Fowlers Gap Biodiversity Checklist Reptiles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lake Pinaroo Ramsar Site
Ecological character description: Lake Pinaroo Ramsar site Ecological character description: Lake Pinaroo Ramsar site Disclaimer The Department of Environment and Climate Change NSW (DECC) has compiled the Ecological character description: Lake Pinaroo Ramsar site in good faith, exercising all due care and attention. DECC does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. Readers should seek appropriate advice about the suitability of the information to their needs. © State of New South Wales and Department of Environment and Climate Change DECC is pleased to allow the reproduction of material from this publication on the condition that the source, publisher and authorship are appropriately acknowledged. Published by: Department of Environment and Climate Change NSW 59–61 Goulburn Street, Sydney PO Box A290, Sydney South 1232 Phone: 131555 (NSW only – publications and information requests) (02) 9995 5000 (switchboard) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: [email protected] Website: www.environment.nsw.gov.au DECC 2008/275 ISBN 978 1 74122 839 7 June 2008 Printed on environmentally sustainable paper Cover photos Inset upper: Lake Pinaroo in flood, 1976 (DECC) Aerial: Lake Pinaroo in flood, March 1976 (DECC) Inset lower left: Blue-billed duck (R. Kingsford) Inset lower middle: Red-necked avocet (C. Herbert) Inset lower right: Red-capped plover (C. Herbert) Summary An ecological character description has been defined as ‘the combination of the ecosystem components, processes, benefits and services that characterise a wetland at a given point in time’. -
Guidelines for Keeping Venomous Snakes in the NT
GUIDELINES FOR KEEPING VENOMOUS SNAKES IN THE NT Venomous snakes are potentially dangerous to humans, and for this reason extreme caution must be exercised when keeping or handling them in captivity. Prospective venomous snake owners should be well informed about the needs and requirements for keeping these animals in captivity. Permits The keeping of protected wildlife in the Northern Territory is regulated by a permit system under the Territory Parks and Wildlife Conservation Act 2006 (TPWC Act). Conditions are included on permits, and the Parks and Wildlife Commission of the Northern Territory (“PWCNT”) may issue infringement notices or cancel permits if conditions are breached. A Permit to Keep Protected Wildlife enables people to legally possess native vertebrate animals in captivity in the Northern Territory. The permit system assists the PWCNT to monitor wildlife kept in captivity and to detect any illegal activities associated with the keeping of, and trade in, native wildlife. Venomous snakes are protected throughout the Northern Territory and may not be removed from the wild without the appropriate licences and permits. People are required to hold a Keep Permit (Category 1–3) to legally keep venomous snakes in the Northern Territory. Premises will be inspected by PWCNT staff to evaluate their suitability prior to any Keep Permit (Category 1– 3) being granted. Approvals may also be required from local councils, the Northern Territory Planning Authority, and the Department of Health and Community Services. Consignment of venomous snakes between the Northern Territory and other States and Territories can only be undertaken with an appropriate import / export permit. There are three categories of venomous snake permitted to be kept in captivity in the Northern Territory: Keep Permit (Category 1) – Mildly Dangerous Venomous Keep Permit (Category 2) – Dangerous Venomous Keep Permit (Category 3) – Highly Dangerous Venomous Venomous snakes must be obtained from a legal source (i.e. -
Evaluating the Effectiveness of Salvage and Translocation of Striped Legless Lizards
Evaluating the effectiveness of salvage and translocation of Striped Legless Lizards Megan O’Shea February 2013 Arthur Rylah Institute for Environmental Research Technical Report Series No. 243 Evaluating the effectiveness of salvage and translocation of Striped Legless Lizards Megan O’Shea February 2013 Arthur Rylah Institute for Environmental Research Department of Sustainability and Environment Heidelberg, Victoria Report produced by: Arthur Rylah Institute for Environmental Research Department of Sustainability and Environment PO Box 137 Heidelberg, Victoria 3084 Phone (03) 9450 8600 Website: www.dse.vic.gov.au/ari © State of Victoria, Department of Sustainability and