Movement and Resource Selection by Feral Goats In

Total Page:16

File Type:pdf, Size:1020Kb

Movement and Resource Selection by Feral Goats In MOVEMENT AND RESOURCE SELECTION BY FERAL GOATS IN A HAWAIIAN MONTANE DRY LANDSCAPE A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NATURAL RESOURCES AND ENVIRONMENTAL MANAGEMENT (ECOLOGY, EVOLUTION, AND CONSERVATION BIOLOGY) AUGUST 2012 By Mark William Chynoweth Thesis Committee: Creighton M. Litton, Co-Chairperson Christopher A. Lepczyk, Co-Chairperson Steven C. Hess Acknowledgements The work presented in this thesis is a result of an extensive collaboration between the Wildlife Ecology Lab and Ecosystem Ecology Lab at the University of Hawai‘i at Mānoa, the Institute for Pacific Islands Forestry of the USDA Forest Service, the Global Ecology Lab at Stanford University, and many other professionals, academics, students and citizens who helped me along the way. I would like to thank all those involved in this collaboration for the opportunity to complete this research. This research was supported by the National Science Foundation Graduate Research Fellowship (Grant No. 2010094953 to M. Chynoweth); USDA Forest Service, Pacific Southwest Research Station, Institute of Pacific Islands Forestry (Research Joint Venture 08-JV-11272177-074 to C.M. Litton); and the W.T. Yoshimoto Foundation Endowed Fellowship in Animal Wildlife Conservation Biology (to M. Chynoweth). I would like to thank the co-chairs of my committee, Drs. Creighton M. Litton and Christopher A. Lepczyk for their help throughout my experience at the University of Hawai‘i at Mānoa. This work would not have been possible without them. I would also like to thank my third committee member, Dr. Steve Hess, for his invaluable advice during all stages of this research, particularly relating to the associated fieldwork. I would also like to thank Ben Kawakami and his crew from Keepers of the Land for assistance with animal capture, Susan Cordell and Erin Questad for logistical advice and office space at the Institute of Pacific Islands Forestry, and the many individuals who helped with my field work, which often entailed driving long distances to locate goats. Thanks to: Darcey Iwashita, Joey Quitan, Nathan Friday, Isaac Ito, Nick Holmes, Nick Arpaia and Laura Berbusse. Special thanks to Lisa Ellsworth-Johnson, Alex Dale and Patrick Curry for help with geospatial analysis. I would also like to thank my friends and family for their support during my long journey as a M.S. student. ii Abstract Where animals range and how they select resources have long been of interest to ecologists and have recently merged together in the field of movement ecology. While movement ecology offers improved understanding of basic ecological questions, it also offers great potential for applied questions. To advance our understanding of movement, I sought to investigate how large herbivores respond to vegetation phenology and to determine if high-resolution remotely sensed data could predict resource selection. To address these objectives 12 feral goats were tracked with GPS satellite collars for one year in the Pōhakuloa Training Area on Hawai‘i Island. Results suggest that vegetation phenology is a good indicator of feral goat habitat. Feral goats primarily select habitats with low canopy height, high slope and curvature, and high values of photosynthetic and non-photosynthetic vegetation. Ultimately, the results of this study can be used to prioritize conservation activities in native Hawaiian montane dryland ecosystems. iii Table of Contents PAGE Acknowledgements…………………………………......………………………….. ii Abstract ……………………………………………………………………............. iii List of Tables ……………………………………………………………………… vi List of Figures ……………………………………………………………............... vii CHAPTER 1 Introduction………………………………………………………… 1 CHAPTER 2 Biology and impacts of Pacific Island invasive species: Capra hircus, the feral goat……………………………………………….. 6 Abstract…………………………………………………………………….. 6 Introduction………………………………………………………………… 7 Description and Account of Variation…………………............................... 7 Diet…………………………………………………………………………. 8 Environmental Impacts and Economic Importance………………………... 8 Geographic Distribution in the Pacific Region……….................................. 13 Habitat………………………………………………………………............ 13 History of Introductions……………………………………………………. 