Phylogeny and Phylogenetic Taxonomy of Dipsacales, with Special Reference to Sinadoxa and Tetradoxa (Adoxaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Phylogenetic Taxonomy of Dipsacales, with Special Reference to Sinadoxa and Tetradoxa (Adoxaceae) PHYLOGENY AND PHYLOGENETIC TAXONOMY OF DIPSACALES, WITH SPECIAL REFERENCE TO SINADOXA AND TETRADOXA (ADOXACEAE) MICHAEL J. DONOGHUE,1 TORSTEN ERIKSSON,2 PATRICK A. REEVES,3 AND RICHARD G. OLMSTEAD 3 Abstract. To further clarify phylogenetic relationships within Dipsacales,we analyzed new and previously pub- lished rbcL sequences, alone and in combination with morphological data. We also examined relationships within Adoxaceae using rbcL and nuclear ribosomal internal transcribed spacer (ITS) sequences. We conclude from these analyses that Dipsacales comprise two major lineages:Adoxaceae and Caprifoliaceae (sensu Judd et al.,1994), which both contain elements of traditional Caprifoliaceae.Within Adoxaceae, the following relation- ships are strongly supported: (Viburnum (Sambucus (Sinadoxa (Tetradoxa, Adoxa)))). Combined analyses of C ap ri foliaceae yield the fo l l ow i n g : ( C ap ri folieae (Diervilleae (Linnaeeae (Morinaceae (Dipsacaceae (Triplostegia,Valerianaceae)))))). On the basis of these results we provide phylogenetic definitions for the names of several major clades. Within Adoxaceae, Adoxina refers to the clade including Sinadoxa, Tetradoxa, and Adoxa.This lineage is marked by herbaceous habit, reduction in the number of perianth parts,nectaries of mul- ticellular hairs on the perianth,and bifid stamens. The clade including Morinaceae,Valerianaceae, Triplostegia, and Dipsacaceae is here named Valerina. Probable synapomorphies include herbaceousness,presence of an epi- calyx (lost or modified in Valerianaceae), reduced endosperm,and distinctive chemistry, including production of monoterpenoids. The clade containing Valerina plus Linnaeeae we name Linnina. This lineage is distinguished by reduction to four (or fewer) stamens, by abortion of two of the three carpels,and possibly by supernumerary inflorescences bracts. Keywords: Adoxaceae, Caprifoliaceae, Dipsacales, ITS, morphological characters, phylogeny, phylogenetic taxonomy, phylogenetic nomenclature, rbcL, Sinadoxa, Tetradoxa. Several studies of Dipsacales phylogeny have port for these clades has not been uniformly appeared in recent years, based on both mor- strong, and the exact placement of several key phological and molecular evidence (Donoghue, taxa (H ep t a c o d i u m, S i n a d ox a, Te t ra d ox a, 1983; Donoghue et al., 1992; Judd et al., 1994; Triplostegia) remains uncertain. Backlund and Donoghue, 1996; Backlund and Here we present an expanded analysis of Bremer, 1997; Pyck et al., 1999; Pyck and ch l o roplast DNA r b cL sequences fo r Smets, 2000; Olmstead et al., 2000). These Dipsacales, and a combined analysis of rbcL have concluded that Viburnum is related to with morphological characters. We focus spe- Sambucus plus Adoxa and that the remainder of cial attention on phy l ogenetic re l at i o n s h i p s the traditional Caprifoliaceae are more closely within Adoxaceae, based on a combination of re l ated to Mori n a c e a e,Va l e ri a n a c e a e, a n d nuclear ribosomal internal transcribed spacer Dipsacaceae. Furthermore, these studies have (ITS) and rbcL sequences. Of special interest is s u p p o rted the monophy ly of C ap ri fo l i e a e, the placement of the two rare and morphologi- Diervilleae, and Linnaeeae (all of traditional cally bizarre Chinese species, Sinadoxa cory - Caprifoliaceae), and the view that Linnaeeae dalifolia and Tetradoxa omeiensis.The recent a re more cl o s e ly re l ated to Mori n a c e a e, rediscovery of these species allows us to pre- Valerianaceae, and Dipsacaceae. However, sup- sent molecular evidence on their relationships. We are grateful to Jim Smith for rbcL sequencing efforts early in the life of this project, and to Bruce Baldwin for help with ITS sequencing.We also thank D. Boufford, B. Tan, K. In (Chengdu, Sichuan), T.