Science for Policy Research Findings in Brief Project 2.1

Total Page:16

File Type:pdf, Size:1020Kb

Science for Policy Research Findings in Brief Project 2.1 Science for Policy Research findings in brief Project 2.1 Reptiles on the brink: the Australian terrestrial snake and lizard species most at risk of extinction In brief Background Australia is a hotspot for reptiles; The conservation of Australian reptiles Invasive species were the most it is home to about 10% of the world’s is often overlooked relative to the common threats to the most known species (the largest number concern given to birds and mammals imperilled snakes and lizards, of any country), and over 90% (which typically have higher public followed by agriculture, altered fire of Australian reptile species are profiles). However, many of regimes and climate change. found nowhere else. Australia’s reptiles are declining. Although most of the species Many reptiles are experiencing An important first step in preventing identified were historically more ongoing declines in Australia. their extinctions is identifying the widespread, each of them now A lack of conservation action to species at greatest risk. occurs in a relatively small area. address this has been compounded Our team of almost 30 reptile This makes them vulnerable to by a general lack of knowledge about Australian reptiles; many species experts from universities, museums extinctions caused by a single are poorly known (evidenced by and government agencies across catastrophic event, such as a large fire. the high rate of description of the country has identified the 20 Increased resourcing and conservation new Australian species); and there Australian snakes and lizards at actions are urgently needed to prevent has been limited monitoring for greatest risk of extinction, and extinctions of Australian reptiles. most species. Without adequate estimated the probability that they Our study reveals that business-as- monitoring, it is difficult to assess will be lost within 20 years if there usual could result in the extinction population trends and the impacts is no change in management. of up to 11 species by 2040. of threats, and managers may lose opportunities to prevent No 15 Roma earless dragon, Tympanocryptis wilsoni, Queensland. reptile extinctions because severe Image: Stephen Zozaya population declines are not detected with sufficient time to respond. Undetected extinctions are likely to have already taken place. The Australian Government has committed to averting extinctions, and this first requires identification of the species at most immediate risk. This can forewarn governments, conservation managers and the community so that they can implement emergency care and recovery actions to prevent Further Information extinctions before it is too late. David Chapple – [email protected] Hayley Geyle – [email protected] Biodiversity and Conservation Science Lofty was f noon to Mount ound From six o'clock w uation of e ran thirty The sit m some other cro o th nd fro ss miles t e northwa ence a rd skirting from h south and 1 a sandy 34 59' 38 4 t the distance to be 2' shore a bearings, so far of five, and thence as visible to the land w ight miles; east. No to e the depth e trees appeared above was then 5 as where th oms, and w north wed the c fath e droppe hich sho oast to d the anchor upon izon, w the l hor of san r soundings were a bottom d, mix and ou ed with pieces of ery low, to v oral. FLINDERS UNIVERSITY dead c fast decreasing. ADELAIDE • AUSTRALIA BELOW TOP: No 10 Mount Surprise slider, Lerista storri, Queensland. Image: Stephen Zozaya BELOW BOTTOM: No 4 Arnhem Land gorges skink, Bellatorias obiri, Northern Territory. Image: Chris Jolly About the research We identified 60 Australian snakes modelling to measure and test and lizards (collectively known as the expert predictions. squamates) of high conservation We mapped the distributions of concern for consideration in this the most imperilled species in project, based on internationally order to identify priority regions recognised criteria (IUCN Red List). for research and management. For each of these species, We also examined the key we estimated the probability of threats affecting these species. extinction (in the wild) by 2040 to identify and rank the species Our assessments of extinction at most immediate risk. probability preceded the 2019–20 wildfires, which are likely to have To do this, we gathered all available severely worsened the conservation information on the ecology, threats outlook for many of the species and population trends for each included in our study, and also for species, and provided it to 27 reptile many others that were not included experts from across the country. (but for which the fires may have Each expert was then asked to warranted their inclusion). estimate the probability of extinction of each species over the next two Additionally, we assessed the decades, assuming a continuation probability of successfully re- of current management. Participants establishing wild populations of could decline to provide an estimate two Extinct in the Wild lizards for a