Contributions to the Solution of Phylogenetic Problem in Fabales
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Department of Planning and Zoning
Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only -
Middle to Late Paleocene Leguminosae Fruits and Leaves from Colombia
AUTHORS’ PAGE PROOFS: NOT FOR CIRCULATION CSIRO PUBLISHING Australian Systematic Botany https://doi.org/10.1071/SB19001 Middle to Late Paleocene Leguminosae fruits and leaves from Colombia Fabiany Herrera A,B,D, Mónica R. Carvalho B, Scott L. Wing C, Carlos Jaramillo B and Patrick S. Herendeen A AChicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA. BSmithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá. CDepartment of Paleobiology, NHB121, PO Box 37012, Smithsonian Institution, Washington, DC 20013, USA. DCorresponding author. Email: [email protected] Abstract. Leguminosae are one of the most diverse flowering-plant groups today, but the evolutionary history of the family remains obscure because of the scarce early fossil record, particularly from lowland tropics. Here, we report ~500 compression or impression specimens with distinctive legume features collected from the Cerrejón and Bogotá Formations, Middle to Late Paleocene of Colombia. The specimens were segregated into eight fruit and six leaf 5 morphotypes. Two bipinnate leaf morphotypes are confidently placed in the Caesalpinioideae and are the earliest record of this subfamily. Two of the fruit morphotypes are placed in the Detarioideae and Dialioideae. All other fruit and leaf morphotypes show similarities with more than one subfamily or their affinities remain uncertain. The abundant fossil fruits and leaves described here show that Leguminosae was the most important component of the earliest rainforests in northern South America c. 60–58 million years ago. Additional keywords: diversity, Fabaceae, fossil plants, legumes, Neotropics, South America. Received 10 January 2019, accepted 5 April 2019, published online dd mmm yyyy Introduction dates for the crown clades ranging from the Cretaceous to the – Leguminosae, the third-largest family of flowering plants with Early Paleogene, c. -
Tree and Shrub Tolerance to De-Icing Salt Spray
Michigan State University Extension Home Horticulture - 03900109 01/01/96 TREE AND SHRUB TOLERANCE TO DE-ICING SALT SPRAY Over the past 10 to 15 years, trees and shrubs along major highways in Michigan and other northern states have shown dessication injuries. The damage varies with variety - those plants with sticky, pubescent, or sunken buds appear to be somewhat more tolerant than those plants with smooth, exposed buds. Tolerance to dessication can be attributed to a number of things -- for example, the tolerant evergreens may be protected from injury due to a thick coating of wax on their needles. It is much more difficult to characterize the tolerance nature of deciduous species, as Various deciduous species exhibit a malformation of growth like a witch's broom when injured. The cause of this injury is the salt spray that splashes or drifts onto roadside trees following highway de-icing operations. Damage is most prominent in urban areas and seems to be linked to more frequent salt applications and to traffic density. The symptoms are most pronounced on sensitive plants close to the highway, but have been observed some 250 feet down wind of the traffic. Sensitive plants may exhibit injury to a height of 20 to 25 feet, although lower branches protected by snow may escape injury. Depending upon the snow cover, a zone of injury may extend from three to eight feet above the ground to a height of 20 to 25 feet. Following is a summary of the average salt spray tolerances of various plants bordering selected Michigan highways. -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Natural Communities of Louisiana Calcareous Forest