-S.Ying (Beijing), and T.-N. Ho (Xining, Qinghai) for organizing expeditions to re-collect Tetradoxa and Sinadoxa, and for their help in the field.The expedition to Qinghai was supported by a National Geographic Society award to D. Boufford. Nancy Pyck and Chuck Bell shared information on their ndhF studies of Dipsacales, and Anders Backlund provided useful comments early on. 1 Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06511-8160 U.S.A. E-mail: [email protected] 2 Bergius Foundation, Royal Swedish Academy of Sciences, Box 50017, S-104 05 Stockholm, Sweden,and Department of Botany, Stockholm University, S-106 91 Stockholm, Sweden. 3 Department of Botany, Box 355325, University of Washington, Seattle,Washington 98195-5325, U.S.A. Harvard Papers in Botany, Vol. 6,No. 2, 2001, pp. 459–479. © President and Fellows of Harvard College, 2001. 460 HARVARD PAPERS IN BOTANY Vol. 6, No. 2 On the basis of these findings we contrast a strands. ITS sequences were edited using the p hy l ogenetic nomencl at u ral system fo r Staden package (Staden, 1996) under the Linux Dipsacales with a traditional Linnaean taxo- operating system. nomic treatment, and present phylogenetic def- initions for the names of several major clades. Alignment rbcL nucleotide sequence data were aligned MATERIALS AND METHODS manually using the editor in PAUP* (Swofford, Taxa 2001); no indels were recorded.The rbcL data Our rbcL analyses included 30 species of tra- matrix contained 2% “missing data” for the 43 ditional Dipsacales, covering all major lineages t a x a , re flecting uncertainty in base-calling. (Table 1). We also included Columellia and Primer positions 1–26 were excluded from the Desfontainia, which may be closely related to, analyses. Of the remaining 1402 characters, or possibly even nested within, D i p s a c a l e s 230 were parsimony informative. (Backlund and Donoghue, 1996; Backlund and ITS nucleotide sequences from 15 taxa were Bremer, 1997). Previous analyses have shown aligned manually using the Se-Al alignment t h at Dipsacales belong within A s t e ri d a e editor (Rambaut, 1 9 9 6 ) , resulting in 679 (Olmstead et al., 1992, 1993; Chase et al., aligned positions. Positions 414–482 we re 1993; Backlund and Bremer 1997), where they removed from parsimony analyses owing to are related to Apiales and Asterales within a difficulties in alignment. Indels were treated as “euasterid II” clade (APG, 1998). Here we have “uncertain” in the matrix, and 21 parsimony- included published rbcL sequences from four informative indels (positions 47, 48, 53, 92, species of Apiales (Coriandrum, Griselinia, 111–112, 129, 166, 203, 210–212, 216, 221, H e d e ra, P i t t o s p o ru m) , and four species of 222, 235, 372, 375, 405, 572, 581, 607–608, A s t e rales (B a rn a d e s i a, B o o p i s, C a m p a nu l a, 6 0 9 , and 631) we re coded as binary Me n yan t h e s ). In addition, we added Gentiana presence/absence characters and added to the and Nicotiana as representatives of the “euas- end of the matrix. Our ITS matrix contained terid I” clade (APG, 1998), and Cornus of 6.2% uncertain data: 0.4% due to uncertain Cornales. On the basis of all previous phyloge- scorings, 2.8% to implied indels, and 3.0% to netic analyses, our trees were rooted along the filling in unsequenced portions of the 5.8S gene branch connecting Cornus. in several species. In total, our ITS matrix con- Our ITS analyses included new