Environment 2013 This publication is copyright. Apart from fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968 , no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical or graphic) without the prior written permission of the State of Victoria, Department of Sustainability and Environment. All requests and enquiries should be directed to the Customer Service Centre, 136 186 or email [email protected] Citation: O’Shea, M. (2013). Evaluating the effectiveness of salvage and translocation of Striped Legless Lizards. Arthur Rylah Institute for Environmental Research Technical Report Series No. 243. Department of Sustainability and Environment, Heidelberg. ISSN 1835-3827 (print) ISSN 1835-3835 (online) ISBN 978-1-74287-763-1 (print) ISBN 978-1-74287-764-8 (online) Disclaimer: This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. -
Museum Occurrence Data Predict Genetic Diversity in a Species-Rich Clade of Australian Lizards Supplementary Online Material
Museum occurrence data predict genetic diversity in a species-rich clade of Australian lizards Supplementary Online Material Sonal Singhal, Huateng Huang, Pascal O. Title, Stephen C. Donnellan, Iris Holmes, Daniel L. Rabosky March 9, 2017 Contents 1 Materials and Methods 2 1.1 Sampling . .2 1.2 Library Preparation and Sequencing . .2 1.3 Testing Methods for ddRAD data assembly . .2 1.4 Species Delimitation . .3 1.5 Measures of Genetic Diversity . .4 1.5.1 Generating Pseudo-reference Genomes . .4 1.5.2 Within-population p ......................................4 1.5.3 Species-wide p .........................................5 1.5.4 mtDNA p ............................................5 1.5.5 Calculating diversity . .5 1.6 Demographic Analyses . .5 1.6.1 Running ADMIXTURE . .5 1.6.2 Running ANGSD . .5 1.6.3 Running LAMARC . .6 1.7 Species Tree . .6 1.8 Collecting data on possible drivers of genetic diversity . .7 1.8.1 Proxies for census population size . .7 1.8.2 Environmental hetereogeneity . .9 1.8.3 Historical demography . .9 1.8.4 Possible confounders . .9 1.9 Model-Testing . 10 2 Figures and Tables 10 2.1 Tables . 10 2.2 Figures . 13 1 1 Materials and Methods 1.1 Sampling This study takes advantage of the numerous tissue samples accessioned in natural history museums across the United States and Australia. In this study, we sampled tissues from 8 museums: Australian Museum, Cornell University Museum of Vertebrates, Australian Biological Tissue Collection, Northern Territory Mu- seum, Queensland Museum, South Australian Museum, University of Michigan Museum of Zoology, and Western Australian Museum. Species boundaries in the genus Ctenotus have been subject to sufficient revi- sion (1), and, like many squamate species, many Ctenotus species contain multiple, cryptic species. -
Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna -
Broad-Headed Snake (Hoplocephalus Bungaroides)', Proceedings of the Royal Zoological Society of New South Wales (1946-7), Pp
Husbandry Guidelines Broad-Headed Snake Hoplocephalus bungaroides Compiler – Charles Morris Western Sydney Institute of TAFE, Richmond Captive Animals Certificate III RUV3020R Lecturers: Graeme Phipps, Jacki Salkeld & Brad Walker 2009 1 Occupational Health and Safety WARNING This Snake is DANGEROUSLY VENOMOUS CAPABLE OF INFLICTING A POTENTIALLY FATAL BITE ALWAYS HAVE A COMPRESSION BANDAGE WITHIN REACH SNAKE BITE TREATMENT: Do NOT wash the wound. Do NOT cut the wound, apply substances to the wound or use a tourniquet. Do NOT remove jeans or shirt as any movement will assist the venom to enter the blood stream. KEEP THE VICTIM STILL. 1. Apply a broad pressure bandage over the bite site as soon as possible. 2. Keep the limb still. The bandage should be as tight as you would bind a sprained ankle. 3. Extend the bandage down to the fingers or toes then up the leg as high as possible. (For a bite on the hand or forearm bind up to the elbow). 4. Apply a splint if possible, to immobilise the limb. 5. Bind it firmly to as much of the limb as possible. (Use a sling for an arm injury). Bring transport to the victim where possible or carry them to transportation. Transport the victim to the nearest hospital. Please Print this page off and put it up on the wall in your snake room. 2 There is some serious occupational health risks involved in keeping venomous snakes. All risk can be eliminated if kept clean and in the correct lockable enclosures with only the risk of handling left in play. -
Management of the Terrestrial Small Mammal and Lizard Communities in the Dune System Of