14 Physiology and Behavior…………………………………………………... 15 Reproduction……………………………………………………….. ……... 16 Population Dynamics………………………………………………………. 17 Management………………………………………………………………... 18 Prognosis…………………………………………………………………… 21 CHAPTER 3 Dispersal and home range use of non-native feral goats in a Hawaiian montane dry landscape………………………………….. 25 Abstract…………………………………………………………………….. 25 Introduction………………………………………………………………… 26 Materials and Methods……………………………………………………... 29 Results………………………………………………………………............ 35 Discussion………………………………………………………………….. 37 Management Implications………………………………………………….. 40 iv CHAPTER 4 Resource selection by feral goats in a Hawaiian montane dry landscape …………………………………………………………... 55 Abstract…………………………………………………………………….. 55 Introduction………………………………………………………………… 56 Materials and Methods……………………………………………………... 58 Results………………………………………………………………............ 64 Discussion………………………………………………………………….. 66 CHAPTER 5 Conclusions…………………….…………………………………... 80 References…….…………………………………………………………................. 84 APPENDIX A Table of Body Condition Score Index.……………………….…... 101 APPENDIX B Typical dispersal movement of a feral goat moving between primary and secondary range……………………………………... 102 APPENDIX C RSF Model Rankings…………………………………………….. 103 v List of Tables TABLE PAGE Table 2.1. Presence of feral goats on select Pacific Islands………………………. 23 Table 3.1. Summary of individual captured goats………………………………... 42 Table 3.2. Fixed-kernel density estimates of home range and core-use area of 14 feral goats in the Pōhakuloa Training Area……………………... 43 Table 3.3. Distances between seasonal home ranges and departure dates………... 44 Table 3.4. Two-tailed probabilities for differences in relative NDVI values in primary and secondary ranges……………………….……………... 45 Table 4.1. Seven a priori models to consider for model selection……………….. 70 Table 4.2. Sum of individual AIC ranks of models for nocturnal selection……… 71 Table 4.3. Sum of individual AIC ranks of models for diurnal election…………. 72 Table 4.4. Estimated mean coefficients and SE for the population level RSF model for feral goats in the Pōhakuloa Training Area………………… 73 Table 4.5 Estimated mean coefficients and SE for the population-level diurnal and nocturnal resource selection function…………………………....... 74 Table A.1. Table of Body Condition Score Index………………………………… 102 Tables C.1 – C.18. Model rankings with for all RSF models…………………….. 104 vi List of Figures FIGURE PAGE Figure 2.1. Feral goats, Capra hircus, on Hawai‘i Island. Photo………………… 24 Figure 3.1. Location of Study Area, the Pōhakuloa Training Area………………. 46 Figure 3.2. Dominant vegetation types of the Pōhakuloa Training Area………… 47 Figure 3.3. Potential capture location and actual capture locations for feral goats in the Pōhakuloa Training Area………….…………………………… 48 Figure 3.4. Number of days collars were deployed on each individual…………... 49 Figure 3.5. Mean daily home ranges of feral goats……………………………….. 50 Figure 3.6. Mean daily association between individual goats……………………. 51 Figure 3.7. Frequency of feral goat group size…………………………………… 52 Figure 3.8. Utilization Distribution Overlap Index (UDOI) between annual ranges of collared feral goats…………………………………………. 53 Figure 3.9. Annual changes in mean NDVI in 95% primary and secondary home ranges for individuals demonstrating dispersal behavior……………... 54 Figure 4.1. Location of study area, the Pōhakuloa Training Area………………... 75 Figure 4.2. Dominant vegetation types of the Pōhakuloa Training Area………… 76 Figure 4.3. Potential capture location and actual capture locations for feral goats in the Pōhakuloa Training AreA…………………………………….... 77 Figure 4.4. Mean displacement distances (± SE) of all individuals between collar fixes by hour………………………………………………….............. 78 Figure 4.5. Map depicting relative probability of diurnal and nocturnal habitat use by feral goats………………………………………………........... 79 Figure B.1. Typical dispersal movement of feral goat moving between primary and secondary range………………………………………………………. 