A List of the Herpetological Type Specimens in the Zoologisches Forschungsmuseum Alexander Koenig, Bonn

Total Page:16

File Type:pdf, Size:1020Kb

A List of the Herpetological Type Specimens in the Zoologisches Forschungsmuseum Alexander Koenig, Bonn Bonn zoological Bulletin Volume 59 pp. 79–108 Bonn, December 2010 A list of the herpetological type specimens in the Zoologisches Forschungsmuseum Alexander Koenig, Bonn Wolfgang Böhme Zoologisches Forschungsmuseum Alexander Koenig, Herpetology Section, Adenauerallee 160, D-53113 Bonn, Germany; E-mail: [email protected]. Abstract. In the herpetological collection of ZFMK 528 scientific species group names are represented by type materi- al. Of these, 304 names are documented by primary type specimens (onomatophores) while for 224 further names sec- ondary type specimens (typoids) are available, ranging chronologically from 1801 to 2010. The list is a shortened pred- ecessor of a comprehensive type catalogue in progress. It lists name bearing types with their catalogue numbers includ- ing information on further type series members also in other institutions, while secondary types are listed only by pres- ence, both in ZFMK and other collections including holotype repositories. Geographic origin and currently valid names are also provided. Key words. Amphibians and reptiles, type list, ZFMK Bonn. INTRODUCTION A first ZFMK herpetological type catalogue was published (currently section) in 1951, for many decades. Nonethe- (Böhme 1974) three years after I had entered Museum less, the present list does comprise some historical “pre- Koenig as a herpetological curator. It contained only 34 ZFMK” material which has been obtained after 1971 from reptilian names documented by type material, 22 of which smaller university museums, first of all from the Zoolog- were name-bearing type specimens (onomatophores), and ical Museum of the University of Göttingen (1977). Sin- 12 further names were documented by paratypes only. gle taxa documented by type specimens were also received Amphibians were not represented by type material at that by the Zoological Museum of the University of Kiel time. A second type catalogue was published ten years lat- (1973), and recently by the Biogeography Department of er, on the occasion of the 50th anniversary of Museum the University of Saarbrücken (via University of Trier, in Koenig as a public zoological museum (Böhme & 2009). Bischoff 1984). It counted 147 names of amphibians (51) and reptiles (96) of which 99 were onomatophores while The following catalogue comprises, with one exception 48 additional names were documented by secondary type (the chameleon Kinyongia vanheygeni), only the extant material (paratypes, paralectotypes). In addition, 22 types while those types which went lost in Göttingen be- names representing primary and secondary type specimens fore the collection transfer to Bonn, and which have been of historical material which had belonged before to the Zo- already mentioned in Böhme & Bischoff (1984), will be ological Museum in Göttingen (transferred to ZFMK in carefully listed and commented on in the forthcoming 1977) were listed as missing types because they were al- monograph mentioned above. ready lost before they ever reached ZFMK. The delimitation and arrangement of families follows Frost Within the present special BzB issue on type lists of the et al. (2006) for the amphibians, and Böhme & Sander vertebrate and invertebrate collections of ZFMK, the pres- (2010) for the reptiles, plus the familial concept of Zaher ent herpetological list is a much shortened predecessor of et al. (2009) for colubroid snakes. For dendrobatid frogs, a comprehensive, critically evaluated type catalogue of I follow the monograph by Grant et al. (2006, see also Löt- ZFMK amphibians and reptiles which will be published ters et al. 2007); for Madagascar, I follow Glaw & Vences in the framework of a monograph dealing with the histo- (2007). Within their families, taxa are arranged in alpha- ry of herpetological research in Bonn since the founda- betical order of