sequences tained 181 parsimony-informative characters. fr om Tet ra d ox a and Si n a d ox a (T able 1), al o n g with five sequences from Sa m bu c u s (E ri k s s o n Combining Data and Donogh u e , 1997) and five from Vibu r num We analyzed five datasets. Three of these (D o n o ghue and Baldwi n , 1993; Baldwin et al., focused on Dipsacales: (1) rbcL alone for 1995; see also Eriksson and Donogh u e , 19 9 7 ) . Dipsacales and outgroups, (2) rbcL plus mor- Sequences of Di e rv i l l a and Wei ge l a (D i e rv i l l e a e ) , phological data from Judd et al. (1994), and (3) obtained from Genbank (Kim and Kim, 1999), rbcL plus morphological data from Backlund were included for rooting purposes. and Donoghue (1996). All data from the mor- phological studies were added without changes Sequencing in the characters or in taxon scoring; both Of the 43 rbcL sequences included in our datasets also included chromosome and sec- analyses, 27 were obtained from the authors of ondary chemical characters. Two additional previous studies or from Genbank (Table 1) and datasets focused on Adoxaceae: (4) ITS alone 16 are reported here for the first time.The new for Adoxaceae and outgroups, and (5) ITS plus sequences were obtained using standard proto- rbcL. Here we describe assembly of the com- cols and primers (see, e.g., Olmstead et al., bined datasets (2, 3, and 5). 1992, 1993). ITS sequences for Sinadoxa and The Judd et al. (1994) morphological analy- Te t ra d ox a we re obtained using pro t o c o l s sis included a subset of the taxa in our rbcL described elsewhere (Eriksson and Donoghue, matrix. From our rbcL dataset we omitted 12 1997); however, we used a different 5' primer outgroup taxa not present in Judd et al., keep- (ITS-I of Urbatsch et al., 2000), and reads were ing only Pittosporum for rooting purposes. long enough that internal primers were not Judd et al. included Alseuosmiaceae, but these n e e d e d.
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • Bumble Bee Clearwing Moths
    Colorado Insects of Interest “Bumble Bee Clearwing” Moths Scientific Names: Hemaris thysbe (F.) (hummingbird clearwing), Hemaris diffinis (Boisduval) (snowberry clearwing), Hemaris thetis (Boisduval) (Rocky Mountain clearwing), Amphion floridensis (Nessus sphinx) Figure 1. Hemaris thysbe, the hummingbird clearwing. Photograph courtesy of David Order: Lepidoptera (Butterflies, Moths, and Cappaert. Skippers) Family: Sphingidae (Sphinx Moths, Hawk Moths, Hornworms) Identification and Descriptive Features: Adults of these insects are moderately large moths that have some superficial resemblance to bumble bees. They most often attract attention when they are seen hovering at flowers in late spring and early summer. It can be difficult to distinguish the three “bumble bee clearwing” moths that occur in Colorado, particularly when they are actively moving about plants. The three species are approximately the same size, with wingspans that range between 3.2 to 5.5cm. The hummingbird clearwing is the largest and distinguished by having yellow legs, an Figure 2. Amphion floridensis, the Nessus olive/olive yellow thorax and dark abdomen with sphinx. small patches. The edges of the wings have a thick bordering edge of reddish brown. The snowberry clearwing has black legs, a black band that runs through the eye and along the thorax, a golden/olive golden thorax and a brown or black abdomen with 1-2 yellow bands. The head and thorax of the Rocky Mountain clearwing is brownish olive or olive green and the abdomen black or olive green above, with yellow underside. Although the caterpillar stage of all the clearwing sphinx moths feed on foliage of various shrubs and trees, damage is minimal, none are considered pest species.