particular species if they did not endemic to Christmas Island for have any first-hand experience with it. which reintroduction trials are We collected an average of 19 expert currently underway (Lister’s gecko, estimates of extinction risk for each Lepidodactylus listeri; and the blue- species and performed statistical tailed skink, Cryptoblepharus egeriae). Key findings We identified six species that are See Table 1 for a list of the 20 species of Australian reptiles, relative to more likely to go extinct than to at greatest risk and their probability historic levels. persist over the next two decades, of extinction by 2040. Comparable assessments have assuming no improvements to current Based on the estimated extinction also been applied to Australian management. These include three probabilities of all 60 species mammals, birds and freshwater fishes. skinks, two dragons and one blind considered, up to 11 snakes and The number of reptiles identified as snake. We found that the species lizards could become extinct by being at high risk of extinction within at greatest extinction risk are not 2040 unless management improves. 20 years is lower than for freshwater always in the higher categories This would represent a marked fishes, but similar to the number for such as Critically Endangered. increase in the rate of extinction birds and higher than for mammals. Conrad Hoskin in Saltuarius eximius habitat. Image: Conrad Hoskin No 12 Pinnacles leaf-tailed gecko, Phyllurus pinnaclensis, Queensland. Image: Stephen Zozaya Table 1. The 20 Australian terrestrial snakes and lizards at greatest risk of extinction in Australia, their estimated probabilities of extinction in the wild by 2040, their locations, IUCN Red List conservation status and Environmental Protection and Biodiversity Conservation Act 1999 (EPBC) status — Critically Endangered (CR), Endangered (EN), Vulnerable (VU), unassessed due to recent taxonomic revision or description (N/A) and Not listed. Rank Species Probability of extinction State IUCN status EPBC Act status Victoria grassland earless dragon 1 93% Vic N/A EN Tympanocryptis pinguicolla Fassifern blind snake 2 75% Qld CR Not listed Anilios insperatus Lyons grassland striped skink 3 71% Qld CR Not listed Austroblepharus barrylyoni Arnhem Land gorges skink 4 69% NT CR EN Bellatorias obiri Bathurst grassland earless dragon EN (as part 5 62% NSW N/A Tympanocryptis mccartneyi T. pinguicolla) Gravel Downs ctenotus 6 52% Qld CR Not listed Ctenotus serotinus Allan’s lerista 7 46% Qld CR EN Lerista allanae Christmas Island blind snake 8 41% CI EN VU Ramphotyphlops exocoeti Cape Melville leaf-tailed gecko 9 39% Qld EN Not listed Saltuarius eximius Mount Surprise slider 10 37% Qld N/A Not listed Lerista storri McIlwraith leaf-tailed gecko 11 31% Qld VU Not listed Orraya occultus Pinnacles leaf-tailed gecko 12 28% Qld CR Not listed Phyllurus pinnaclensis Condamine earless dragon 13 25% Qld EN EN Tympanocryptis condaminensis Lake Disappointment dragon 14 21% WA VU Not listed Ctenophorus nguyarna Roma earless dragon 15 19% Qld EN Not listed Tympanocryptis wilsoni Lake Disappointment ground gecko 16 18% WA VU Not listed Diplodactylus fulleri Canberra Grassland earless dragon EN (as part 17 18% ACT N/A Tympanocryptis lineata T. pinguicolla) Christmas Island forest gecko 18 17% CI EN EN Cyrtodactylus sadleiri Lancelin Island ctenotus 19 17% WA (LI) CR VU Ctenotus lancelini Limbless fine-lined slider 20 15% Qld EN Not listed Lerista ameles Key findings (continued) Where are the at-risk species? All of the species are restricted in Many of the species persist in range, with a maximum area of remnant pockets of vegetation All of the species occur in a single occupancy of 56 km2. Most (65%) adjacent to highly developed areas state or territory. More than half of the 20 species at greatest risk (e.g., the Bathurst grassland earless (55%) of the 20 species at greatest have an area of occupancy of dragon Tympanocryptis mccartneyi risk occur only in Queensland. 16 km2 or less, and several species and Allan’s lerista Lerista allanae), Three species occur only on islands: are known from only one location. where they face a high risk of two on Christmas Island, and one These small distributions increase extinction due to continued habitat on Lancelin Island (a tiny low-lying their risk of extinction as a result loss, fragmentation and edge effects. sand island off the coast of of a single catastrophic event, Western Australia). The rough location of species such as a large bushfire. distributions is shown in Figure 1. Christmas Island (o map) Arnhem Land gorges skink McIlwraith leaf-tailed gecko Christmas Island blind snake Christmas Island forest gecko Cape Melville leaf-tailed gecko Mount Surprise slider Lake Disappointment ground gecko Limbless ne-lined slider Lake Disappointment dragon Lyons grassland striped skink Pinnacles leaf-tailed gecko Gravel downs ctenotus Allan’s lerista Roma earless dragon Condamine earless dragon Fassifern Valley blind snake Bathurst grassland earless dragon Lancelin Island ctenotus Canberra grassland earless dragon Victoria grassland earless dragon Figure 1.