genera, and within genera, arrangement tion of the Rheinische Friedrich-Wilhelms-Universität in is again alphabetically. Names of authors are accompanied 1818 which predates the foundation of ZFMK, particular- by an initial letter of their forenames only when a fami- ly the creation of its own herpetological department ly name occurs more than twice. Bonn zoological Bulletin 59: 79–108 ©ZFMK 80 Wolfgang Böhme Catalogue numbers are given here for primary types on- GNHM = Göteborgs Naturhistoriska Museet (see also ly, i.e. for holotypes, lectotypes and neotypes; syntypes NHMG) are also counted under this category because they are the HLMD = Hessisches Landesmuseum, Darmstadt first candidates for lectotype selection and are thus like- IEBR = Institute of Ecology and Biological Resources, ly to contain future lectotypes; for secondary types, i.e. Hanoi paratypes and paralectotypes, only their presence in IFAN = Institut Fondamental d’Afrique Noire, Dakar ZFMK and/or other collection is reported: due to the ne- INHS = Illinois Natural History Survey [descended in part cessity to avoid redundancies with the future big cata- from Illinois State Laboratory of Natural History], Uni- logue. All names are given in their original combinations; versity of Illinois, Champaign, Illinois if taxonomic assignment or rank has changed, the current INPA = Instituto Nacional de Pesquisas da Amazônia, Ma- name believed to be valid today is given. This shortened naus preliminary type list thus offers the following informa- IRSNB = Institut Royal des Sciences Naturelles de Bel- tions: gique, Bruxelles / (= KBIN) Koninklijk Belgisch Instituut voor Natuurwetenschappen, Brussel – All names which are represented at ZFMK by type ma- IZUG = Institute of Zoology, University of Genova terial, in their original taxonomic combinations. LACM = Natural History Museum of Los Angeles – Primary, name-bearing types and their catalogue num- County, Los Angeles bers; also the repositories of additional secondary type LBUM = Laboratoire de Biogéographie, Université de material, if at all existent. Montpellier – If only secondary types are involved at ZFMK, the col- LSUZM = Louisiana State University Zoological Museum lection housing the respective onomatophore is given, MCC = Museo Civico di Storia Naturale, Carmagnola together with all collections holding additional second- MCNSC = Museo Insular de Ciencias Naturales de San- ary type material. ta Cruz de Tenerife – The rough geographic origin of the respective taxa. MCZ = Museum of Comparative Zoology, Cambridge, – The current name combination, if the original combi- Massachusetts nation has changed. MGL = Musée Guimet d’Histoire Naturelle, Lyon MHNCP = Museo de Historia Natural, Universidad Na- For more details including full bibliographic references cional de San Antonio Abad del Cusco, Cusco of each name, for full locality and collector’s data, as well MHNG = Muséum d’Histoire Naturelle, Genève as for taxonomic and/or historical comments the reader MHNSM = Museo de Historia Natural San Marcos, Li- is referred to the comprehensive monograph in progress. ma MM = Museum Magdeburg MNCN = Museo Nacional de Ciencias Naturales, Madrid Abbreviations for museum collections used: MNHN = Muséum National d’Histoire Naturelle, Paris MPEG = Museu Paraense “Emilio Goeldi”, Zoologia, Be- AMNH = American Museum of Natural History, New lém, Pará York MRAC = Musée Royal de l’Afrique Centrale, Tervuren ANSP = Academy of Natural Sciences, Philadelphia MRSN = Museo Regionale di Scienze Naturali, Torino BEV = Laboratoire de Biogéographie et Ecologie des Ver- MTKD (or MTD respectively) = Museum für Tierkunde tébrés, École Pratique des Hautes Études, Montpellier Dresden BIUB = Mongolian Academy of Sciences, Ulan Bataar MUSM = Museo de Historia Natural San Marcos BM(NH) = British Museum (of Natural History), The Nat- MZB = “Museum Zoologicum Bogoriense” = Zoological ural History Museum, London Museum, Bogor CAS = California Academy of Sciences, San Francisco MZUF = Museo Zoologico, Universitá di Firenze, Flo- CBF = Colección Boliviana de