    [Show full text]
  • Catalogue2013 Web.Pdf
    bwfp British Wild Flower Plants www.wildflowers.co.uk Plants for Trade Plants for Home Specialist Species Wildflower Seed Green Roof Plants Over 350 species Scan here to of British native buy online plants 25th Anniversary Year Finding Us British Wild Flower Plants Burlingham Gardens 31 Main Road North Burlingham Norfolk NR13 4TA Phone / Fax: (01603) 716615 Email: [email protected] Website: http://www.wildflowers.co.uk Twitter: @WildflowersUK Nursery Opening Times Monday to Thursday: 10.00am - 4.00pm Friday: 10.00am - 2.30pm Please note that we are no longer open at weekends or Bank Holidays. Catalogue Contents Contact & Contents Page 02 About Us Page 03 Mixed Trays Pages 04-05 Reed Beds Page 06 Green Roofs Page 07 Wildflower Seeds Page 08 Planting Guide Pages 09-10 Attracting Wildlife Page 11 Rabbit-Proof Plants Page 12 List of Plants Pages 13-50 Scientific Name Look Up Pages 51-58 Terms & Conditions Page 59 www.wildflowers.co.uk 2 Tel/Fax:(01603)716615 About Us Welcome.... About Our Plants We are a family-run nursery, situated in Norfolk on a Our species are available most of the year in: six acre site. We currently stock over 350 species of 3 native plants and supply to all sectors of the industry Plugs: Young plants in 55cm cells with good rootstock. on a trade and retail basis. We are the largest grower of native plants in the UK and possibly Europe. Provenance Our species are drawn from either our own seed collections or from known provenance native sources. We comply with the Flora Locale Code of Practice.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • ON the WOODY PLANTS of Llasca PARK a MAJOR REPORT
    .. \ PATTERNS AND INTEI~ SITY OF WHI'l'E•TAILED DEER BROWSING ON THE WOODY PLANTS OF llASCA PARK ~ -·• .-:~~ -"7,"l!'~C .-'";"'l.;'3. • ..., 1; ;-:_ . .. ..... .. ;_., ( •• ~ -· ., : A MAJOR REPORT ~ i ..,; ·:-.:.. _, j i... ...... .. .' J £70 q ... c a:s·:, >rse·- _....,. •e '~· SUBMITTED TO THE.. SCHOOL OF FORESTRY By DONALD N. ORKE •' IN: PARTIAL FULFILU1ENT OF THE REQUIREMENTS. FOR THE DEGREE OF MASTER OF SCIENCE OCTOBER, 1966 - .. ,,..\ ., ..- ./ ACKNOWLEDGEMENTS The author wishes to thank the School of Forestry . :-~~ ..·,. for providing the, financial assistance needed to conduct the study. Also, special thf.llks ·are due to Dr. Henry L. Hansen who provided help:f'ul advice in th• preparation of. this report • .. - ' TABLE OF CONTENTS INTRODUCTION ••••••••••••••••••••••••••••••••••••••••• 1 HISTORY OF THE ITASCA DEER HERD AND ITS EFFECTS ON THE VEGETATION ••••••••••••••••••••••••••• •••••••••• 2 LITERATURE REVIEW •••••••••••••••••••••••••••••••••••• 5 STUDY AREA ••••••••••••••••••••••••••••••••••••••••• • 11 METH<D.DS:i •••• . .. .. .. .. .. .. .. .. .. .•• 13 RESULTS BROWSE PREFERENCES ••••••••••••••••••••••••••• 17 BROWSING ON KONIFER SEEDLINGS •••••••••••••••• 40 DISCUSSION BROWSE PREFERENCES ••••••••••••••••••••••••••• 51 BROWSING ON CONIFER SEEDLINGS •• • • • • • • • • • • • • • .54 SUGGESTIONS FOR FUTURE STUDIES ••••••••••••••• 56 SUMMA.RY • •••••••••••••••••••••••••••••••••••••••••••• 5 7 LITERATURE CITED ••••••••••••••••••••••••••••••• a.• .. 59 APPENDIX •••••••••••••••••••••• e ••••••••••••••••••••• 61 ,-·. INTRODUCTION
    [Show full text]
  • Norsk Botanisk Forenings Tidsskrift Journal of the Norwegian Botanical Society