Recommended publications
  • MAREN Gaulke Muhliusstrasse 84, 24103 Kiel 1, Germany
    Asiatic Research Vol. 6, I June 1995 Herpetolo^ical pp. WW Observations on Arboreality in a Philippine Blind Snake MAREN Gaulke Muhliusstrasse 84, 24103 Kiel 1, Germany Abstract. -Five blind snakes were observed in June 1990 in the rain forests of Sibutu Island in the Sulu Archipelago, Philippines. Contrary to the usually fossorial habits of typhlopids, Ramphotyphlops suluensis (Taylor, 1918) shows arboreal habits. It climbed through trees at night using the prehensile tail and hindbody. When caught they extruded a strong smelling liquid from their cloaca. Relatively long tails are found in some other rain forest dwelling typhlopids, which may also have arboreal habits. Key words: Reptilia, Ophidia, Typhlopidae, Ramphotyphlops suluensis, Philippines, ecology. and the relative humidity between 70 and Introduction 95%. Little is known of the behavior of blind The nomenclatural history and taxonomy snakes (Typhlopidae). Information is of the typhlopids observed and caught on normally generalized and consists of little Sibutu is discussed in Gaulke (in press), more than that typhlopids are small, where the species, previously synonymized burrowing snakes, which live in decaying with Ramphotyphlops olivaceus (Gray, logs, humus and leaf litter, and feed mainly 1845), is revalidated. Ramphotyphlops on ants and termites, especially their grubs, suluensis reaches a length of approximately pupae and eggs (e. g. Taylor, 1922; 40 cm, the eyes are distinctive, and the tail is Loveridge, 1946; Gruber, 1980). more than twice as long as broad. The dorsal side is gray, the ventral side is cream, This gap in observations is certainly due with bright white scales along the median to a number of different factors.
    [Show full text]
  • Unsustainable Food Systems Threaten Wild Crop and Dolphin Species
    INTERNATIONAL PRESS RELEASE Embargoed until: 07:00 GMT (16:00 JST) 5 December 2017 Elaine Paterson, IUCN Media Relations, t+44 1223 331128, email [email protected] Goska Bonnaveira, IUCN Media Relations, m +41 792760185, email [email protected] [In Japan] Cheryl-Samantha MacSharry, IUCN Media Relations, t+44 1223 331128, email [email protected] Download photographs here Download summary statistics here Unsustainable food systems threaten wild crop and dolphin species Tokyo, Japan, 5 December 2017 (IUCN) – Species of wild rice, wheat and yam are threatened by overly intensive agricultural production and urban expansion, whilst poor fishing practices have caused steep declines in the Irrawaddy Dolphin and Finless Porpoise, according to the latest update of The IUCN Red List of Threatened Species™. Today’s Red List update also reveals that a drying climate is pushing the Ringtail Possum to the brink of extinction. Three reptile species found only on an Australian island – the Christmas Island Whiptail-skink, the Blue- tailed Skink (Cryptoblepharus egeriae) and the Lister’s Gecko – have gone extinct, according to the update. But in New Zealand, conservation efforts have improved the situation for two species of Kiwi. “Healthy, species-rich ecosystems are fundamental to our ability to feed the world’s growing population and achieve the UN Sustainable Development Goal 2 – to end hunger by 2030,” says IUCN Director General Inger Andersen. “Wild crop species, for example, maintain genetic diversity of agricultural crops
    [Show full text]
  • Nature Conservation (Wildlife) Regulation 2006
