Effects of Genotype and Environment on the Plant Ionome
Total Page:16
File Type:pdf, Size:1020Kb
Effects of Genotype and Environment on the Plant Ionome Philip J. White Martin R. Broadley and many others FertBio2014 18th September 2014 Ionomics is the Study of the Elemental Composition of Plants 98.5 % Carbon (Sodium) Oxygen Chlorine Hydrogen Boron Nitrogen Iron Potassium Manganese Calcium Zinc Magnesium Copper (Silicon) Nickel Phosphorus Molybdenum Sulphur (Cobalt, Iodine, Vanadium, Selenium) ...and every other element in the periodic table available in the environment Phylogenetics Genetics at a Higher Level of Classification Phylogenetics is the study of the relationships among groups of organisms (e.g. families, species, populations) based on DNA sequencing. The result of phylogenetic studies are hypotheses about the evolutionary history of taxonomic groups. Angiosperms – flowering plants. A definition of phylogenetics and its utility Phylogenetics Angiosperm Phylogeny The Angiosperm Phylogeny Group (1998, 2003, 2009) Fagales Cucurbitales Rosales Fabales Oxalidales Malpighiales Celastrales Angiosperms Zygophyllales Myrtales Sapindales (flowering plants) Malvales Brassicales Crossosomatales Geraniales 250,000 species Vitaceae Saxifragales Berberidopsidales 462 families Dipsacales Apiales eudicots Asterales 47 orders Aquifoliales Lamiales Solanales Gentianales Garryales Cornales APG II (2003) Ericales Caryophyllales Dilleniaceae Santanales Gunnerales Trochodendraceae Buxaceae/Didymeleaceae Sabiaceae Proteales Ranunculales Ceratophyllales Winterales Magnoliales Laurales Piperales monocots basal angiosperms Chloranthales Illiciaceae and magnoliids Schisandraceae Austrobaileyaceae Nymphaceae Amborellaceae monocots - commelinoids Grass Bromeliad Costus Bamboo Banana monocots - non-commelinoid Caryophyllales asterids rosids Plant Species Differ in Their Ionome Functional Foods Fertiliser Use Efficiency Tolerant Crops Safer Crops Phytoremediation Contaminant Transfer Evolution of the Angiosperm Ionome Selected Examples (1) Calcium, Strontium & Magnesium (2) Silicon (3) Sodium (in nonsaline environments) (4) Rothamsted Park Grass Experiment FertBio2014, Araxá, Brazil, 18th September 2014 Evolution of the Angiosperm Ionome Data Sources MetaMeta-analysis-Analyses of literature of data Comparative(182 comparative Studies studies in 40 papers) Experiments under Controlled Conditions Botanical Surveys Insights to the Angiosperm Ionome – Sources of Data A Botanical Journey Through The Periodic Table Group II Elements Broadley et al. (2003) J. Exp. Bot. 54, 1431-1446 Broadley et al. (2004) J. Exp. Bot. 55, 321-336 Magnesium : Calcium Ratios in Shoot Tissues Hydroponics Sampled from the field 2.0 2.0 1.5 1.5 (%) (%) 1.0 1.0 shoot shoot [Mg] [Mg] 0.5 0.5 0.0 0.0 0 1 2 3 4 5 0 1 2 3 4 5 [Ca]shoot (%) [Ca]shoot (%) Magnesium : Calcium Ratios in Shoot Tissues Hydroponics Sampled from the field 2.0 2.0 1.5 1.5 (%) (%) 1.0 1.0 shoot shoot [Mg] [Mg] 0.5 0.5 0.0 0.0 0 1 2 3 4 5 0 1 2 3 4 5 [Ca]shoot (%) [Ca]shoot (%) All other taxa Caryophyllales (e.g. sugar beet, carnation) Fagales Cucurbitales Rosales Shoot Mg / Ca Ratios Fabales Oxalidales (n=1) Malpighiales of Angiosperm Orders Celastrales