    NORSK BOTANISK FORENINGS TIDSSKRIFT JOURNAL OF THE NORWEGIAN BOTANICAL SOCIETY ÅRGANG 77 BLYTTIA ISSN 0006-5269 1/2019 http://www.nhm.uio.no/botanisk/nbf/blyttia/ I DETTE NUMMER: BLYTTIANORSK BOTANISK Nytt år, ny vår, nytt Blyttia. Et forhåpentligvis vel- FORENINGS balansert blad har funnet veien til dine hender. Som TIDSSKRIFT vanlig har vi en blanding av nyheter fra Norsk Botanisk Forenings arbeid og aktiviteter, inspirerende små biter «skoleringsstoff» og fire klassiske artikler i «Norges Redaktør: Jan Wesenberg. I redaksjonen: Leif Galten, Botaniske Annaler». Hanne Hegre, Klaus Høiland, Mats G Nettelbladt, Kristin Vigander. Denne gangen markerer vi professor Rolf Y. Berg, Postadresse: Blyttia, Naturhistorisk museum, postboks som døde i fjor, med en in- 1172 Blindern, NO-0318 Oslo. teressant artikkel om Bergs Telefon: 90888683 (redaktøren). forskning i grenselandet sys- Faks: Bromus s.lat. spp. tematikk/spredningsbiologi/ E-mail: [email protected]. anatomi. Se artikkel av Inger Hjemmeside: http://www.nhm.uio.no/botanisk/nbf/blyttia/. Nordal m.fl. på s. 35. Blyttia er grunnlagt i 1943, og har sitt navn etter to sentrale norske botanikere på 1800-tallet, Mathias Numsen Blytt (1789–1862) og Axel Blytt (1843–1898). En gjennomgang av situa- © Norsk Botanisk Forening. ISSN 0006-5269. sjonen med fremmedarter Sats: Blyttia-redaksjonen. i kystkommeunen Selje får Trykk og ferdiggjøring: ETN Porsgrunn. vi av Ingvild Austad og Leif Utsending: GREP Grenland AS. Hauge på s. 49. Både proble- Ettertrykk fra Blyttia er tillatt såfremt kilde oppgis. Ved marter kjent over mye av lan- ettertrykk av enkeltbilder og tegninger må det innhentes det og relative nykomlinger, tillatelse fra fotograf/tegner på forhånd.
    [Show full text]
  • Elderberry (Pdf)
    f BWSR Featured Plant Name : American Elderberry (Sambucus canadensis L.) Plant Family: Adoxaceae (Moschatel) American Elderberry is a shrub that is Statewide Wetland both beautiful and functional. Its showy Indicator Status: white flowers develop into black berries FACW that are used by a wide variety of birds and mammals. Carpenter and mason bees also use its stems for nesting and it provides pollen for a wide variety native bees, flies and beetles. Its ability to form dense stands in riparian areas makes it well suited to buffer planting and other The flat-topped shape of the flower head soil stabilization projects. is very distinctive photo by Dave Hanson The leaves are long and lace- Identification like in shape Photo by Dave This thicket-forming shrub can be identified by its unique flowers and berries. The Hanson stems are tall, erect, and arching. The newest branches are green in color and glabrous. Older branches are grayish-brown, and have warty-like lenticels. With age the branches become rougher. The leaves are pinnately compound and deciduous with elliptical or lance-like leaflets. Leaflet surfaces are dark green, slightly hairy, and have finely serrated margins. Bases of the leaves are rounded, while the tips abruptly come to a point. The stalks of the leaflets are green with a hairy channel running up the stalk. Numerous flat-topped flower heads appear and bloom from late June to early August. Flowers are white and have a very distinctive odor. The fruit, which is a round berry, ripens from July to August. Although the purple-black fruit is edible, it is slightly bitter.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Centranthus Ruber (L.) DC., RED VALERIAN. Perennial Herb, Several