Fauna, La Paz rence CET = Centro de Estudios Tropicales, Sevilla, Spain MZUN = Museo di Zoologia dell’Università di Napoli, CM = Carnegie Museum, Pittsburgh Naples CNHM = Chicago Natural History Museum MZUSP = Museu de Zoologia da Universidade de São DZCHU = Department of Zoology, Charles University, Paulo, São Paulo (also as MZSP and MSP) Prague NHCY = Natural History Collection Yemen, Sana’a DZUL = Departamento de Zoología, Universidad de La NHMG = Naturhistoriska Riksmuseet, Göteborg (see al- Laguna, Tenerife so GNHM) EBD = Estación Biologica de Doñana, Sevilla NKA = Museo de Historia Natural “Noël Kempff Mer- EPN = Escuela Politécnica Nacional, Quito cado”, Santa Cruz de la Sierra FMNH = Field Museum of Natural History, Chicago NMB = Naturhistorisches Museum Basel Bonn zoological Bulletin 59: 79–108 ©ZFMK Type specimens in ZFMK: Section of Herpetology 81 NMBE = Naturhistorisches Museum Bern ences, Tbilisi NMK = National Museums of Kenya, Nairobi ZLU = Departamento de Zoología de la Universidad de NMNW = National Museum of Namibia, Windhoek La Laguna, Tenerife NMP = National Museum Prague ZMA = Zoölogisch Museum, Universiteit van Amsterdam NMSR = National Museum of South Rhodesia (= now ZMB = Zoologisches Museum = Museum für Naturkun- Zimbabwe), Harare de, Berlin NMW = Naturhistorisches Museum Wien, Vienna ZMH = Zoologisches Museum der Universität Hamburg NUOL = National University of Laos, Vientiane ZMMU = Zoological Museum, Moscow State Universi- OMNH = Osaka Museum of Natural History, Laborato- ty ry of Zoology, Osaka ZMUC = Zoological Museum, University of Copenhagen PEM = Port Elizabeth Museum ZRC = Zoological
Recommended publications
  • PRAVILNIK O PREKOGRANIĈNOM PROMETU I TRGOVINI ZAŠTIĆENIM VRSTAMA ("Sl
    PRAVILNIK O PREKOGRANIĈNOM PROMETU I TRGOVINI ZAŠTIĆENIM VRSTAMA ("Sl. glasnik RS", br. 99/2009 i 6/2014) I OSNOVNE ODREDBE Ĉlan 1 Ovim pravilnikom propisuju se: uslovi pod kojima se obavlja uvoz, izvoz, unos, iznos ili tranzit, trgovina i uzgoj ugroţenih i zaštićenih biljnih i ţivotinjskih divljih vrsta (u daljem tekstu: zaštićene vrste), njihovih delova i derivata; izdavanje dozvola i drugih akata (potvrde, sertifikati, mišljenja); dokumentacija koja se podnosi uz zahtev za izdavanje dozvola, sadrţina i izgled dozvole; spiskovi vrsta, njihovih delova i derivata koji podleţu izdavanju dozvola, odnosno drugih akata; vrste, njihovi delovi i derivati ĉiji je uvoz odnosno izvoz zabranjen, ograniĉen ili obustavljen; izuzeci od izdavanja dozvole; naĉin obeleţavanja ţivotinja ili pošiljki; naĉin sprovoĊenja nadzora i voĊenja evidencije i izrada izveštaja. Ĉlan 2 Izrazi upotrebljeni u ovom pravilniku imaju sledeće znaĉenje: 1) datum sticanja je datum kada je primerak uzet iz prirode, roĊen u zatoĉeništvu ili veštaĉki razmnoţen, ili ukoliko takav datum ne moţe biti dokazan, sledeći datum kojim se dokazuje prvo posedovanje primeraka; 2) deo je svaki deo ţivotinje, biljke ili gljive, nezavisno od toga da li je u sveţem, sirovom, osušenom ili preraĊenom stanju; 3) derivat je svaki preraĊeni deo ţivotinje, biljke, gljive ili telesna teĉnost. Derivati većinom nisu prepoznatljivi deo primerka od kojeg potiĉu; 4) država porekla je drţava u kojoj je primerak uzet iz prirode, roĊen i uzgojen u zatoĉeništvu ili veštaĉki razmnoţen; 5) druga generacija potomaka
    [Show full text]
  • First Record of Bonelli's Eagle Aquila Fasciatus in Sudan
    42 Short communications scheme implies that this artificial wetland is becoming increasingly important for waterbirds (see also Nachuha 2006; Nachuha & Byaruhanga 2009). In addition, water levels at Kibimba are shallow, and the pH of the water is slightly alkaline (pH 8) (Nachuha & Byaruhanga 2009) creating favourable conditions for this species. The Greater Flamingo was classified as Least Concern under the 2009 IUCN Red List because it has a very large range with a large population that appears to be increasing (BirdLife International 2009). In East Africa it is common in Kenya, frequent in Tanzania and rare in Western Uganda (Van Perlo 1995). This record now adds eastern Uganda as part