    Queensland Nature Conservation Act 1992 Nature Conservation (Wildlife) Regulation 2006 Current as at 1 September 2017 Queensland Nature Conservation (Wildlife) Regulation 2006 Contents Page Part 1 Preliminary 1 Short title . 5 2 Commencement . 5 3 Purpose . 5 4 Definitions . 6 5 Scientific names . 6 Part 2 Classes of native wildlife and declared management intent for the wildlife Division 1 Extinct in the wild wildlife 6 Native wildlife that is extinct in the wild wildlife . 7 7 Declared management intent for extinct in the wild wildlife . 8 8 Significance of extinct in the wild wildlife to nature and its value 8 9 Proposed management intent for extinct in the wild wildlife . 8 10 Principles for the taking, keeping or use of extinct in the wild wildlife 9 Division 2 Endangered wildlife 11 Native wildlife that is endangered wildlife . 10 12 Declared management intent for endangered wildlife . 10 13 Significance of endangered wildlife to nature and its value . 10 14 Proposed management intent for endangered wildlife . 11 15 Principles for the taking, keeping or use of endangered wildlife . 12 Division 3 Vulnerable wildlife 16 Native wildlife that is vulnerable wildlife . 13 17 Declared management intent for vulnerable wildlife . 13 18 Significance of vulnerable wildlife to nature and its value . 13 19 Proposed management intent for vulnerable wildlife . 14 20 Principles for the taking, keeping or use of vulnerable wildlife . 15 Nature Conservation (Wildlife) Regulation 2006 Contents Division 4 Near threatened wildlife 26 Native wildlife that is near threatened wildlife . 16 27 Declared management intent for near threatened wildlife . 16 28 Significance of near threatened wildlife to nature and its value .
    [Show full text]
  • A New Record of the Christmas Island Blind Snake, Ramphotyphlops Exocoeti (Reptilia: Squamata: Typhlopidae)
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 27 156–160 (2012) A new record of the Christmas Island Blind Snake, Ramphotyphlops exocoeti (Reptilia: Squamata: Typhlopidae). Dion J. Maple1, Rachel Barr, Michael J. Smith 1 Christmas Island National Park, Christmas Island, Western Australia, Indian Ocean, 6798, Email: [email protected] ABSTRACT – The endemic Christmas Island Blind Snake Ramphotyphlops exocoeti is a species rarely collected since initial faunal collections were conducted on Christmas Island in 1887. Twenty-three years after the last record in 1986, an individual was collected on 31 July 2009. Here we catalogue historical collection records of this animal. We also describe the habitat and conditions in which the recent collection occurred and provide a brief morphological description of the animal including a diagnostic feature that may assist in future identifi cations. This account provides the fi rst accurate spatial record and detailed description of habitat utilised by this species. KEYWORDS: Indian Ocean, Yellow Crazy Ant, recovery plan INTRODUCTION ‘fairly common’ and could be found under the trunks Christmas Island is located in the Indian Ocean of fallen trees. In 1975 a specimen collected from (10°25'S, 105°40'E), approximately 360 km south of the Stewart Hill, located in the central west of the island western head of Java, Indonesia (Geoscience Australia in a mine lease known as Field 22, was deposited in 2011). This geographically remote, rugged and thickly the Australian Museum (Cogger and Sadlier 1981). A vegetated island is the exposed summit of a large specimen was caught by N. Dunlop in 1984 while pit mountain.