    Centranthus ruber (L.) DC., RED VALERIAN. Perennial herb, several-stemmed at base, decumbent or ascending to erect, to 100+ cm tall; shoots arising from base relatively unbranched, with long internodes, with leaves appearing tufted at nodes having leaves on unexpanded axillary shoots, glabrous, glaucous. Stems: cylindric, to 10 mm diameter, fused bases of upper cauline leaves forming ledges across each node, somewhat woody; hollow, pith wide. Leaves: opposite decussate, simple, petiolate (lower leaves) and sessile (upper leaves), without stipules; petiole channeled, to 40 mm long, somewhat indistinct from blade, expanded at base; blade elliptic or lanceolate (typical cauline leaves) to ovate (cauline leaves subtending reproductive shoots), 30–200 × 20–70 mm, reduced on lateral branches, long-tapered at base, entire, acuminate (typical leaves) to tail-like (caudate, cauline leaves) at tip, pinnately veined with midrib raised on lower surface, bluish green. Inflorescence: panicle of cymes (thyrse), terminal (axillary), domed, 35−70 mm across, with 2 or more orders of opposite decussate lateral branching and many flowers in a somewhat dense cluster, the second and third order forks with a terminal flower, ultimate branchlets somewhat 1-sided, bracteate, essentially glabrous; central axis with several−10 nodes; bracts at the lowest node 2 (= 1 subtending each main branch), bases fused across node, leaflike, ovate, 3−4 mm long, midvein slightly raised on lower surface; first internode 10+ mm long, decreasing upward; bracts subtending lateral branches and larger branchlets oblong or narrowly triangular to narrowly spatulate, 1−3 mm long, bases fused across node, with some short glandular hairs on margins; bractlet subtending flower awl-shaped, 1−2 mm long increasing in fruit, usually abscised before fruit matures; pedicel absent.
    [Show full text]
  • Vegetable Gardening Vegetable Gardening
    TheThe AmericanAmerican GARDENERGARDENER® The Magazine of the American Horticultural Society January / February 2009 Vegetable Gardening tips for success New Plants and TTrendsrends for 2009 How to Prune Deciduous Shrubs Sweet Rewards of Indoor Citrus Confidence shows. Because a mistake can ruin an entire gardening season, passionate gardeners don’t like to take chances. That’s why there’s Osmocote® Smart-Release® Plant Food. It’s guaranteed not to burn when used as directed, and the granules don’t easily wash away, no matter how much you water. Better still, Osmocote feeds plants continuously and consistently for four full months, so you can garden with confidence. Maybe that’s why passionate gardeners have trusted Osmocote for 40 years. Looking for expert advice and answers to your gardening questions? Visit PlantersPlace.com — a fresh, new online gardening community. © 2007, Scotts-Sierra Horticulture Products Company. World rights reserved. www.osmocote.com contents Volume 88, Number 1 . January / February 2009 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM AHS Renee’s Garden sponsors 2009 Seed Exchange, Stanley Smith Horticultural Trust grant funds future library at River Farm, AHS welcomes new members to Board of Directors, save the date for the 17th annual National Children & Youth Garden Symposium in July. 42 ONE ON ONE WITH… Bonnie Harper-Lore, America’s roadside ecologist. page 14 44 GARDENER’S NOTEBOOK All-America Selections winners for 2009, scientists discover new plant hormone, NEW PLANTS AND TRENDS FOR 2009 BY DOREEN G. HOWARD 14 Massachusetts Horticultural Society forced Get a sneak peek at some of the exciting plants that will hit the to cancel one of market this year, along with expert insight on garden trends.