Zygophyllales Myrtales Sapindales Malvales > 200 species Brassicales Crossosomatales Geraniales grown hydroponically Vitaceae Saxifragales Berberidopsidales Dipsacales Apiales Asterales Aquifoliales high 0.8 Lamiales Solanales Gentianales Garryales mean Cornales Ericales Caryophyllales (n=51) Dilleniaceae low 0 Santanales Gunnerales Trochodendraceae Buxaceae/Didymeleaceae Sabiaceae Proteales Ranunculales Ceratophyllales Winterales Magnoliales Laurales Piperales monocots Chloranthales Illiciaceae Schisandraceae Austrobaileyaceae Nymphaceae Amborellaceae Shoot Mg / Ca Ratios in the Caryophyllales 51 species Plumbaginaceae Polygonaceae grown hydroponically Caryophyllaceae Amaranthaceae Aizoaceae Phytolaccaceae Nyctaginaceae 1.2 high Cactaceae Portulacaceae mean low 0 Ecological Implications - Serpentine Flora name is derived from the mineral serpentine ((Mg,Fe)3Si2O5(OH)4) high Mg and Fe; low Ca high Ni, Cr and Co; low organic matter; little water; low N, P and K Edmonstons Chickweed - Cerastium nigrescens (Caryophyllaceae). World distribution restricted to the serpentine debris on Unst Proctor J (1999) Toxins, nutrient shortages and droughts: the serpentine challenge. Trends in Ecology and Evolution, 14, 334-335 Magnesium : Calcium Ratios in Shoot Tissues Hydroponics Sampled from the field 2.0 2.0 1.5 1.5 (%) (%) 1.0 1.0 shoot shoot [Mg] [Mg] 0.5 0.5 0.0 0.0 0 1 2 3 4 5 0 1 2 3 4 5 [Ca]shoot (%) [Ca]shoot (%) All other taxa Caryophyllales (e.g. sugar beet, carnation) Magnesium : Calcium Ratios in Shoot Tissues Hydroponics Sampled from the field 2.0 2.0 1.5 1.5 (%) (%) 1.0 1.0 shoot shoot [Mg] [Mg] 0.5 0.5 0.0 0.0 0 1 2 3 4 5 0 1 2 3 4 5 [Ca]shoot (%) [Ca]shoot (%) All other taxa Caryophyllales (e.g. sugar beet, carnation) Poales (e.g. the grass / cereal family, Poaceae) Magnesium : Calcium Ratios in Shoot Tissues Hydroponics Sampled from the field 2.0 2.0 1.5 1.5 (%) (%) 1.0 1.0 shoot shoot [Mg] [Mg] 0.5 0.5 0.0 0.0 0 1 2 3 4 5 0 1 2 3 4 5 [Ca]shoot (%) [Ca]shoot (%) All other taxa Caryophyllales (e.g. sugar beet, carnation) Poales (e.g. the grass / cereal family, Poaceae) Asterales (e.g. the daisy / sunflower family Asteraceae) Fagales Cucurbitales Rosales Shoot Ca Concentrations Fabales Oxalidales Malpighiales of Angiosperm Orders Celastrales Zygophyllales Myrtales Sapindales Malvales Brassicales Geraniales Eudicots > monocots Saxifragales Dipsacales Apiales Asterales Lamiales high 3 % Solanales Gentianales Ericales Caryophyllales low 0 Proteales Ranunculales Magnoliales Laurales Piperales monocots Chloranthales Illiciaceae Schisandraceae Austrobaileyaceae Nymphaceae Amborellaceae Shoot Calcium Concentrations of Monocot Orders Zingiberales high 1.5% Commelinales Poales commelinoid monocots low 0 Arecales Asparagales non- commelinoid monocots Dioscoreales Alismatales shoot Ca concentrations of different monocot orders differ non-commelinoid monocots > commelinoid monocots (Poales, Arecales) Plant Calcium - Dietary Consequences calcium deficiency disorders arise when populations change from bean-rich to cereal-rich diets Thacher (2006) Ann. Trop. Paediatrics 26, 1-16 White & Broadley (2009) New Phytol. 