103 vii CHAPTER 1 Introduction Once established, introduced species can become invasive and subsequently cause animal extinctions (Clavero and García-Berthou 2005), disassemble communities (Sanders et al. 2003) and cause environmental damage reaching up to $120 billion in the United States alone (Pimentel et al. 2005). As such, non-native, invasive species represent a major threat to island ecosystems and contribute significantly to overall human caused global environmental change (Vitousek et al. 1997a). Second only to habitat destruction, invasive species are considered one of the leading causes of biodiversity loss (Vitousek et al. 1997b). The impacts of invasion are often exacerbated in islands ecosystems, where native species have evolved in relative isolation. Introduced vertebrates present their own suite of challenges for natural resource managers. The history of introduced vertebrates in the Hawaiian Islands began with the arrival of Polynesians between 1219 and 1266 A.D (Wilmshurst et al. 2011). Early vertebrate introductions included the domestic pig (Sus scrofa), dog and jungle fowl, and unintended stowaways such as the Polynesian rat (Rattus exulans), geckos, and skinks
Recommended publications
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Broad-Headed Snake (Hoplocephalus Bungaroides)', Proceedings of the Royal Zoological Society of New South Wales (1946-7), Pp
    Husbandry Guidelines Broad-Headed Snake Hoplocephalus bungaroides Compiler – Charles Morris Western Sydney Institute of TAFE, Richmond Captive Animals Certificate III RUV3020R Lecturers: Graeme Phipps, Jacki Salkeld & Brad Walker 2009 1 Occupational Health and Safety WARNING This Snake is DANGEROUSLY VENOMOUS CAPABLE OF INFLICTING A POTENTIALLY FATAL BITE ALWAYS HAVE A COMPRESSION BANDAGE WITHIN REACH SNAKE BITE TREATMENT: Do NOT wash the wound. Do NOT cut the wound, apply substances to the wound or use a tourniquet. Do NOT remove jeans or shirt as any movement will assist the venom to enter the blood stream. KEEP THE VICTIM STILL. 1. Apply a broad pressure bandage over the bite site as soon as possible. 2. Keep the limb still. The bandage should be as tight as you would bind a sprained ankle. 3. Extend the bandage down to the fingers or toes then up the leg as high as possible. (For a bite on the hand or forearm bind up to the elbow). 4. Apply a splint if possible, to immobilise the limb. 5. Bind it firmly to as much of the limb as possible. (Use a sling for an arm injury). Bring transport to the victim where possible or carry them to transportation. Transport the victim to the nearest hospital. Please Print this page off and put it up on the wall in your snake room. 2 There is some serious occupational health risks involved in keeping venomous snakes. All risk can be eliminated if kept clean and in the correct lockable enclosures with only the risk of handling left in play.
    [Show full text]
  • Yellowstone Plume Trigger for Basin and Range Extension, and Coeval Emplacement of the Nevada–Columbia Basin Magmatic Belt
    Geosphere, published online on 17 February 2015 as doi:10.1130/GES01051.1 Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and AdjacentYellowstone Areas plume themed trigger issuefor Basin and Range extension Yellowstone plume trigger for Basin and Range extension, and coeval emplacement of the Nevada–Columbia Basin magmatic belt Victor E. Camp1, Kenneth L. Pierce2, and Lisa A. Morgan3 1Department of Geological Sciences, San Diego State University, San Diego, California 92182, USA 2U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Box 2, Bozeman, Montana 59715, USA 3U.S. Geological Survey, 973 Federal Center, Box 25046, Denver, Colorado 80225-0046, USA ABSTRACT and Range. It was not the sole cause of Basin Juan de Fuca–Farallon plates, tractional forces and Range extension, but rather the catalyst applied to the base of the lithosphere, buoyancy Widespread extension began across the for extension of the Nevadaplano, which was forces associated with lithospheric density varia- northern and central Basin and Range already on the verge of regional collapse. tions, and basal normal forces associated with Province at 17–16 Ma, contemporaneous mantle upwelling and/or gravitational insta- with magmatism along the Nevada–Colum- INTRODUCTION bilities. They concluded that boundary forces bia Basin magmatic belt, a linear zone of associated with plate interaction would produce dikes and volcanic centers that extends for The Basin and Range Province is one of the neither the magnitude nor the rates of extension >1000 km, from southern Nevada to the best exposed extensional areas in the world for observed in the northern and central Basin and Columbia Basin of eastern Washington.
