The Origin and Early Evolution of the Legumes Are a Complex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multiple Polyploidy Events in the Early Radiation of Nodulating And
Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes Steven B. Cannon,*,y,1 Michael R. McKain,y,2,3 Alex Harkess,y,2 Matthew N. Nelson,4,5 Sudhansu Dash,6 Michael K. Deyholos,7 Yanhui Peng,8 Blake Joyce,8 Charles N. Stewart Jr,8 Megan Rolf,3 Toni Kutchan,3 Xuemei Tan,9 Cui Chen,9 Yong Zhang,9 Eric Carpenter,7 Gane Ka-Shu Wong,7,9,10 Jeff J. Doyle,11 and Jim Leebens-Mack2 1USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 2Department of Plant Biology, University of Georgia 3Donald Danforth Plant Sciences Center, St Louis, MO 4The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia 5The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia 6Virtual Reality Application Center, Iowa State University 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 8Department of Plant Sciences, The University of Tennessee Downloaded from 9BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China 10Department of Medicine, University of Alberta, Edmonton, AB, Canada 11L. H. Bailey Hortorium, Department of Plant Biology, Cornell University yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]. http://mbe.oxfordjournals.org/ Associate editor:BrandonGaut Abstract Unresolved questions about evolution of the large and diverselegumefamilyincludethetiming of polyploidy (whole- genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. -
Archaea, Bacteria and Termite, Nitrogen Fixation and Sustainable Plants Production
Sun W et al . (2021) Notulae Botanicae Horti Agrobotanici Cluj-Napoca Volume 49, Issue 2, Article number 12172 Notulae Botanicae Horti AcademicPres DOI:10.15835/nbha49212172 Agrobotanici Cluj-Napoca Re view Article Archaea, bacteria and termite, nitrogen fixation and sustainable plants production Wenli SUN 1a , Mohamad H. SHAHRAJABIAN 1a , Qi CHENG 1,2 * 1Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081, China; [email protected] ; [email protected] 2Hebei Agricultural University, College of Life Sciences, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei 071000, China; [email protected] (*corresponding author) a,b These authors contributed equally to the work Abstract Certain bacteria and archaea are responsible for biological nitrogen fixation. Metabolic pathways usually are common between archaea and bacteria. Diazotrophs are categorized into two main groups namely: root- nodule bacteria and plant growth-promoting rhizobacteria. Diazotrophs include free living bacteria, such as Azospirillum , Cupriavidus , and some sulfate reducing bacteria, and symbiotic diazotrophs such Rhizobium and Frankia . Three types of nitrogenase are iron and molybdenum (Fe/Mo), iron and vanadium (Fe/V) or iron only (Fe). The Mo-nitrogenase have a higher specific activity which is expressed better when Molybdenum is available. The best hosts for Rhizobium legumiosarum are Pisum , Vicia , Lathyrus and Lens ; Trifolium for Rhizobium trifolii ; Phaseolus vulgaris , Prunus angustifolia for Rhizobium phaseoli ; Medicago, Melilotus and Trigonella for Rhizobium meliloti ; Lupinus and Ornithopus for Lupini, and Glycine max for Rhizobium japonicum . Termites have significant key role in soil ecology, transporting and mixing soil. Termite gut microbes supply the enzymes required to degrade plant polymers, synthesize amino acids, recycle nitrogenous waste and fix atmospheric nitrogen. -
Whole Genome and Segmental Duplications Underlie Glutamine Synthetase and Phosphoenolpyruvate Carboxylase Diversity in Narrow-Leafed Lupin (Lupinus Angustifolius L.)