of its known range. Considering that this species is prone to irregular (nomadic or partially migratory) movements throughout its range (BirdLife International 2009), it is likely that this single bird came from other parts of East Africa. References BirdLife International 2009. Species factsheet: Grus carunculatus. Downloaded from http://www.birdlife.org on 20/05/2010 Nachuha, S.K. & Byaruhanga, A. 2009. First record of the Wattled Crane Grus carunculatus in Uganda. Scopus 29: 21-22 Nachuha, S. 2006. Explaining distribution pattern of waterbirds on rice paddies and other wetlands in eastern Uganda. PhD Thesis, Oxford University, UK Urban, E.K., Fry, C.H. & Keith, S. (Eds) 1986. The Birds of Africa. Vol. 2. London: Academic Press Van Perlo, B. 1995. Birds of Eastern Africa. London: Harper Collins. Sarah N. Kasozi Islamic University in Uganda, P.O. Box 2555, Mbale, Uganda. Email: snachuha@hotmail. com Scopus 31: 41-42, November 2011 Received May 2010 First record of Bonelli’s Eagle Aquila fasciatus in Sudan The Bonelli’s Eagle Aquila fasciatus is a Palearctic, Indo-malayan, marginally Afro-tropical species that is considered local and uncommon across its range, mostly scarce to rare, and generally declining (Fergusson-Lees & Christie 2001).
    [Show full text]
  • The Body Burden and Thyroid Disruption in Lizards (Eremias Argus)
    Journal of Hazardous Materials 347 (2018) 218–226 Contents lists available at ScienceDirect Journal of Hazardous Materials jo urnal homepage: www.elsevier.com/locate/jhazmat The body burden and thyroid disruption in lizards (Eremias argus) living in benzoylurea pesticides-contaminated soil a,b a,b a,b a a a Jing Chang , Jitong Li , Weiyu Hao , Huili Wang , Wei Li , Baoyuan Guo , a a a,∗ Jianzhong Li , Yinghuan Wang , Peng Xu a Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China b University of Chinese Academy of Sciences, Yuquan RD 19A, Beijing, 100049, China h i g h l i g h t s g r a p h i c a l a b s t r a c t • Diflubenzuron degraded faster than flufenoxuron in the soil. • The SPFs of flufenoxuron were greater than diflubenzuron. • The body burden of BPUs was related with LogKow and molecular weight. • BPUs exposure disturbed both thy- roid and metabolism system of lizards. a r t i c l e i n f o a b s t r a c t Article history: Dermal exposure is regarded as a potentially significant but understudied route for pesticides uptake Received 1 November 2017 in terrestrial reptiles. In this study, a native Chinese lizard was exposed to control, diflubenzuron or Received in revised form −1 flufenoxuron contaminated soil (1.5 mg kg ) for 35 days. Tissue distribution, liver lesions, thyroid hor- 19 December 2017 mone levels and transcription of most target genes were examined. The half-lives of diflubenzuron and Accepted 3 January 2018 flufenoxuron in the soil were 118.9 and 231.8 days, respectively.
    [Show full text]
  • Summary Conservation Action Plans for Mongolian Reptiles and Amphibians
    Summary Conservation Action Plans for Mongolian Reptiles and Amphibians Compiled by Terbish, Kh., Munkhbayar, Kh., Clark, E.L., Munkhbat, J. and Monks, E.M. Edited by Munkhbaatar, M., Baillie, J.E.M., Borkin, L., Batsaikhan, N., Samiya, R. and Semenov, D.V. ERSITY O IV F N E U D U E T C A A T T S I O E N H T M ONGOLIA THE WORLD BANK i ii This publication has been funded by the World Bank’s Netherlands-Mongolia Trust Fund for Environmental Reform. The fi ndings, interpretations, and conclusions expressed herein are those of the author(s) and do not necessarily refl ect the views of the Executive Directors of the International Bank for Reconstruction and Development / the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colours, denominations, and other information shown on any map in this work do not imply any judgement on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. The World Conservation Union (IUCN) have contributed to the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, providing technical support, staff time, and data. IUCN supports the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, but the information contained in this document does not necessarily represent the views of IUCN. Published by: Zoological Society of London, Regent’s Park, London, NW1 4RY Copyright: © Zoological Society of London and contributors 2006.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Parachute Geckos Free Fall Into Synonymy Gekko Phylogeny, And