Natural Communities of Louisiana Calcareous Forest Rarity Rank: S2/G2?Q Synonyms: Calcareous Hardwood Forest, Dry Calcareous Woodland, Blackland Hardwood Forest, Upland Hardwood Forest, Circum-Neutral Forest Ecological Systems: CES203.379 West Gulf Coastal Plain Southern Calcareous Prairie CES203.378 West Gulf Coastal Plain Pine-Hardwood Forest General Description: Occurs on calcareous substrata in the uplands of central, western and northwest Louisiana Found on hills and slopes on either side of small creeks, at times in a mosaic with calcareous prairies Associated with four geological formations: o Fleming Formation (Tertiary-Miocene) in central-western LA o Jackson Formation (Tertiary-Eocene) in central LA o Cook Mountain Formation (Tertiary-Eocene) in central and western LA o Pleistocene Red River terraces in northwest LA Soils are stiff calcareous clays, not quite as alkaline as in associated calcareous prairies (surface pH ~ 6.5-7.5), with very high shrink-swell characteristics Trees, especially pines, are often stunted and/or crooked due to extreme physical soil properties Highly diverse flora in all strata (overstory, midstory, and herbaceous layer) Fire is thought to have played a role in community structure, tree density and ground cover composition Plant Community Associates Characteristic overstory tree species include: Quercus stellata (post oak, often dominant), Q. shumardii (Shumard oak), Q. alba (white oak), Q. muhlenbergii (chinkapin oak), Q. oglethorpensis (Oglethorp oak, rare), Q. sinuata var. sinuata (Durand oak, rare), Carya myristiciformis (nutmeg hickory), C. ovata (shagbark hickory), C. tomentosa (mockernut hickory), Pinus echinata (shortleaf pine), P. taeda (loblolly pine), Fraxinus americana (white ash), Diospyros virginiana (persimmon), Liquidambar styraciflua (sweetgum), Celtis spp. -
Ceratonia Siliqua Fabaceae
Ceratonia siliqua L. Fabaceae - Caesalpinioideae locust bean, chocar, carob tree LOCAL NAMES Arabic (al-kharoubah,kharrub); Catalan (garrover,garrofer); English (St. John’s bread,locust bean,carob tree,carob bean); French (caroubier); German (karubenßaum,johannisbrotßaum); Greek (charaoupi); Hindi (kharnub); Italian (carrubo); Malay (gelenggang); Mandarin (chiao-tou- shu); Portuguese (alfarrobeira); Spanish (garrover,algarrobo,garrofero); Thai (chum het tai); Trade name (carob tree,locust bean,chocar); Turkish (charnup) BOTANIC DESCRIPTION Dead branches are the result of feeding by Ceratonia siliqua is an evergreen shrub or tree up to 10 m high, crown rats. (William M. Ciesla, Forest Health broad semi-spherical, thick trunk, brown rough bark and sturdy branches. Management International, www.forestryimages.org) Leaves 10-20 cm long, alternate, pinnate, with or without a terminal leaflet. Leaflets 3-7 cm long, ovate to elliptic, 4-10 normally opposite pairs, coriaceous, dark green and shiny above, pale green beneath finely veined with margins slightly ondulate, tiny stipules. Flowers green-tinted red, small, numerous, 6-12 mm long, spirally arranged along the inflorescence axis in catkin-like racemes borne on spurs from old wood and even on the trunk (cauliflory). Pentamerous symmetry with calyx but not corolla placed on a short pedicel. Calyx disc- shaped, reddish-green, bears nectaries. Females consist of a pistil (6-8.5 C. siliqua is widely cultivated in traditional mm) on a disk and rudimentary stamens, 5 hairy sepals. Males consist of Olive-Apricot-Fig-pasture agroforestry a nectarial disk, 5 stamens with delicate filaments hairy sepals. In the systems throughout the Mediterranean. centre of the disk there is a rudimentary pistil. -
Cercidiphyllum Japonicum - Katsuratree (Cercidiphyllaceae) ------Cercidiphyllum Japonicum Is a Graceful, Elegant, Flowers Though Variable Species of Shade Trees
Cercidiphyllum japonicum - Katsuratree (Cercidiphyllaceae) ---------------------------------------------------------------------------------------------------- Cercidiphyllum japonicum is a graceful, elegant, Flowers though variable species of shade trees. Katsuratree is -dioecious (male and female trees) characterized by blue-green foliage and, in the best of -not ornamental specimens, a yellow to scarlet color in autumn. -Mar.-Apr. -flowers on older wood FEATURES Fruits Form -pod, 0.5-0.75" long -medium-sized tree, up to 40- -not ornamental 60' tall x 35-60' wide, but Twigs generally not much taller than -reddish brown and slender 40' -swollen at the nodes -narrow when young, -buds are red and resemble a crab's pincer claws spreading with age Trunk -branches droop as the tree -showy grows -grayish brown -female trees spreading, -slightly shaggy males more upright -symmetrical form either oval or pyramidal USAGE -medium to fast rate of growth Function -long-lived -may be a street tree in suburban areas, not -often multi-stemmed, but can be easily trained into a particularly tolerant of dry soils in more urban sites single trunk form -small lawn tree or near large buildings Culture -shade tree -full sun to partial shade; probably performs best in Texture light shade -medium texture overall in foliage and when bare -tolerant of a broad range of soil conditions but does -moderate to high density best in moist soils Assets -does poorly in dry areas -graceful form -has a reputation for being difficult to transplant and -bluish foliage slow -
