Broad-Headed Snake (Hoplocephalus Bungaroides)', Proceedings of the Royal Zoological Society of New South Wales (1946-7), Pp

Total Page:16

File Type:pdf, Size:1020Kb

Broad-Headed Snake (Hoplocephalus Bungaroides)', Proceedings of the Royal Zoological Society of New South Wales (1946-7), Pp Husbandry Guidelines Broad-Headed Snake Hoplocephalus bungaroides Compiler – Charles Morris Western Sydney Institute of TAFE, Richmond Captive Animals Certificate III RUV3020R Lecturers: Graeme Phipps, Jacki Salkeld & Brad Walker 2009 1 Occupational Health and Safety WARNING This Snake is DANGEROUSLY VENOMOUS CAPABLE OF INFLICTING A POTENTIALLY FATAL BITE ALWAYS HAVE A COMPRESSION BANDAGE WITHIN REACH SNAKE BITE TREATMENT: Do NOT wash the wound. Do NOT cut the wound, apply substances to the wound or use a tourniquet. Do NOT remove jeans or shirt as any movement will assist the venom to enter the blood stream. KEEP THE VICTIM STILL. 1. Apply a broad pressure bandage over the bite site as soon as possible. 2. Keep the limb still. The bandage should be as tight as you would bind a sprained ankle. 3. Extend the bandage down to the fingers or toes then up the leg as high as possible. (For a bite on the hand or forearm bind up to the elbow). 4. Apply a splint if possible, to immobilise the limb. 5. Bind it firmly to as much of the limb as possible. (Use a sling for an arm injury). Bring transport to the victim where possible or carry them to transportation. Transport the victim to the nearest hospital. Please Print this page off and put it up on the wall in your snake room. 2 There is some serious occupational health risks involved in keeping venomous snakes. All risk can be eliminated if kept clean and in the correct lockable enclosures with only the risk of handling left in play. These snakes’ fangs are small, venom quantity equally small, but recent clinical experience suggests these snakes could cause lethal bite if not cause many other health problems later. If you work with venomous snakes, it is your responsibility to make sure ahead of time that your doctor is up to date on the best and most modern ways to medically manage a snake bite. Some of the older protocols which are still officially on the books at some hospitals are definitely not the ones you want applied to your case. What is Snake Antivenom? Snake antivenom is an injection designed to help neutralize the effect of the poison (venom) of the tiger snake. It is produced by immunizing horses against the venom of the tiger snake and then collecting that part of the horse’s blood which neutralizes this poison. The antivenom is purified and made into an injection for those people who may need it after being bitten by a tiger snake. Tiger snake antivenom is also the appropriate antivenom if you are bitten by a copperhead snake, a rough scaled snake or a member of the black snake family. When is snake antivenom used? Snake antivenom is given to people who become ill after being bitten by a tiger snake. Not every one who is bitten needs to have the antivenom as some people have only mild effects from the bite, or none at all. However, some people can become extremely ill after being bitten and in these people it is essential to use an appropriate amount of antivenom to counteract the effects of the poison. Several people die in Australia each year from inadequately treated snake bite. Who should not have the antivenom? As there are sometimes unpleasant and dangerous reactions to the antivenom (See side effects of Snake antivenom), it should not be given to people who have no effects from the bite. However, as tiger snake antivenom can be an emergency life-saving product, it should not be withheld from anyone who needs it. Before you have tiger snake antivenom Before you have the injection, you should tell the doctor if You are an asthmatic You suffer from hay fever You suffer from any other allergies You have ever received injections containing horse serum (snake bite and other antivenoms) You had an anti-tetanus injection before 1974 You are suffering from any other illness You are taking any medicines and what they are You are pregnant You are breast feeding. When medicines are produced in animals and injected into you, it is always possible that viruses or other substances could be present in the medicine and cause an illness. These could be viruses or other infectious agents which have not yet been discovered. SIDE EFFECTS OF TIGER SNAKE ANTIVENOM As with any medicine, some side effects may occur. As the injection is made from horse serum, side effects occur more commonly in those who have allergies, particularly if they have ever had injections before which were also prepared from horses. Allergic reactions such as rashes, low blood pressure, wheezing and palpitations occur commonly. Headaches and fever are also common. Less commonly, localized swelling, muscle and joint pains, abdominal pain, vomiting, chest pain and blue discoloring of the skin can occur. These allergic reactions can be very severe and can cause death, but these complications can be treated by a doctor. 