    [Show full text]
  • A Study of the Diets of Feral Goat Populations in the Snowdonia National Park
    A Study of the diets of Feral Goat Populations in The Snowdonia National Park. Bryan Glenville Dickinson BSc HONS (Wales) A thesis submitted in candidature for the Degree of Magister in Philosphiae in the University of Wales. School of Agriculture and Forest Sciences University of North Wales February 1994 SUMMARY A study of the botanical composition of feral goat (Capra hircus) diets was carried out using faecal analysis. Two groups of goats in the northern part of the Snowdonia National Park were selected, one using mainly lowland deciduous woodland, the other restricted to upland heath at over 400 m altitude. Diets of male and female goats were analysed separately on a monthly basis and related to information on range, group structure and habitat utilisation. At the upland site little segregation of the sexes took place and overall diets between the sexes were similar. Thirty plant species were identified in the faeces, and the overall diet consisted of approximately 50 % monocotyledonous plants (mainly grasses and sedges), 40 % ericaceous shrubs, and 10 % ferns, herbs and bryophytes. Dwarf shrubs were important throughout the year. Grasses, especially Nardus stricta, were consumed in late winter and spring but were replaced by sedges in late spring and early summer. At the lowland site the group was much larger, and a greater degree of dispersal and sexual segregation occurred. Over fifty plant species were identified and overall faecal composition differed between the sexes. Male diet consisted of approximately 15 % monocotyledonous species (mainly grasses), 67 % tree browse (leaves) and dwarf shrubs, 10 % ferns and 8 % herbs and bryophytes.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • The Impact of Feral Deer, Pigs and Goats in Australia
    THE IMPACT OF FERAL DEER, PIGS AND GOATS IN AUSTRALIA An inquiry by the Senate Environment and Communications References Committee Submission by the Invasive Species Council Endorsed by: November 2018 Document details Invasive Species Council. 2018. The impact of feral deer, pigs and goats in Australia. A submission by the Invasive Species Council to an inquiry by the Senate Environment and Communications References Committee. Endorsing organisations: Australian Network for Plant Conservation, Australian Wildlife Society, Bush Heritage Australia, Council of Australasian Weed Societies, Friends of Warrandyte State Park, Nature Conservation Council of NSW, Conservation Council South Australia, Nature Conservation Society of South Australia, Vertebrate Pest Management Association Australia, Victorian National Parks Association, Wildlife Preservation Society of Queensland. About the Invasive Species Council The Invasive Species Council was formed in 2002 to advocate for stronger laws, policies and programs to keep Australian biodiversity safe from weeds, feral animals, exotic pathogens and other invaders. We are a not-for-profit charitable organisation with over 2000 supporters. Our work is funded entirely by donations from supporters and philanthropic organisations. Intellectual property rights © Invasive Species Council 2018. Unless otherwise noted, copyright and any other intellectual property rights in this publication are owned by the Invasive Species Council. All material in this publication is licensed under a Creative Commons Attribution-NonCommercial- ShareAlike 4.0 International License. Creative Commons Attribution 4.0 International Licence is a standard form licence agreement that allows you to copy, redistribute, remix, transmit and adapt this publication provided you attribute the work, you do not use it commercially and you distribute your contribution under this creative commons licence.