182, 49-84 Strontium : Calcium Ratios In Shoots of 44 Plant Species 100 90 80 70 60 50 40 30 Poales 20 10 Strontium content Strontium(µCi/g) content 0 0 10 20 30 40 Calcium content (mg/g) Andersen AJ (1967) Risö Report 170 Phylogenetic Variation in Shoot Mineral Concentrations Proportion of genetic variation Ca Mg Sr order and above (%) 64 65 76 within order (%) 36 35 24 Ancient evolutionary origin of variation in Ca, Mg & Sr concentrations Broadley et al. (2004) J. Exp. Bot. 55, 321-336 A Botanical Journey Through The Periodic Table Silicon Hodson et al. (2005) Ann. Bot. 96, 1027-1046 Silicon in Plants 70 6060 Non-commelinoid monocots (onion) 50 Asterids (daisy) 4040 30 2020 10 % frequency of observations all frequency % 00 00 22 44 66 88 1010 1212 1414 % Si in leaf tissue Hodson et al. (2005) Ann. Bot. 96, 1027-1046 Silicon in Plants 70 Commelinoid monocots (grass) 6060 Non-commelinoid monocots (onion) 50 Asterids (daisy) 4040 30 2020 10 % frequency of observations all frequency % 0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 % Si in leaf tissue Hodson et al. (2005) Ann. Bot. 96, 1027-1046 Silicon in Plants Proportion of genetic variation Ca Mg Sr Si order and above (%) 64 65 76 80 within order (%) 36 35 24 20 Ancient evolutionary origin of variation in Ca, Mg, Sr & Si concentrations Ca, Mg, Sr : eudicots ≥ non-commelinoid monocots > commelinoid monocots Si : eudicots ≤ non-commelinoid monocots < commelinoid monocots Variation in Ionomes of Angiosperm Species I II III IV V VI VII VIII H He Li Be B C N O F Ne ancient Na Mg Al Si P S Cl Ar K Ca Ga Ge As Se Br Kr Rb Sr In Sn Sb Te I Xe Cs Ba Tl Pb Bi Po At Rn recent Watanabe et al. (2007) New Phytol. 174, 516-523 Distribution of Leaf Sodium Concentrations Among Angiosperm Species Evolution of Sodium Accumulation in the Caryophyllales Distribution of Leaf Sodium Concentrations Among Angiosperm Species Evolution of Sodium Accumulation in the Caryophyllales Fagales Cucurbitales Rosales Shoot Sodium Concentrations Fabales Oxalidales Malpighiales of Angiosperm Orders Celastrales Zygophyllales Myrtales Sapindales Malvales 311 species Brassicales Crossosomatales Geraniales grown hydroponically Vitaceae Saxifragales Berberidopsidales Dipsacales Apiales Asterales Aquifoliales high 0.5 Lamiales Solanales Gentianales Garryales Cornales mean Ericales low Caryophyllales (n=63) 0 Dilleniaceae Santanales Gunnerales Trochodendraceae Buxaceae/Didymeleaceae Sabiaceae Proteales Ranunculales Ceratophyllales Winterales Magnoliales Laurales Piperales Monocots (8 orders) Chloranthales Illiciaceae Schisandraceae Austrobaileyaceae Nymphaceae Amborellaceae Phylogenetic Effects on the Plant Ionome <0.1 0.1-0.5 0.5-1.0 1.0-1.5 1.5-2.0 >2.0 Evolution of Sodium Accumulation in the Caryophyllales Phylogenetic and Environmental Effects on the Plant Ionome Park Grass, Rothamsted 1856-2014 Botanical Composition of Park Grass Plots (Crawley et al., 1991-2000) Crawley et al. (2005) American Naturalist 165, 179-192 Phylogenetic and Environmental Effects on the Plant Ionome White et al. (2012) New Phytologist 196, 101-109 Plant Species Differ in Their Ionome 4 Polygonaceae Fabaceae 2 Apiaceae 0 Ranunculaceae Asteraceae -2 Poaceae -4 Discriminant Score 2 Score Discriminant Plantaginaceae -6 -8 -6 -4 -2 0 2 4 6 8 Discriminant Score 1