Recchia Sessiliflora (Surianaceae Arn.), Una Especie Nueva De La Cuenca Del Balsas En El Estado De Guerrero, México
Acta Botanica Mexicana 108: 1-9 (2014) RECCHIA SESSILIFLORA (SURIANACEAE ARN.), UNA ESPECIE NUEVA DE LA CUENCA DEL BALSAS EN EL ESTADO DE GUERRERO, MÉXICO ANDRÉS GONZÁLEZ-MURILLO¹, RamIRO CRUZ-DURÁN²,³ Y JAIME JIMÉNEZ-RamÍREZ² ¹Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Ecología, Delegación Coyoacán, 04510 México, D.F., México. ²Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Comparada, Delegación Coyoacán, 04510 México, D.F., México. ³Autor para la correspondencia: [email protected] RESUMEN Se describe e ilustra a Recchia sessiliflora (Surianaceae Arn.), una especie nueva de la Cuenca del río Balsas en el estado de Guerrero, México. El nuevo taxon es afín a Recchia connaroides (Loes. & Soler) Standl., pero difiere de ella por tener folíolos más pequeños, que aumentan de tamaño hacia el ápice de la hoja, elípticos a suborbiculares, el raquis con alas evidentes, las inflorescencias en espiga y los pétalos oblanceolados con el ápice irregularmente emarginado. Esta especie se conoce hasta ahora solo de la localidad tipo, creciendo en bosque tropical caducifolio. Se presenta una comparación de las características de las especies afines, un mapa de distribución y una clave dicotómica para el reconocimiento de las especies conocidas del género Recchia Moc. & Sessé ex DC. Palabras clave: Cuenca del río Balsas, Guerrero, México, Recchia, Simaroubaceae, Surianaceae. ABSTRACT A new species from the Balsas Depression in the state of Guerrero, Mexico, Recchia sessiliflora (Surianaceae Arn.), is described and illustrated. This new species is similar to Recchia connaroides (Loes. & Soler) Standl., differing from the latter in having smaller, elliptic to suborbicular leaflets which increase in size towards the apex of the leaf, a rachis which is clearly winged, a spicate inflorescence and flowers with oblanceolate and irregularly 1 Acta Botanica Mexicana 108: 1-9 (2014) emarginate petals. -
Characteristics of the Stem-Leaf Transitional Zone in Some Species of Caesalpinioideae (Leguminosae)
Turk J Bot 31 (2007) 297-310 © TÜB‹TAK Research Article Characteristics of the Stem-Leaf Transitional Zone in Some Species of Caesalpinioideae (Leguminosae) Abdel Samai Moustafa SHAHEEN Botany Department, Aswan Faculty of Science, South Valley University - EGYPT Received: 14.02.2006 Accepted: 15.02.2007 Abstract: The vascular supply of the proximal, middle, and distal parts of the petiole were studied in 11 caesalpinioid species with the aim of documenting any changes in vascular anatomy that occurred within and between the petioles. The characters that proved to be taxonomically useful include vascular trace shape, pericyclic fibre forms, number of abaxial and adaxial vascular bundles, number and relative position of secondary vascular bundles, accessory vascular bundle status, the tendency of abaxial vascular bundles to divide, distribution of sclerenchyma, distribution of cluster crystals, and type of petiole trichomes. There is variation between studied species in the number of abaxial, adaxial, and secondary bundles, as seen in transection of the petiole. There are also differences between leaf trace structure of the proximal, middle, and distal regions of the petioles within each examined species. Senna italica Mill. and Bauhinia variegata L. show an abnormality in their leaf trace structure, having accessory bundles (concentric bundles) in the core of the trace. This study supports the moving of Ceratonia L. from the tribe Cassieae to the tribe Detarieae. Most of the characters give valuable taxonomic evidence reliable for delimiting the species investigated (especially between Cassia L. and Senna (Cav.) H.S.Irwin & Barneby) at the generic and specific levels, as well as their phylogenetic relationships. -
Cercis Canadensis: Eastern Redbud1 Edward F