    [Show full text]
  • The History of Mammal Eradications in Hawai`I and the United States Associated Islands of the Central Pacific
    Hess, S.C.; and J.D. Jacobi. The history of mammal eradications in Hawai`i and the United States associated islands of the Central Pacific The history of mammal eradications in Hawai`i and the United States associated islands of the Central Pacific S.C. Hess1 and J.D. Jacobi2 1U.S. Geological Survey Pacific Island Ecosystems Research Center, P.O. Box 44, Kīlauea Field Station, Hawai`i National Park, HI, 96718, USA. <[email protected]>. 2U.S. Geological Survey Pacific Island Ecosystems Research Center, 677 Ala Moana Blvd., Suite 615, Honolulu, HI, 96813, USA. Abstract Many eradications of mammal taxa have been accomplished on United States associated islands of the Central Pacific, beginning in 1910. Commonly eradicated species are rabbits (Oryctolagus cuniculus), rats (Rattus spp.), feral cats (Felis catus), and several feral ungulates from smaller islands and fenced natural areas on larger Hawaiian Islands. Vegetation and avifauna have demonstrated dramatic recovery as a direct result of eradications. Techniques of worldwide significance, including the Judas goat method, were refined during these actions. The land area from which ungulates have been eradicated on large Hawaiian Islands is now greater than the total land area of some smaller Hawaiian Islands. Large multi-tenure islands present the greatest challenge to eradication because of conflicting societal interests regarding introduced mammals, mainly sustained-yield hunting. The difficulty of preventing reinvasion poses a persistent threat after eradication, particularly for feral pigs (Sus scrofa) on multi-tenure islands. Larger areas and more challenging species are now under consideration for eradication. The recovery of endangered Hawaiian birds may depend on the creation of large predator-proof exclosures on some of the larger islands.
    [Show full text]
  • Feral Goats in Australia: Impacts and Cost of Control Sylvana Maas University of Canberra
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Proceedings of the Eighteenth Vertebrate Pest Vertebrate Pest Conference Proceedings collection Conference (1998) 1998 Feral Goats In Australia: Impacts And Cost Of Control Sylvana Maas University of Canberra Follow this and additional works at: http://digitalcommons.unl.edu/vpc18 Maas, Sylvana, "Feral Goats In Australia: Impacts And Cost Of Control" (1998). Proceedings of the Eighteenth Vertebrate Pest Conference (1998). 55. http://digitalcommons.unl.edu/vpc18/55 This Article is brought to you for free and open access by the Vertebrate Pest Conference Proceedings collection at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Proceedings of the Eighteenth Vertebrate Pest Conference (1998) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FERAL GOATS IN AUSTRALIA: IMPACTS AND COST OF CONTROL SYLVANA MAAS, Applied Ecology Research Group, University of Canberra, P.O. Box 1, Belconnen, ACT, 2616, Australia. ABSTRACT: Feral goats are both a pest and a resource in Australia. They are thought to compete with domestic livestock for food and water and endanger the survival of native flora and fauna. However, there is little quantitative information on the impact of feral goats on agricultural production or conservation values. Their presence on agricultural land is partly tolerated since they can be commercially harvested by mustering or trapping at water points. Where commercial harvesting is not possible, other control techniques must be used. Aerial shooting is the most commonly used technique to remove goats in inaccessible areas, but it is expensive. This paper reviews the status and impacts of feral goats in Australia.
    [Show full text]
  • UH PCSU KMWP Goat Control FY15 Final Report
    KO‘OLAU MOUNTAINS WATERSHED PARTNERSHIP Feral Ungulate Management, Ko‘olau Range, O‘ahu Final Report November 1, 2014 – December 31, 2015 to DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE from UNIVERSITY OF HAWAI‘I Office of Research Services 2440 Campus Rd, Box 368 Honolulu, HI 96822 Pacific Cooperative Studies Unit University of Hawai‘i at Mānoa Introduction Feral goats (Capra hircus) are among the most harmful invasive species on oceanic islands, including Hawai‘i. They are notorious for destroying vegetation, increasing erosion, and thriving in a range of habitat types. Females can produce up to 4 offspring a year through frequent twinning. Naturalized populations are known from only two locations in the Ko‘olau Mountains of O‘ahu, both on the windward side. A population of feral goats has been growing on the ridge behind the Oceanic Institute and Sea Life Park at Waimanalo for several years; the animals are likely the descendants of escapees from nearby farms. It was reported in 2012 that mouflon sheep (Ovis musimon) were also present in the area. The first control shoot took place in April, 2013, with Department of Land and Natural Resources (DLNR) shooters and the Ko‘olau Mountains Watershed Partnership (KMWP) providing spotters and keeping the general public out of the area. The last mouflon sheep at Waimanalo was sighted and removed in 2014 and wild sheep are considered eradicated from O‘ahu. The second population of feral goats in the Ko‘olaus is at Kualoa Ranch, an area that still supports native forest and several endangered species.