    Molecular Phylogenetics and Evolution 146 (2020) 106731 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Parachute geckos free fall into synonymy: Gekko phylogeny, and a new T subgeneric classifcation, inferred from thousands of ultraconserved elements ⁎ Perry L. Wood Jr.a, , Xianguang Guoa,b, Scott L. Traversa, Yong-Chao Sua,c, Karen V. Olsona, Aaron M. Bauerd, L. Lee Grismere, Cameron D. Silerf, Robert G. Moylea, Michael J. Anderseng, Rafe M. Browna a Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA b Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China c Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan d Department of Biology and Center for Biodiversity and Ecosystem Stewardship , 800 Lancaster Avenue, Villanova University, Villanova, PA 19085, USA e Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, CA 92515, USA f Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072-7029, USA g Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA ARTICLE INFO ABSTRACT Keywords: Recent phylogenetic studies of gekkonid lizards have revealed unexpected, widespread paraphyly and polyphyly Luperosaurus among genera, unclear generic boundaries, and a tendency towards the nesting of taxa exhibiting specialized, Ptychozoon apomorphic morphologies within geographically widespread “generalist” clades. This is especially true in Phylogenomics Australasia, where monophyly of Gekko proper has been questioned with respect to phenotypically ornate fap- Species tree legged geckos of the genus Luperosaurus, the Philippine false geckos of the genus Pseudogekko, and even the Subgenera elaborately “derived” parachute geckos of the genus Ptychozoon.
    [Show full text]
  • Contents Herpetological Journal
    British Herpetological Society Herpetological Journal Volume 31, Number 3, 2021 Contents Full papers Killing them softly: a review on snake translocation and an Australian case study 118-131 Jari Cornelis, Tom Parkin & Philip W. Bateman Potential distribution of the endemic Short-tailed ground agama Calotes minor (Hardwicke & Gray, 132-141 1827) in drylands of the Indian sub-continent Ashish Kumar Jangid, Gandla Chethan Kumar, Chandra Prakash Singh & Monika Böhm Repeated use of high risk nesting areas in the European whip snake, Hierophis viridiflavus 142-150 Xavier Bonnet, Jean-Marie Ballouard, Gopal Billy & Roger Meek The Herpetological Journal is published quarterly by Reproductive characteristics, diet composition and fat reserves of nose-horned vipers (Vipera 151-161 the British Herpetological Society and is issued free to ammodytes) members. Articles are listed in Current Awareness in Marko Anđelković, Sonja Nikolić & Ljiljana Tomović Biological Sciences, Current Contents, Science Citation Index and Zoological Record. Applications to purchase New evidence for distinctiveness of the island-endemic Príncipe giant tree frog (Arthroleptidae: 162-169 copies and/or for details of membership should be made Leptopelis palmatus) to the Hon. Secretary, British Herpetological Society, The Kyle E. Jaynes, Edward A. Myers, Robert C. Drewes & Rayna C. Bell Zoological Society of London, Regent’s Park, London, NW1 4RY, UK. Instructions to authors are printed inside the Description of the tadpole of Cruziohyla calcarifer (Boulenger, 1902) (Amphibia, Anura, 170-176 back cover. All contributions should be addressed to the Phyllomedusidae) Scientific Editor. Andrew R. Gray, Konstantin Taupp, Loic Denès, Franziska Elsner-Gearing & David Bewick A new species of Bent-toed gecko (Squamata: Gekkonidae: Cyrtodactylus Gray, 1827) from the Garo 177-196 Hills, Meghalaya State, north-east India, and discussion of morphological variation for C.
    [Show full text]
  • Lizards & Snakes: Alive!