Management of the terrestrial small mammal and lizard communities in the dune system of Sturt National Park, Australia: Historic and contemporary effects of pastoralism and fox predation Ulrike Sabine Klöcker (Dipl. – Biol., Rheinische Friedrich-Wilhelms Universität Bonn, Germany) Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences The University of New South Wales, Sydney, Australia 2009 Abstract This thesis addressed three issues related to the management and conservation of small terrestrial vertebrates in the arid zone. The study site was an amalgamation of pastoral properties forming the now protected area of Sturt National Park in far-western New South Wales, Australia. Thus firstly, it assessed recovery from disturbance accrued through more than a century of Sheep grazing. Vegetation parameters, Fox, Cat and Rabbit abundance, and the small vertebrate communities were compared, with distance to watering points used as a surrogate for grazing intensity. Secondly, the impacts of small-scale but intensive combined Fox and Rabbit control on small vertebrates were investigated. Thirdly, the ecology of the rare Dusky Hopping Mouse (Notomys fuscus) was used as an exemplar to illustrate and discuss some of the complexities related to the conservation of small terrestrial vertebrates, with a particular focus on desert rodents. Thirty-five years after the removal of livestock and the closure of watering points, areas that were historically heavily disturbed are now nearly indistinguishable from nearby relatively undisturbed areas, despite uncontrolled native herbivore (kangaroo) abundance. Rainfall patterns, rather than grazing history, were responsible for the observed variation between individual sites and may overlay potential residual grazing effects. -
Draft Animal Keepers Species List
Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290, -
1 the Multiscale Hierarchical Structure of Heloderma Suspectum
The multiscale hierarchical structure of Heloderma suspectum osteoderms and their mechanical properties. Francesco Iacoviello a, Alexander C. Kirby b, Yousef Javanmardi c, Emad Moeendarbary c, d, Murad Shabanli c, Elena Tsolaki b, Alana C. Sharp e, Matthew J. Hayes f, Kerda Keevend g, Jian-Hao Li g, Daniel J.L. Brett a, Paul R. Shearing a, Alessandro Olivo b, Inge K. Herrmann g, Susan E. Evans e, Mehran Moazen c, Sergio Bertazzo b,* a Electrochemical Innovation Lab, Department of Chemical Engineering University College London, London WC1E 7JE, UK. b Department of Medical Physics & Biomedical Engineering University College London, London WC1E 6BT, UK. c Department of Mechanical Engineering University College London, London WC1E 7JE, UK. d Department of Biological Engineering Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. e Department of Cell & Developmental Biology University College London, London WC1E 6BT, UK. f Department of Ophthalmology University College London, London WC1E 6BT, UK. g Department of Materials Meet Life Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland. * Correspondence: Sergio Bertazzo [email protected] Tel: +44 (0) 2076790444 1 Abstract Osteoderms are hard tissues embedded in the dermis of vertebrates and have been suggested to be formed from several different mineralized regions. However, their nano architecture and micro mechanical properties had not been fully characterized. Here, using electron microscopy, µ-CT, atomic force microscopy and finite element simulation, an in-depth characterization of osteoderms from the lizard Heloderma suspectum, is presented. Results show that osteoderms are made of three different mineralized regions: a dense apex, a fibre-enforced region comprising the majority of the osteoderm, and a bone-like region surrounding the vasculature. -
Mitochondrial Introgression Via Ancient Hybridization, and Systematics of the Australian Endemic Pygopodid Gecko Genus Delma Q ⇑ Ian G