    [Show full text]
  • Centranthus Trinervis (Viv.) Bég
    CENTRANTHUS TRINERVIS - CBNC Centranthus trinervis (Viv.) Bég. Nom d’espèce ● Centranthus trinervis (Viv.) Bég. (+ synonymes) ● Centranthus nervosus Moris ● Valeriana trinervis Viv. Taxonomie ● Ordre : Dipsacales ● Famille : CAPRIFOLIACEAE Noms communs ● Français : Centrante trinervé Description ● Plante vivace, glabre et glauque, en touffes, à souche épaisse. Tiges de 20 à 40 cm, dressées, striées, creuses. Feuilles opposées, entières, oblongues-ovales, à plusieurs nervures divergentes. Inflorescence en panicule corymbiforme. Fleurs à corolle petite (2 à 5 mm), blanche à rosée, à éperon très petit, réduit à une bosse plus courte que l'ovaire. Fruits de 2-3 mm, glabres, surmontés de soies plumeuses. ● Type biologique : Hémicryptophyte. Photos 1 CENTRANTHUS TRINERVIS - CBNC Biologie ● Période de floraison : avril-juin. ● Période de fructification : mai-juin. ● Pollinisation : par les insectes. ● Stratégie de dispersion : Les semences sont disséminées par le vent (anémochorie) grâce aux pappus plumeux présents sur les fruits. N éanmoins, certains akènes n’en possèdent pas, la dissémination se fait alors à proximité ou en contrebas des pieds- mères (barochorie). Ecologie ● Etage de végétation : thermoméditerranéen ● Milieu : La plante croit dans les fissures et sur les replats de falaises granitiques très abruptes, en exposition nord-est et nord- ouest, entre 150 et 200 m d’altitude. ● Habitat : 8220.20 : Falaises siliceuses thermophiles de Corse. ● Substrat : Granite Photos d’habitat 2 CENTRANTHUS TRINERVIS - CBNC 3 CENTRANTHUS TRINERVIS - CBNC Distribution L’espèce est endémique stricte de Corse. Les populations sardes, historiquement rattachées à C. trinervis, sont bien séparées géographiquement et écologiquement et ont été individualisées sous l'appellation Centranthus amazonum Fridl. (A. Fridlender, A. Raynal-Roques, 1998). Ce taxon est extrêmement localisé, puisque la totalité de la population connue se résume à une seule station comprenant de 100 à 145 individus, implantés sur les falaises granitiques du Massif de la Trinité (commune de Bonifacio).
    [Show full text]
  • (Betula Papyrifera) / Diervilla Lonicera Trembling Aspen (Paper Birch) / Northern Bush-Honeysuckle Peuplier Faux-Tremble (Bouleau À Papier) / Dièreville Chèvrefeuille
    Forest / Forêt Association CNVC 00238 Populus tremuloides (Betula papyrifera) / Diervilla lonicera Trembling Aspen (Paper Birch) / Northern Bush-honeysuckle Peuplier faux-tremble (Bouleau à papier) / Dièreville chèvrefeuille Subassociations: 238a typic, 238b Alnus viridis, 238c Kalmia angustifolia CNVC Alliance: CA00014 Betula papyrifera – Populus tremuloides – Abies balsamea / Clintonia borealis CNVC Group: CG0007 Ontario-Quebec Boreal Mesic Paper Birch – Balsam Fir – Trembling Aspen Forest Type Description Concept: CNVC00238 is a boreal hardwood forest Association that ranges from Manitoba to Quebec. It has a closed canopy dominated by trembling aspen ( Populus tremuloides ), usually with paper birch ( Betula papyrifera ), overtopping a well-developed to dense shrub layer. The shrub layer includes a mix of regenerating tree species, primarily trembling aspen, balsam fir ( Abies balsamea ), paper birch and black spruce ( Picea mariana ), as well as low shrub species, such as velvet-leaved blueberry ( Vaccinium myrtilloides ), northern bush-honeysuckle ( Diervilla lonicera ) and early lowbush blueberry ( V. angustifolium ). The herb layer is well developed and typically includes bunchberry (Cornus canadensis ), wild lily-of-the-valley ( Maianthemum canadense ), wild sarsaparilla ( Aralia nudicaulis ), yellow clintonia ( Clintonia borealis ), twinflower ( Linnaea borealis ) and northern starflower Source: Natural Resources Canada - (Lysimachia borealis ). The forest floor cover is mainly broad-leaf litter so the moss layer is Canadian Forest Service sparse, with only minor cover of red-stemmed feathermoss ( Pleurozium schreberi) . CNVC00238 is an early seral condition that typically establishes after fire or harvesting. It occurs in a region with a continental boreal climate that grades from subhumid in the west to humid in the east and is usually found on mesic, nutrient-medium sites.
    [Show full text]