    [Show full text]
  • Reptiles of the Wet Tropics
    Reptiles of the Wet Tropics The concentration of endemic reptiles in the Wet Tropics is greater than in any other area of Australia. About 162 species of reptiles live in this region and 24 of these species live exclusively in the rainforest. Eighteen of them are found nowhere else in the world. Many lizards are closely related to species in New Guinea and South-East Asia. The ancestors of two of the resident geckos are thought to date back millions of years to the ancient super continent of Gondwana. PRICKLY FOREST SKINK - Gnypetoscincus queenlandiae Length to 17cm. This skink is distinguished by its very prickly back scales. It is very hard to see, as it is nocturnal and hides under rotting logs and is extremely heat sensitive. Located in the rainforest in the Wet Tropics only, from near Cooktown to west of Cardwell. RAINFOREST SKINK - Eulamprus tigrinus Length to 16cm. The body has irregular, broken black bars. They give birth to live young and feed on invertebrates. Predominantly arboreal, they bask in patches of sunlight in the rainforest and shelter in tree hollows at night. Apparently capable of producing a sharp squeak when handled or when fighting. It is rare and found only in rainforests from south of Cooktown to west of Cardwell. NORTHERN RED-THROATED SKINK - Carlia rubrigularis Length to 14cm. The sides of the neck are richly flushed with red in breeding males. Lays 1-2 eggs per clutch, sometimes communally. Forages for insects in leaf litter, fallen logs and tree buttresses. May also prey on small skinks and own species.
    [Show full text]
  • Integrative and Comparative Biology Integrative and Comparative Biology, Volume 60, Number 1, Pp
    Integrative and Comparative Biology Integrative and Comparative Biology, volume 60, number 1, pp. 190–201 doi:10.1093/icb/icaa015 Society for Integrative and Comparative Biology SYMPOSIUM Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles Downloaded from https://academic.oup.com/icb/article-abstract/60/1/190/5813730 by Clark University user on 24 July 2020 Philip J. Bergmann ,* Sara D. W. Mann,* Gen Morinaga,1,*,† Elyse S. Freitas‡ and Cameron D. Siler‡ *Department of Biology, Clark University, Worcester, MA, USA; †Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA; ‡Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA From the symposium “Long Limbless Locomotors: The Mechanics and Biology of Elongate, Limbless Vertebrate Locomotion” presented at the annual meeting of the Society for Integrative and Comparative Biology January 3–7, 2020 at Austin, Texas. 1E-mail: [email protected] Synopsis Elongate, snake- or eel-like, body forms have evolved convergently many times in most major lineages of vertebrates. Despite studies of various clades with elongate species, we still lack an understanding of their evolutionary dynamics and distribution on the vertebrate tree of life. We also do not know whether this convergence in body form coincides with convergence at other biological levels. Here, we present the first craniate-wide analysis of how many times elongate body forms have evolved, as well as rates of its evolution and reversion to a non-elongate form. We then focus on five convergently elongate squamate species and test if they converged in vertebral number and shape, as well as their locomotor performance and kinematics.
    [Show full text]
  • Phylogenetic Structure of Vertebrate Communities Across the Australian
    Journal of Biogeography (J. Biogeogr.) (2013) 40, 1059–1070 ORIGINAL Phylogenetic structure of vertebrate ARTICLE communities across the Australian arid zone Hayley C. Lanier*, Danielle L. Edwards and L. Lacey Knowles Department of Ecology and Evolutionary ABSTRACT Biology, Museum of Zoology, University of Aim To understand the relative importance of ecological and historical factors Michigan, Ann Arbor, MI 48109-1079, USA in structuring terrestrial vertebrate assemblages across the Australian arid zone, and to contrast patterns of community phylogenetic structure at a continental scale. Location Australia. Methods We present evidence from six lineages of terrestrial vertebrates (five lizard clades and one clade of marsupial mice) that have diversified in arid and semi-arid Australia across 37 biogeographical regions. Measures of within-line- age community phylogenetic structure and species turnover were computed to examine how patterns differ across the continent and between taxonomic groups. These results were examined in relation to climatic and historical fac- tors, which are thought to play a role in community phylogenetic structure. Analyses using a novel sliding-window approach confirm the generality of pro- cesses structuring the assemblages of the Australian arid zone at different spa- tial scales. Results Phylogenetic structure differed greatly across taxonomic groups. Although these lineages have radiated within the same biome – the Australian arid zone – they exhibit markedly different community structure at the regio- nal and local levels. Neither current climatic factors nor historical habitat sta- bility resulted in a uniform response across communities. Rather, historical and biogeographical aspects of community composition (i.e. local lineage per- sistence and diversification histories) appeared to be more important in explaining the variation in phylogenetic structure.