3 An illness consisting of a rash, swollen glands, joint pains and fever may occur about a week after the injection. Always tell your doctor if you have any unpleasant effects after receiving the injection. THE DOSE OF TIGER SNAKE ANTIVENOM The dose for both adults and children is one vial (3,000 units) which is considerably diluted and given slowly as a drip into a vein. The dose can be repeated as necessary. Your doctor will take precautions to counteract any allergic reactions if they should happen. OVERDOSE There is no information on overdose. WHAT DOES TIGER SNAKE ANTIVENOM CONTAIN? Tiger snake antivenom contains 3,000 units of antivenom in about 10 mL of liquid. Each injection also contains phenol as a preservative, sodium chloride and substances found in horse blood. The Australian Registration Number is Aust R 74895 HOW TO STORE TIGER SNAKE ANTIVENOM TIGER SNAKE ANTIVENOM SHOULD BE PROTECTED FROM LIGHT AND STORED AT 2-8ºC (IN THE REFRIGERATOR). IT MUST NOT BE FROZEN. It should not be used after the expiry date. This information comes with each vial of tiger snake antivenom (CSL Limited, 2000) Personal Hygiene - Always wash your hands with hot soapy water after touching or cleaning up after any animal, after cleaning enclosures and accessories and after coming into contact with any area of the house where retiles are allowed to run free - Cover cuts and other open wounds before handling reptiles If a cut or wound becomes contaminated with dirt or if a reptile bite or scratch breaks the skin, wash the area thoroughly with warm water and an antibacterial soap, dry well and apply an antibacterial skin treatment - Do not out your hands near or in your mouth, or eat, drink, or smoke while handling a reptile or cleaning up after it - Do not kiss or put parts of a reptile in your mouth or share food or drink with a reptile - Keep reptiles and their cages accessories away from human food preparation and consumption areas, sinks and bathtubs, where infants are bathed - Do not use the kitchen sink, kitchen benches, bathroom sinks or bathtubs to bathe reptiles or wash their cages and accessories. Dispose of any waste water and fecal matter in the toilet, not in the bathtub or household sink. (NSW Department of Environment and Conservation). 4 Who Should Avoid Contact With Reptiles The following categories of people should avoid all contact, direct or indirect, with any reptile as the risks of serious, symptomatic infection with Salmonella is greatly increased. • Infants and children up to 5 years of age; some say up to age 8. • Anyone with HIV/AIDS or other immunodefiency disorders. • Anyone who has had transplant surgery and is on anti-rejection therapy. • Anyone who is on any drug which suppresses/alters immune function including: steroids, cancer chemotherapy, biological response modifiers and others. • Anyone receiving radiation treatment. • Women who are pregnant due to risk to the fetus. • Elderly, frail or people with poor nutritional status. • People subject to chronic infections. • People receiving or who have recently received antibiotic treatment. What to do to avoid becoming infected or becoming a carrier. • After handling any reptile be sure and wash hands with soap/hot water. •Wash thoroughly for at least 30 seconds: an antibacterial soap is preferable. • Keep reptiles out of kitchens and away from any surfaces where human food is stored, prepared or served. • Do not permit unsupervised handling of reptiles by children under 12 years old. • Do not handle any reptile or their caging materials with open cuts, lesions on ones hands unless such cuts are well covered with dressings; rubber gloves are recommended. • When washing reptile enclosures/accessories avoid splashes to face. • Disinfectant lotions pump sprays or similar products should be carried whenever reptiles are going to be handled in the field. (Stopford. F. 2004) Zoonotic Hazards People working with reptiles should be aware of Zoonotic Hazards. Zoonosis is diseases that can be transmitted from animals to humans. These can include: • Bacteria •Protozoa •Fungi •Viruses • Parasites, internal and external. Ways of contacting Zoonotic diseases are: • Reptile skins, feathers from feed animals. • Excreta (faeces/urine), bodily discharges, vomit. • A body part or sample taken from a reptile, eg, swab, blood or tissue sample. • Equipment or bedding that has been in contact with a reptile, eg, needle, hoop bags, jiggers and substrate. • During medical procedures, eg, blood, wastes, bodily fluids. 5 TABLE OF CONTENTS 1 INTRODUCTION ............................................................................................................................... 8 2 TAXONOMY ......................................................................................................................................