ENH304 Cercis canadensis: Eastern Redbud1 Edward F. Gilman, Dennis G. Watson, Ryan W. Klein, Andrew K. Koeser, Deborah R. Hilbert, and Drew C. McLean2 Introduction The state tree of Oklahoma, Eastern Redbud is a moderate to rapid-grower when young, reaching a height of 20 to 30 feet. Thirty-year-old specimens are rare, but they can reach 35 feet in height forming a rounded vase. Trees of this size are often found on moist sites. The splendid purple-pink flowers appear all over the tree in spring, just before the leaves emerge. Eastern Redbud has an irregular growth habit when young but forms a graceful flat-topped vase- shape as it gets older. The tree usually branches low on the trunk, and if left intact forms a graceful multitrunked habit. Be sure to avoid weak forks by pruning to reduce the size of lateral branches and save those which form a `U’-shaped crotch, not a `V’. Keep them less than half the diameter of the main trunk to increase longevity of the tree. Do not allow multiple trunks to grow with tight crotches, instead space branches about 6 to 10 inches apart along a main trunk. Yellow (although somewhat variable and unreliable) fall color and tolerance to partial shade make this a suitable, attractive tree for understory or specimen planting. Best not Figure 1. Full Form—Cercis canadensis: Eastern redbud used extensively as a street tree due to low disease resistance and short life, but is nice in commercial and residential General Information landscapes. Plant in a shrub border for a spring and fall Scientific name: Cercis canadensis color display. -
Ecology Assessment Report
Final Report R3 Ecological Assessment Report (flora) Lot 22 WV1510 November 2012 Origin Energy Document Number: Q-4200-15-RP-1025 flora ecological assess ment – Lot 22 WV1510 ecosure.com.au i Table of Contents Table of Contents .............................................................................................................................................. ii Glossary ............................................................................................................................................................... iii 1 Introduction ............................................................................................................................................... 4 1.1 Purpose and Scope ................................................................................................................... 4 1.2 Limitations .................................................................................................................................... 4 2 Site Context ............................................................................................................................................... 5 3 Methodology ............................................................................................................................................ 6 3.1 Assessment Personnel ................................................................................................................ 6 3.2 Study Area .................................................................................................................................. -
Light Intensity and Type of Container on Producing Cassia Grandis L. F
ISSN 1807-1929 Revista Brasileira de Engenharia Agrícola e Ambiental v.19, n.10, p.939–945, 2015 Campina Grande, PB, UAEA/UFCG – http://www.agriambi.com.br DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v19n10p939-945 Light intensity and type of container on producing Cassia grandis L. f. seedlings Caio C. P. Leal1, Salvador B. Torres2, Rômulo M. O. de Freitas3, Narjara W. Nogueira1 & Raul M. de Farias4 1 Programa de Pós-Graduação em Fitotecnia/Universidade Federal Rural do Semi-Árido. Mossoró, RN. E-mail: [email protected]; [email protected] 2 Departamento de Ciências Vegetais/Universidade Federal Rural do Semi-Árido. Mossoró, RN. E-mail: [email protected] (Autor correspondente) 3 Instituto Federal de Educação, Ciência e Tecnologia Baiano. Valencia, BA. E-mail: [email protected] 4 RM Agrícola/Biolchim do Brasil Imp. e Com. Ltda. São Paulo, SP. E-mail: [email protected] Key words: A B S T R A C T pink shower cassia This study aimed to determine the effects of the luminosity and type of container on producing forest species Cassia grandis seedlings. Thus, in a substrate composed by topsoil + wood powder (1:1) the 3 forest species seeds seedlings were grown into plastic tubets containing 0.3 dm of such substrate, or into plastic pots containing 1.0 dm3 of the same substrate, and subjected to 50 and 25% shading or full seedling growth sunlight. The assessments were performed every two weeks by measuring plant height and shading stem diameter, during eight weeks period. At the end of this period, the leaf area, dry mass of shoots and roots, the ratio between height of plant/diameter of stem, and the Dickson quality index were also assessed.