    [Show full text]
  • Florida Atlantic University
    FLORIDA ATLANTIC UNIVERSITY Commencement Classes d196S -1969 Sunday, June 8, 1969 Two o'Clock THE CAMPUS Boca Raton, Florida !fJrogram Prelude Prelude and Fugue in C. Major- ]. S. Bach Processional Pomp and Circumstance- Edward Elgar B. Graham Ellerbee, Organist Introductions Dr. Clyde R. Burnett University Marshal Invocation The Rev. Donald Barrus United Campus Ministries National Anthem - Key- Sousa Richard Wright Instructor in Music Presiding Dr. Kenneth R. Williams President Florida Atlantic University Address "The Generation of City Builders" Dr. Robert C. Wood Director Joint Center for Urban Studies Massachusetts Institute of Technology Presentation of Baccalaureate Degrees Dr. S. E. Wimberly Vice President for Academic Affairs For the College of Business and Public Administration Dean Robert L. Froemke For the College of Education Dean Robert R. Wiegman For the College of Humanities Dean Jack Suberman For the Department of Ocean Engineering Professor Charles R. Stephan For the College of Science Dean Kenneth M. Michels For the College of Social Science Dean John M. DeGrove Presentation of the Master of Education, Master of Public Administration, Master of Science and Master of Arts Degrees Deans of the Respective Colleges Benediction The Reverend Barrus Recessional Recessional - Martin Shaw The Audience will please remain in their places until the Faculty and Graduates have left the area. 1 THE ORDER OF THE PROCE SS IO N The Marshal of the Colleges The Marshals and Candidates of the College of Business and Public Administration
    [Show full text]
  • Invasive Species and Natural Function in Ecology
    Invasive Species and Natural Function in Ecology Christopher Hunter Lean1 Abstract If ecological systems are functionally organised, they can possess functions or malfunctions. Natural function would provide justification for conservationists to act for the protection of current ecological arrangements and control the presence of populations that create ecosystem malfunctions. Invasive species are often thought to be malfunctional for ecosystems, so functional arrangement would provide an objective reason for their control. Unfortunately for this prospect, I argue no theory of function, which can support such normative conclusions, can be applied to large scale ecosystems. Instead ecological systems have causal structure, with small clusters of populations achieving functional arrangement. This, however, does not leave us without reason to control invasive species. We can look at the causal arrangement of ecological systems for populations that support ecological features that we should preserve. Populations that play a causal role in reducing biodiversity should be controlled, because biodiversity is a good all prudent agents should want to preserve. 1. Department of Philosophy, University of Sydney, A14 Quadrangle, 2006, Australia. For correspondence please send enquiries to [email protected]. 1 ‘Your heart has great value to your body. No one would argue that point. Does a mosquito population have similar value to a marsh?’ John Kricher, The Balance of Nature: Ecology’s Enduring Myth, p .19 1. Introduction There has been a persistent hope that populations in ecological systems have natural normativity, just as organs do in a body. Lungs, hearts, and kidneys have a relatively uncontroversial interpretation as possessing functions and malfunctions, these are normative in the sense that there is something they should be doing.
    [Show full text]
  • Feral Goats and Sheep Steven C
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 2018 Feral Goats and Sheep Steven C. Hess USGS Pacific sI land Ecosystems Research Center Dirk H. Van Vuren University of California, Davis Gary W. Witmer USDA-APHIS-Wildlife Services, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Hess, Steven C.; Van Vuren, Dirk H.; and Witmer, Gary W., "Feral Goats and Sheep" (2018). USDA National Wildlife Research Center - Staff Publications. 2029. https://digitalcommons.unl.edu/icwdm_usdanwrc/2029 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. U.S. Department of Agriculture U.S. Government Publication Animal and Plant Health Inspection Service Wildlife Services 14 Feral Goats and Sheep Steven C. Hess, Dirk H. Van Vuren, and Gary W. Witmer CONTENTS Origin, Ancestry, and Domestication .....................................................................289 Forage and Water Needs ........................................................................................290 Liberation
    [Show full text]