    LIZARDSLIZARDS && SNAKES:SNAKES: ALIVE!ALIVE! EDUCATOR’SEDUCATOR’S GUIDEGUIDE www.sdnhm.org/exhibits/lizardsandsnakeswww.sdnhm.org/exhibits/lizardsandsnakes Inside: • Suggestions to Help You Come Prepared • Must-Read Key Concepts and Background Information • Strategies for Teaching in the Exhibition • Activities to Extend Learning Back in the Classroom • Map of the Exhibition to Guide Your Visit • Correlations to California State Standards Special thanks to the Ellen Browning Scripps Foundation and the Nordson Corporation Foundation for providing underwriting support of the Teacher’s Guide KEYKEY CONCEPTSCONCEPTS Squamates—legged and legless lizards, including snakes—are among the most successful vertebrates on Earth. Found everywhere but the coldest and highest places on the planet, 8,000 species make squamates more diverse than mammals. Remarkable adaptations in behavior, shape, movement, and feeding contribute to the success of this huge and ancient group. BEHAVIOR Over 45O species of snakes (yet only two species of lizards) An animal’s ability to sense and respond to its environment is are considered to be dangerously venomous. Snake venom is a crucial for survival. Some squamates, like iguanas, rely heavily poisonous “soup” of enzymes with harmful effects—including on vision to locate food, and use their pliable tongues to grab nervous system failure and tissue damage—that subdue prey. it. Other squamates, like snakes, evolved effective chemore- The venom also begins to break down the prey from the inside ception and use their smooth hard tongues to transfer before the snake starts to eat it. Venom is delivered through a molecular clues from the environment to sensory organs in wide array of teeth.
    [Show full text]
  • 1 7 an Identification Key to the Geckos of the Seychelles
    HERPETOLOGICAL JOURNAL. Vol. I. pp. 17-19 (19X5l 17 AN IDENTIFICATION KEY TO THE GECKOS OF THE SEYCHELLES, WITH BRIEF NOTES ON THEIR DISTRIBUTIONS AND HABITS ANDREW S. GARDNER Department of Zoology, University of Aberdren. Ti/lydrone Avenue, Aberdeen AB9 2TN. U. K. Present addresses: The Calton Laboratory. Department of Genetics and Biomet IT, Universif.I' Co/legr London. Wo/f�·on !-louse, 4 Stephenson Wa r London NWI 21-11'.. U.K. (A ccepted 24. /0. 84) INTRODUCTION 4. Scales on chest and at least anterior of belly keeled. Underside white. Phe!suma astriata The Republic of Seychelles, lying in the western Tornier. 5. Indian Ocean consists of a group of mountainous, granitic islands, and a large number of outlying coral Scales on chest and belly not keeled. 6. atolls and sand cays, distributed over 400,000 km2 of sea. There are over a hundred islands, ranging in size 5. Subcaudal scales keeled and not transversely from Mahe, at 148 km2 to islands little more than enlarged in original tails. Ground colour of emergent rocks. A total of eighteen species of lizard, rump and tail usually bright blue, and of from three families are recorded from the Seychelles nanks, green. Tail unmarked or spotted with (Gardner, 1984). The best represented family is the red. Red transverse neck bars often reduced or Gekkonidae with eleven species, fo ur of which are absent. Phe/suma astriata astriata Tornier i endemic to the islands. The identification key 90 1. presented here should enable interested naturalists to Subcaudal scales unkeeled and transversely identify any gecko encountered in the Seychelles to the enlarged in original tails.
    [Show full text]
  • The First Record of Age Structure and Body Size of the Suphan Racerunner, Eremias Suphani Başoğlu & Hellmich, 1968
    Turkish Journal of Zoology Turk J Zool (2015) 39: 513-518 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1408-39 The first record of age structure and body size of the Suphan Racerunner, Eremias suphani Başoğlu & Hellmich, 1968 1, 1 2 1 2 Nazan ÜZÜM *, Aziz AVCI , Yusuf KUMLUTAŞ , Nurettin BEŞER , Çetin ILGAZ 1 Department of Biology, Faculty of Science and Arts, Adnan Menderes University, Aydın, Turkey 2 Department of Biology, Faculty of Science, Dokuz Eylül University, İzmir, Turkey Received: 15.08.2014 Accepted: 25.10.2014 Published Online: 04.05.2015 Printed: 29.05.2015 Abstract: The age structure of Eremias suphani was studied from a high-altitude (2180 m a.s.l.) locality in eastern Turkey. A total of 24 preserved (16♂♂, 7♀♀, and 1 juvenile) specimens were used in this study. According to the skeletochronological analysis, ages ranged from 6 to 9 years (mean: 7.38 ± 0.22 years) in males and from 6 to 10 years (mean: 7.86 ± 0.51 years) in females. Age at maturity was estimated to be 5–6 years for both males and females. The mean snout–vent length was calculated as 60.88 ± 2.61 mm in males and 58.85 ± 2.44 in females. The sexual dimorphism index was calculated as –0.03. The difference between the sexes for both age and size was not statistically significant. Key words: Age structure, body size, Eremias suphani, Lacertidae, sexual dimorphism, Turkey 1. Introduction are little data available on life history characteristics such as The genus Eremias Fitzinger, 1834, which includes 35 lizard body size, age at maturity, and longevity.