    [Show full text]
  • Fowlers Gap Biodiversity Checklist Reptiles
    Fowlers Gap Biodiversity Checklist ow if there are so many lizards then they should make tasty N meals for someone. Many of the lizard-eaters come from their Reptiles own kind, especially the snake-like legless lizards and the snakes themselves. The former are completely harmless to people but the latter should be left alone and assumed to be venomous. Even so it odern reptiles are at the most diverse in the tropics and the is quite safe to watch a snake from a distance but some like the Md rylands of the world. The Australian arid zone has some of the Mulga Snake can be curious and this could get a little most diverse reptile communities found anywhere. In and around a disconcerting! single tussock of spinifex in the western deserts you could find 18 species of lizards. Fowlers Gap does not have any spinifex but even he most common lizards that you will encounter are the large so you do not have to go far to see reptiles in the warmer weather. Tand ubiquitous Shingleback and Central Bearded Dragon. The diversity here is as astonishing as anywhere. Imagine finding six They both have a tendency to use roads for passage, warming up or species of geckos ranging from 50-85 mm long, all within the same for display. So please slow your vehicle down and then take evasive genus. Or think about a similar diversity of striped skinks from 45-75 action to spare them from becoming a road casualty. The mm long! How do all these lizards make a living in such a dry and Shingleback is often seen alone but actually is monogamous and seemingly unproductive landscape? pairs for life.
    [Show full text]
  • Pirra Jungku Project Species Guide
    The Pirra Jungku Project is a collaboration between the Karajarri Rangers, Environs Kimberley Pirra Jungku Project and the Threatened Species Recovery Hub with funding from the Australian Government’s National Environmental Science Program and the species guide Western Australian Government’s NRM Program. Reptiles * Asterix means the animal can be tricky to ID. Take a good photo, or bring it back to camp for checking, but do this as a last resort. Don’t bring back any snakes, in case they are poisonous. Dragons Upright posture (stick their heads up), have small, rough scales, each leg has 5 clawed fingers/toes. MATT FROM MELBOURNE, AUSTRALIA CC BY 2.0 WIKIMEDIA COMMONS JESSSARAH MILLER LEGGE Slater’s ring-tailed dragon Central military dragon (Ctenophorus slaterii) (Ctenophorus isolepis) Rocky country. Reddish colour with black Sandy country. Very fast on ground. spots on back and dark rings on the tail. Reddish colour with white spots and stripes. JESSCHRISTOPHER MILLER WATSON CC BY SA 3.0 WIKIMEDIA COMMONS ARTHUR CHAPMAN NICOLAS RAKOTOPARE Pindan dragon Horner’s dragon Northern Pilbara tree dragon (Diporiphora pindan) (Lophognathus horneri) (Diporiphora vescus) Thin, slender body. Two long white stripes Ta-ta lizard. White stripe from lip to back legs. Lives in spinifex. Plain colour, sometimes down back that cross over black and orange Tiny white spot in ear. with orange tail, and long white and grey tiger stripes.* stripes down body.* CHRISTOPHERSARAH LEGGE WATSON CC BY SA 3.0 WIKIMEDIA COMMONS Dwarf bearded dragon (Pogona minor) Grey with flat body with spiny edges. Has small spines on either side of the jaw and on the back of the head.