Recommended publications
  • Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects
    Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Prepared for Australian Premium Iron Management Pty Ltd FINAL REPORT 26 July 2010 Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Australian Premium Iron Management Pty Ltd Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Final Report Prepared for Australian Premium Iron Management Pty Ltd by Phoenix Environmental Sciences Pty Ltd Authors: Greg Harewood, Karen Crews Reviewer: Melanie White, Stewart Ford Date: 26 July 2010 Submitted to: Michelle Carey © Phoenix Environmental Sciences Pty Ltd 2010. The use of this report is solely for the Client for the purpose in which it was prepared. Phoenix Environmental Sciences accepts no responsibility for use beyond this purpose. All rights are reserved and no part of this publication may be reproduced or copied in any form without the written permission of Phoenix Environmental Sciences or Australian Premium Iron Management. Phoenix Environmental Sciences Pty Ltd 1/511 Wanneroo Road BALCATTA WA 6914 P: 08 9345 1608 F: 08 6313 0680 E: [email protected] Project code: 925-AP-API-FAU Phoenix Environmental Sciences Pty Ltd ii Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Australian Premium Iron Management Pty Ltd TABLE OF CONTENTS EXECUTIVE SUMMARY ..........................................................................................................................v 1.0 INTRODUCTION .........................................................................................................................
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Herpetological Review
    Herpetological Review Volume 41, Number 2 — June 2010 SSAR Offi cers (2010) HERPETOLOGICAL REVIEW President The Quarterly News-Journal of the Society for the Study of Amphibians and Reptiles BRIAN CROTHER Department of Biological Sciences Editor Southeastern Louisiana University ROBERT W. HANSEN Hammond, Louisiana 70402, USA 16333 Deer Path Lane e-mail: [email protected] Clovis, California 93619-9735, USA [email protected] President-elect JOSEPH MENDLELSON, III Zoo Atlanta, 800 Cherokee Avenue, SE Associate Editors Atlanta, Georgia 30315, USA e-mail: [email protected] ROBERT E. ESPINOZA KERRY GRIFFIS-KYLE DEANNA H. OLSON California State University, Northridge Texas Tech University USDA Forestry Science Lab Secretary MARION R. PREEST ROBERT N. REED MICHAEL S. GRACE PETER V. LINDEMAN USGS Fort Collins Science Center Florida Institute of Technology Edinboro University Joint Science Department The Claremont Colleges EMILY N. TAYLOR GUNTHER KÖHLER JESSE L. BRUNNER Claremont, California 91711, USA California Polytechnic State University Forschungsinstitut und State University of New York at e-mail: [email protected] Naturmuseum Senckenberg Syracuse MICHAEL F. BENARD Treasurer Case Western Reserve University KIRSTEN E. NICHOLSON Department of Biology, Brooks 217 Section Editors Central Michigan University Mt. Pleasant, Michigan 48859, USA Book Reviews Current Research Current Research e-mail: [email protected] AARON M. BAUER JOSHUA M. HALE BEN LOWE Department of Biology Department of Sciences Department of EEB Publications Secretary Villanova University MuseumVictoria, GPO Box 666 University of Minnesota BRECK BARTHOLOMEW Villanova, Pennsylvania 19085, USA Melbourne, Victoria 3001, Australia St Paul, Minnesota 55108, USA P.O. Box 58517 [email protected] [email protected] [email protected] Salt Lake City, Utah 84158, USA e-mail: [email protected] Geographic Distribution Geographic Distribution Geographic Distribution Immediate Past President ALAN M.
    [Show full text]
  • Demansia Papuensis)
    Clinical and Experimental Pharmacology and Physiology (2006) 33, 364–368 Blackwell Publishing Ltd NeuromuscularSOriginal Kuruppu ArticleIN et al. effects of D. papuensisVITRO venom NEUROTOXIC AND MYOTOXIC EFFECTS OF THE VENOM FROM THE BLACK WHIP SNAKE (DEMANSIA PAPUENSIS) S Kuruppu,* Bryan G Fry† and Wayne C Hodgson* *Monash Venom Group, Department of Pharmacology, Monash University and †Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia SUMMARY of Australian snakes whose venoms have not been pharmacologically characterized. Whip snakes (D. papuensis and D. atra, also called 1. Black whip snakes belong to the family elapidae and are D. vestigata) belong to the family elapidae and are found throughout found throughout the northern coastal region of Australia. The the northern coastal region of Australia.3 The black whip snake black whip snake (Demansia papuensis) is considered to be poten- (D. papuensis) is considered to be potentially dangerous due to its tially dangerous due to its size and phylogenetic distinctiveness. size (up to 2 m) and phylogenetic distinctiveness which may suggest Previous liquid chromatography–mass spectrometry analysis of the presence of unique venom components.2 LC-MS analysis of D. papuensis venom indicated a number of components within D. papuensis venom indicated a number of components within the the molecular mass ranges compatible with neurotoxins. For the molecular mass ranges of 6–7 and 13–14 kDa.4 This may indicate the first time, this study examines the in vitro neurotoxic and myotoxic presence of short and long chain a-neurotoxins or PLA2 components, effects of the venom from D.