    [Show full text]
  • Potential Invasion Risk of Pet Traded Lizards, Snakes, Crocodiles, And
    diversity Article Potential Invasion Risk of Pet Traded Lizards, Snakes, Crocodiles, and Tuatara in the EU on the Basis of a Risk Assessment Model (RAM) and Aquatic Species Invasiveness Screening Kit (AS-ISK) OldˇrichKopeck˛ *, Anna Bílková, Veronika Hamatová, Dominika K ˇnazovická, Lucie Konrádová, Barbora Kunzová, Jana Slamˇeníková, OndˇrejSlanina, Tereza Šmídová and Tereza Zemancová Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kam˛cká 129, Praha 6 - Suchdol 165 21, Prague, Czech Republic; [email protected] (A.B.); [email protected] (V.H.); [email protected] (D.K.); [email protected] (L.K.); [email protected] (J.S.); [email protected] (B.K.); [email protected] (O.S.); [email protected] (T.S.); [email protected] (T.Z.) * Correspondence: [email protected]; Tel.: +420-22438-2955 !"#!$%&'(! Received: 30 June 2019; Accepted: 9 September 2019; Published: 13 September 2019 !"#$%&' Abstract: Because biological invasions can cause many negative impacts, accurate predictions are necessary for implementing e↵ective restrictions aimed at specific high-risk taxa. The pet trade in recent years became the most important pathway for the introduction of non-indigenous species of reptiles worldwide. Therefore, we decided to determine the most common species of lizards, snakes, and crocodiles traded as pets on the basis of market surveys in the Czech Republic, which is an export hub for ornamental animals in the European Union (EU). Subsequently, the establishment and invasion potential for the entire EU was determined for 308 species using proven risk assessment models (RAM, AS-ISK). Species with high establishment potential (determined by RAM) and at the same time with high potential to significantly harm native ecosystems (determined by AS-ISK) included the snakes Thamnophis sirtalis (Colubridae), Morelia spilota (Pythonidae) and also the lizards Tiliqua scincoides (Scincidae) and Intellagama lesueurii (Agamidae).
    [Show full text]
  • Genetic Differentiation and Species Status of the Large-Bodied Leaf-Tailed Geckos Uroplatus Fimbriatus and U
    SALAMANDRA 54(2) 132–146 15 May 2018Philip-SebastianISSN 0036–3375 Gehring et al. Genetic differentiation and species status of the large-bodied leaf-tailed geckos Uroplatus fimbriatus and U. giganteus Philip-Sebastian Gehring1, Souzanna Siarabi2, Mark D. Scherz3,4, Fanomezana M. Ratsoavina5, Andolalao Rakotoarison4,5, Frank Glaw3 & Miguel Vences4 1) Faculty of Biology / Biologiedidaktik, University Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany 2) Molecular Ecology and Conservation Genetics Lab, Department of Biological Application and Technology, University of Ioannina, 45110 Ioannina, Greece 3) Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 4) Technical University of Braunschweig, Division of Evolutionary Biology, Zoological Institute, Mendelssohnstr. 4, 38106 Braunschweig, Germany 5) Zoologie et Biodiversité Animale, Université d’Antananarivo, BP 906, Antananarivo, 101 Madagascar Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 27 December 2017 Accepted: 14 February 2018 by Jörn Köhler Abstract. The taxonomy of the Malagasy leaf-tailed geckos Uroplatus fimbriatus and U. giganteus is in need of revision since a molecular study casted doubt on the species status of U. giganteus from northern Madagascar. In this study we sepa- rately analyse DNA sequences of a mitochondrial gene (12S rRNA) and of four nuclear genes (CMOS, KIAA1239, RAG1, SACS), to test for concordant differentiation in these independent markers. In addition to the molecular data we provide a comprehensive review of colour variation of U. fimbriatusand U. giganteus populations from the entire distribution area based on photographs. The molecular evidence clearly supports a two-species taxonomy, with U. fimbriatus correspond- ing to a southern clade and U.
    [Show full text]