    [Show full text]
  • A Taxonomic Framework for Typhlopid Snakes from the Caribbean and Other Regions (Reptilia, Squamata)
    caribbean herpetology article A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata) S. Blair Hedges1,*, Angela B. Marion1, Kelly M. Lipp1,2, Julie Marin3,4, and Nicolas Vidal3 1Department of Biology, Pennsylvania State University, University Park, PA 16802-5301, USA. 2Current address: School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA. 3Département Systématique et Evolution, UMR 7138, C.P. 26, Muséum National d’Histoire Naturelle, 57 rue Cuvier, F-75231 Paris cedex 05, France. 4Current address: Department of Biology, Pennsylvania State University, University Park, PA 16802-5301 USA. *Corresponding author ([email protected]) Article registration: http://zoobank.org/urn:lsid:zoobank.org:pub:47191405-862B-4FB6-8A28-29AB7E25FBDD Edited by: Robert W. Henderson. Date of publication: 17 January 2014. Citation: Hedges SB, Marion AB, Lipp KM, Marin J, Vidal N. 2014. A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata). Caribbean Herpetology 49:1–61. Abstract The evolutionary history and taxonomy of worm-like snakes (scolecophidians) continues to be refined as new molec- ular data are gathered and analyzed. Here we present additional evidence on the phylogeny of these snakes, from morphological data and 489 new DNA sequences, and propose a new taxonomic framework for the family Typhlopi- dae. Of 257 named species of typhlopid snakes, 92 are now placed in molecular phylogenies along with 60 addition- al species yet to be described. Afrotyphlopinae subfam. nov. is distributed almost exclusively in sub-Saharan Africa and contains three genera: Afrotyphlops, Letheobia, and Rhinotyphlops. Asiatyphlopinae subfam. nov. is distributed in Asia, Australasia, and islands of the western and southern Pacific, and includes ten genera:Acutotyphlops, Anilios, Asiatyphlops gen.
    [Show full text]
  • A New Species of Anilios (Scolecophidia: Typhlopidae) from Central Australia
    Zootaxa 4033 (1): 103–116 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4033.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:D3D9BFAA-F967-4342-ABFC-BA3EAEA40E43 A new species of Anilios (Scolecophidia: Typhlopidae) from Central Australia GLENN M. SHEA Faculty of Veterinary Science B01, University of Sydney, NSW 2006, Australia and Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, NSW 2010, Australia. E-mail: [email protected] Abstract Anilios fossor sp. nov. is described from a single specimen collected in 1989 from Ruby Gap Nature Park, Northern Ter- ritory. The species differs from all other Anilios species in the combination of 20 midbody scales, 514 dorsal scales, a rounded, non-angulate snout in lateral and dorsal profile, a nasal cleft contacting the second supralabial and not extending to the head dorsum, and a large round rostral shield in dorsal view. It is unclear whether the paucity of material of this species represents a limited distribution, or poor sampling in a remote, sparsely settled part of the continent. Evidence for the recognition of the Australian typhlopid fauna as a distinct genus Anilios is critically reviewed, and the genus is found to be recognizable only on genetic evidence. Some other recent nomenclatural and taxonomic changes in the Australian typhlopid fauna are considered and rejected. Key words: Reptilia, Squamata, Serpentes, morphology, systematics, nomenclature, Northern Territory Introduction Modern knowledge of the typhlopid snake fauna of Australia began almost a century ago with a monographic treatment by Waite (1918).
    [Show full text]
  • Hoser, R. T. 2018. New Australian Lizard Taxa Within the Greater Egernia Gray, 1838 Genus Group Of
    Australasian Journal of Herpetology 49 Australasian Journal of Herpetology 36:49-64. ISSN 1836-5698 (Print) Published 30 March 2018. ISSN 1836-5779 (Online) New Australian lizard taxa within the greater Egernia Gray, 1838 genus group of lizards and the division of Egernia sensu lato into 13 separate genera. RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 1 Jan 2018, Accepted 13 Jan 2018, Published 30 March 2018. ABSTRACT The Genus Egernia Gray, 1838 has been defined and redefined by many authors since the time of original description. Defined at its most conservative is perhaps that diagnosis in Cogger (1975) and reflected in Cogger et al. (1983), with the reverse (splitters) position being that articulated by Wells and Wellington (1985). They resurrected available genus names and added to the list of available names at both genus and species level. Molecular methods have largely confirmed the taxonomic positions of Wells and Wellington (1985) at all relevant levels and their legally available ICZN nomenclature does as a matter of course follow from this. However petty jealousies and hatred among a group of would-be herpetologists called the Wüster gang (as detailed by Hoser 2015a-f and sources cited therein) have forced most other publishing herpetologists since the 1980’s to not use anything Wells and Wellington. Therefore the most commonly “in use” taxonomy and nomenclature by published authors does not reflect the taxonomic reality. This author will not be unlawfully intimidated by Wolfgang Wüster and his gang of law-breaking thugs using unscientific methods to destabilize zoology as encapsulated in the hate rant of Kaiser et al.
    [Show full text]