediodactylus ilamensis is one of the least studied species of endemic reptiles of Iran. In this study a total number of 11 specimens of Mediodactylus ilamensis were collected from type locality (Zarin-Abad) as well as a new locality in Dinar- Kooh Preserved area, Abdanan Township approximately 27 km on an aerial line in the east of type locality. To investigate morphological variation and reveal sexual dimorphism we employed 32 metric and meristic characters. The most important morphological characteristics of this species are as follow: all scales of the body, with the exception of intermaxillaries, nasals, chin shields, and upper and lower labials, strongly keeled; postmentals absent, dorsal crossbars broad and equal to, or wider than, interspaces; scales of frontal and supraocular regions toward snout are multi-keeled (in some scales up to six keels) and polyhedral. Of the studied morphological characters only two are different significantly between males and females: number of active precloacal pores and ear diameter (vertical).
    [Show full text]
  • Cop13 Prop. 27
    CoP13 Prop. 27 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of Uroplatus spp. in Appendix II. The most recent update of the species list applicable to the genus Uroplatus (Duméril, 1805) is Raxworthy’s from 2003, published in The natural history of Madagascar by Goodman and Benstead, University of Chicago Press. This update recognized 10 species within the genus Uroplatus, commonly known by its vernacular name of leaf-tailed gecko. These are: U. alluaudi Mocquard, 1894; U. ebenaui Boettger, 1879; U. fimbriatus Schneider, 1797; U. guentheri Mocquard, 1908; U. henkeli Böhme and Ibish, 1990; U. lineatus Duméril and Bibron, 1836; U. malama Nussbaum and Raxworthy, 1995; U. malahelo Nussbaum and Raxworthy, 1994; U. phantasticus Boulenger, 1888 and U. sikorae Boettger, 1913. However, a new species was described in the same year in an issue of Salamandra. This is Uroplatus pietschmanni, identified by Böhle and Schönecker (2003). This species, which closely resembles U. sikorae, was for a long time confused with it and indeed continues to be so. Since this confusion could lead to problems relating not only to population and range limits, but also to how the quantity traded is divided up, and in the absence of proper verification and review on the ground, we take the view that it is preferable to leave it out of consideration for the present. Furthermore, several other forms are under study, and these may constitute new species. Leaf-tailed geckos are among the reptiles which are traded internationally to differing extents, depending on the species concerned. The export data for 2001, 2002 and 2003 supplied by the Ministry of Water and Forests (MEF) make this point very clearly (see the analytical details in the section covering each individual species).
    [Show full text]