Molecular Phylogenetics and Evolution 94 (2016) 577–590 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Mitochondrial introgression via ancient hybridization, and systematics of the Australian endemic pygopodid gecko genus Delma q ⇑ Ian G. Brennan , Aaron M. Bauer, Todd R. Jackman Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA article info abstract Article history: Of the more than 1500 species of geckos found across six continents, few remain as unfamiliar as the Received 11 May 2015 pygopodids – Family Pygopodidae (Gray, 1845). These gekkotans are limited to Australia (44 species) Revised 21 September 2015 and New Guinea (2 species), but have diverged extensively into the most ecologically diverse limbless Accepted 6 October 2015 radiation save Serpentes. Current phylogenetic understanding of the family has relied almost exclusively Available online 23 October 2015 on two works, which have produced and synthesized an immense amount of morphological, geograph- ical, and molecular data. However, current interspecific relationships within the largest genus Delma Gray Keywords: 1831 are based chiefly upon data from two mitochondrial loci (16s, ND2). Here, we reevaluate the inter- Mitochondrial capture specific relationships within the genus Delma using two mitochondrial and four nuclear loci (RAG1, Introgression Biogeography MXRA5, MOS, DYNLL1), and identify points of strong conflict between nuclear and mitochondrial geno- Pygopodidae mic data. We address mito-nuclear discordance, and remedy this conflict by recognizing several points of Gekkota mitochondrial introgression as the result of ancient hybridization events. Owing to the legacy value and intraspecific informativeness, we suggest the continued use of ND2 as a phylogenetic marker. -
Revision of the Saxicoline Geckos of the Gehyra Punctata (Squamata: Gekkonidae) Species Complex in the Pilbara Region of Western Australia Paul Doughty1,*, Aaron M
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 33 001–050 (2018) DOI: 10.18195/issn.0312-3162.33(1).2018.001-050 Spots before the eyes: revision of the saxicoline geckos of the Gehyra punctata (Squamata: Gekkonidae) species complex in the Pilbara region of Western Australia Paul Doughty1,*, Aaron M. Bauer2, Mitzy Pepper3 and J. Scott Keogh3 1 Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. 2 Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, U.S.A. 3 Division of Evolution, Ecology & Genetics, Australian National University, Canberra, ACT 0200, Australia. * Corresponding author: [email protected] ABSTRACT – The Gehyra punctata species complex in the Pilbara and surrounding regions of Western Australia has long been known for its confused taxonomy. Recent collections in the region have enabled a reassessment of specimens currently referable to G. punctata. We assessed populations genetically using newly generated mitochondrial DNA data in conjunction with recently published phylogenomic data and an unpublished allozyme analysis. In addition, we carried out a detailed morphological examination involving hundreds of specimens across this taxon’s range. Many possible candidate species were recovered from these analyses, and the re-examination of morphology indicated two major clades: one small-bodied and one large-bodied, each comprising multiple divergent lineages within them. A syntype of Peropus variegatus punctatus Fry, 1914, believed to have been lost at the time of Mitchell’s revision in 1965, was recently found in the Western Australian Museum collections, and is here designated as the lectotype of G. -
Berriquin LWMP Wildlife
Berriquin Wildlife Murray Land & Water Management Plan Wildlife Survey 2005-2006 Matthew Herring David Webb Michael Pisasale INTRODUCTION Why do a wildlife survey? 106 farms and were surveyed One of the great things about between June 2005 and March living in rural Australia is all the 2006. They incorporated a range wildlife that we share the land- of vegetation types (e.g. Black scape with. Historically, humans Box Woodland) as well as reveg- have impacted on the survival of etation on previously cleared many native plants and animals. land and constructed wetlands. Fortunately, there is a grow- Methods used to survey wildlife ing commitment in the country included: to wildlife conservation on the farm. As we improve our knowl- - Bird surveys edge and understanding of the - Log rolling for reptiles and local landscape and the animals frogs and plants that live in it we will - Spotlighting for mammals, rep be in a much better position to tiles and nocturnal birds conserve and enhance our natu- - Elliot traps for small mammals ral heritage for future genera- and reptiles tions. - Pitfall trapping for reptiles and frogs This wildlife survey was an ini- - Harp traps for bats tiative of the Berriquin Land & - Using the “Anabat” to record Water Management Plan (LWMP) bat calls M.Herring Working Group and is the largest - Call broadcasting to attract Wildlife expert Adam Bester and most extensive ever un- birds with 11 Little Forest Bats, one dertaken in the area. Berriquin of Berriquin’s most abundant was one of four LWMP areas that Other targeted methods were mammals.