    [Show full text]
  • Conservation of Herpetofauna in Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia
    CONSERVATION OF HERPETOFAUNA IN BANTIMURUNG BULUSARAUNG NATIONAL PARK, SOUTH SULAWESI, INDONESIA Final Report 2008 By: M. Irfansyah Lubis, Wempy Endarwin, Septiantina D. Riendriasari, Suwardiansah, Adininggar U. Ul-Hasanah, Feri Irawan, Hadijah Aziz K., and Akmal Malawi Departemen Konservasi Sumberdaya Hutan Fakultas Kehutanan Institut Pertanian Bogor Bogor Indonesia 16000 Tel : +62 – 251 – 621 947 Fax: +62 – 251 – 621 947 Email: [email protected] (team leader) Conservation of Herpetofauna in Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia Executive Summary Sulawesi is an island with complex geological and geographical history, thus resulting in a complex array in biodiversity. Bantimurung Bulusaraung National Park (BabulNP) was gazetted in 2004 to protect the region’s biodiversity and karst ecosystem. However, the park’s herpetofauna is almost unknown. This project consists of three programs: herpetofauna survey in BabulNP, herpetofauna conservation education to local schools, and herpetofauna training for locals and was conducted from July to September 2007. Based on the survey conducted in six sites in the park, we recorded 12 amphibian and 25 reptile species. Five of those species (Bufo celebensis, Rana celebensis, Rhacophorus monticola, Sphenomorphus tropidonotus, and Calamaria muelleri) are endemic to Sulawesi. Two species of the genus Oreophryne are still unidentified. We visited six schools around the park for our herpetofauna conservation education program. The Herpetofauna Observation Training was held over four days with 17 participants from BabulNP staff, local NGOs, school teachers, and Hasanuddin University students. i Conservation of Herpetofauna in Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia Acknowledgements This project would not have been possible without the contribution of many persons. We would like to express our gratitude to BP Conservation Leadership Programme for providing funding.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Movement and Resource Selection by Feral Goats In
    MOVEMENT AND RESOURCE SELECTION BY FERAL GOATS IN A HAWAIIAN MONTANE DRY LANDSCAPE A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NATURAL RESOURCES AND ENVIRONMENTAL MANAGEMENT (ECOLOGY, EVOLUTION, AND CONSERVATION BIOLOGY) AUGUST 2012 By Mark William Chynoweth Thesis Committee: Creighton M. Litton, Co-Chairperson Christopher A. Lepczyk, Co-Chairperson Steven C. Hess Acknowledgements The work presented in this thesis is a result of an extensive collaboration between the Wildlife Ecology Lab and Ecosystem Ecology Lab at the University of Hawai‘i at Mānoa, the Institute for Pacific Islands Forestry of the USDA Forest Service, the Global Ecology Lab at Stanford University, and many other professionals, academics, students and citizens who helped me along the way. I would like to thank all those involved in this collaboration for the opportunity to complete this research. This research was supported by the National Science Foundation Graduate Research Fellowship (Grant No. 2010094953 to M. Chynoweth); USDA Forest Service, Pacific Southwest Research Station, Institute of Pacific Islands Forestry (Research Joint Venture 08-JV-11272177-074 to C.M. Litton); and the W.T. Yoshimoto Foundation Endowed Fellowship in Animal Wildlife Conservation Biology (to M. Chynoweth). I would like to thank the co-chairs of my committee, Drs. Creighton M. Litton and Christopher A. Lepczyk for their help throughout my experience at the University of Hawai‘i at Mānoa. This work would not have been possible without them. I would also like to thank my third committee member, Dr.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Phylogenetic Relationships of Terrestrial Australo-Papuan Elapid Snakes (Subfamily Hydrophiinae) Based on Cytochrome B and 16S Rrna Sequences J
    MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 10, No. 1, August, pp. 67–81, 1998 ARTICLE NO. FY970471 Phylogenetic Relationships of Terrestrial Australo-Papuan Elapid Snakes (Subfamily Hydrophiinae) Based on Cytochrome b and 16S rRNA Sequences J. Scott Keogh,*,†,1 Richard Shine,* and Steve Donnellan† *School of Biological Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia; and †Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia Received April 24, 1997; revised September 4, 1997 quence data support many of the conclusions reached Phylogenetic relationships among the venomous Aus- by earlier studies using other types of data, but addi- tralo-Papuan elapid snake radiation remain poorly tional information will be needed before the phylog- resolved, despite the application of diverse data sets. eny of the Australian elapids can be fully resolved. To examine phylogenetic relationships among this ௠ 1998 Academic Press enigmatic group, portions of the cytochrome b and 16S Key Words: mitochondrial DNA; cytochrome b; 16S rRNA mitochondrial DNA genes were sequenced from rRNA; reptile; snake; elapid; sea snake; Australia; New 19 of the 20 terrestrial Australian genera and 6 of the 7 Guinea; Pacific; Asia; biogeography. terrestrial Melanesian genera, plus a sea krait (Lati- cauda) and a true sea snake (Hydrelaps). These data clarify several significant issues in elapid phylogeny. First, Melanesian elapids form sister groups to Austra- INTRODUCTION lian species, indicating that the ancestors of the Austra- lian radiation came via Asia, rather than representing The diverse, cosmopolitan, and medically important a relict Gondwanan radiation. Second, the two major elapid snakes are a monophyletic clade of approxi- groups of sea snakes (sea kraits and true sea snakes) mately 300 species and 61 genera (Golay et al., 1993) represent independent invasions of the marine envi- primarily defined by their unique venom delivery sys- ronment.
    [Show full text]
  • Sexual Size Dimorphism and Feeding Ecology of Eutropis Multifasciata (Reptilia: Squamata: Scincidae) in the Central Highlands of Vietnam
    Herpetological Conservation and Biology 9(2):322−333. Submitted: 8 March 2014; Accepted: 2 May 2014; Published: 12 October 2014. SEXUAL SIZE DIMORPHISM AND FEEDING ECOLOGY OF EUTROPIS MULTIFASCIATA (REPTILIA: SQUAMATA: SCINCIDAE) IN THE CENTRAL HIGHLANDS OF VIETNAM 1, 5 2 3 4 CHUNG D. NGO , BINH V. NGO , PHONG B. TRUONG , AND LOI D. DUONG 1Faculty of Biology, College of Education, Hue University, Hue, Thua Thien Hue 47000, Vietnam, 2Department of Life Sciences, National Cheng Kung University, Tainan, Tainan 70101, Taiwan, e-mail: [email protected] 3Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot, Dak Lak 55000, Vietnam 4College of Education, Hue University, Hue, Thua Thien Hue 47000, Vietnam 5Corresponding author, e-mail:[email protected] Abstract.—Little is known about many aspects of the ecology of the Common Sun Skink, Eutropis multifasciata (Kuhl, 1820), a terrestrial viviparous lizard found in the Central Highlands of Vietnam. We measured males and females to determine whether this species exhibits sexual size dimorphism and whether there was a correlation between feeding ecology and body size. We also examined spatiotemporal and sexual variations in dietary composition and prey diversity index. We used these data to examine whether the foraging pattern of these skinks corresponded to the pattern of a sit-and-wait predator or a widely foraging predator. The average snout-vent length (SVL) was significantly larger in adult males than in adult females. When SVL was taken into account as a covariate, head length and width and mouth width were larger in adult males than in adult females.
    [Show full text]
  • Reintroducing the Dingo: the Risk of Dingo Predation to Threatened Vertebrates of Western New South Wales
    CSIRO PUBLISHING Wildlife Research http://dx.doi.org/10.1071/WR11128 Reintroducing the dingo: the risk of dingo predation to threatened vertebrates of western New South Wales B. L. Allen A,C and P. J. S. Fleming B AThe University of Queensland, School of Animal Studies, Gatton, Qld 4343, Australia. BVertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, Forest Road, Orange, NSW 2800, Australia. CCorresponding author. Present address: Vertebrate Pest Research Unit, NSW Department of Primary Industries, Sulfide Street, Broken Hill, NSW 2880, Australia. Email: [email protected] Abstract Context. The reintroduction of dingoes into sheep-grazing areas south-east of the dingo barrier fence has been suggested as a mechanism to suppress fox and feral-cat impacts. Using the Western Division of New South Wales as a case study, Dickman et al. (2009) recently assessed the risk of fox and cat predation to extant threatened species and concluded that reintroducing dingoes into the area would have positive effects for most of the threatened vertebrates there, aiding their recovery through trophic cascade effects. However, they did not formally assess the risk of dingo predation to the same threatened species. Aims. To assess the risk of dingo predation to the extant and locally extinct threatened vertebrates of western New South Wales using methods amenable to comparison with Dickman et al. (2009). Methods. The predation-risk assessment method used in Dickman et al. (2009) for foxes and cats was applied here to dingoes, with minor modification to accommodate the dietary differences of dingoes. This method is based on six independent biological attributes, primarily reflective of potential vulnerability characteristics of the prey.
    [Show full text]