International Journal of Molecular Sciences Article A Tale of Two Families: Whole Genome and Segmental Duplications Underlie Glutamine Synthetase and Phosphoenolpyruvate Carboxylase Diversity in Narrow-Leafed Lupin (Lupinus angustifolius L.) Katarzyna B. Czy˙z 1,* , Michał Ksi ˛a˙zkiewicz 2 , Grzegorz Koczyk 1 , Anna Szczepaniak 2, Jan Podkowi ´nski 3 and Barbara Naganowska 2 1 Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; [email protected] 2 Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; [email protected] (M.K.); [email protected] (B.N.) 3 Department of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland * Correspondence: [email protected] Received: 17 February 2020; Accepted: 6 April 2020; Published: 8 April 2020 Abstract: Narrow-leafed lupin (Lupinus angustifolius L.) has recently been supplied with advanced genomic resources and, as such, has become a well-known model for molecular evolutionary studies within the legume family—a group of plants able to fix nitrogen from the atmosphere. The phylogenetic position of lupins in Papilionoideae and their evolutionary distance to other higher plants facilitates the use of this model species to improve our knowledge on genes involved in nitrogen assimilation and primary metabolism, providing novel contributions to our understanding of the evolutionary history of legumes. In this study, we present a complex characterization of two narrow-leafed lupin gene families—glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC). We combine a comparative analysis of gene structures and a synteny-based approach with phylogenetic reconstruction and reconciliation of the gene family and species history in order to examine events underlying the extant diversity of both families. -
Middle to Late Paleocene Leguminosae Fruits and Leaves from Colombia
AUTHORS’ PAGE PROOFS: NOT FOR CIRCULATION CSIRO PUBLISHING Australian Systematic Botany https://doi.org/10.1071/SB19001 Middle to Late Paleocene Leguminosae fruits and leaves from Colombia Fabiany Herrera A,B,D, Mónica R. Carvalho B, Scott L. Wing C, Carlos Jaramillo B and Patrick S. Herendeen A AChicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA. BSmithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá. CDepartment of Paleobiology, NHB121, PO Box 37012, Smithsonian Institution, Washington, DC 20013, USA. DCorresponding author. Email: [email protected] Abstract. Leguminosae are one of the most diverse flowering-plant groups today, but the evolutionary history of the family remains obscure because of the scarce early fossil record, particularly from lowland tropics. Here, we report ~500 compression or impression specimens with distinctive legume features collected from the Cerrejón and Bogotá Formations, Middle to Late Paleocene of Colombia. The specimens were segregated into eight fruit and six leaf 5 morphotypes. Two bipinnate leaf morphotypes are confidently placed in the Caesalpinioideae and are the earliest record of this subfamily. Two of the fruit morphotypes are placed in the Detarioideae and Dialioideae. All other fruit and leaf morphotypes show similarities with more than one subfamily or their affinities remain uncertain. The abundant fossil fruits and leaves described here show that Leguminosae was the most important component of the earliest rainforests in northern South America c. 60–58 million years ago. Additional keywords: diversity, Fabaceae, fossil plants, legumes, Neotropics, South America. Received 10 January 2019, accepted 5 April 2019, published online dd mmm yyyy Introduction dates for the crown clades ranging from the Cretaceous to the – Leguminosae, the third-largest family of flowering plants with Early Paleogene, c. -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Plant Species List for Bob Janes Preserve
Plant Species List for Bob Janes Preserve Scientific and Common names obtained from Wunderlin 2013 Scientific Name Common Name Status EPPC FDA IRC FNAI Family: Azollaceae (mosquito fern) Azolla caroliniana mosquito fern native R Family: Blechnaceae (mid-sorus fern) Blechnum serrulatum swamp fern native Woodwardia virginica Virginia chain fern native R Family: Dennstaedtiaceae (cuplet fern) Pteridium aquilinum braken fern native Family: Nephrolepidaceae (sword fern) Nephrolepis cordifolia tuberous sword fern exotic II Nephrolepis exaltata wild Boston fern native Family: Ophioglossaceae (adder's-tongue) Ophioglossum palmatum hand fern native E I G4/S2 Family: Osmundaceae (royal fern) Osmunda cinnamomea cinnamon fern native CE R Osmunda regalis royal fern native CE R Family: Polypodiaceae (polypody) Campyloneurum phyllitidis long strap fern native Phlebodium aureum golden polypody native Pleopeltis polypodioides resurrection fern native Family: Psilotaceae (whisk-fern) Psilotum nudum whisk-fern native Family: Pteridaceae (brake fern) Acrostichum danaeifolium giant leather fern native Pteris vittata China ladder break exotic II Family: Salviniaceae (floating fern) Salvinia minima water spangles exotic I Family: Schizaeaceae (curly-grass) Lygodium japonicum Japanese climbing fern exotic I Lygodium microphyllum small-leaf climbing fern exotic I Family: Thelypteridaceae (marsh fern) Thelypteris interrupta hottentot fern native Thelypteris kunthii widespread maiden fern native Thelypteris palustris var. pubescens marsh fern native R Family: Vittariaceae -
Dry Forest Trees of Madagascar
The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats. -
Contributions to the Solution of Phylogenetic Problem in Fabales
Research Article Bartın University International Journal of Natural and Applied Sciences Araştırma Makalesi JONAS, 2(2): 195-206 e-ISSN: 2667-5048 31 Aralık/December, 2019 CONTRIBUTIONS TO THE SOLUTION OF PHYLOGENETIC PROBLEM IN FABALES Deniz Aygören Uluer1*, Rahma Alshamrani 2 1 Ahi Evran University, Cicekdagi Vocational College, Department of Plant and Animal Production, 40700 Cicekdagi, KIRŞEHIR 2 King Abdulaziz University, Department of Biological Sciences, 21589, JEDDAH Abstract Fabales is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae), Polygalaceae, Surianaceae and Quillajaceae. The monophyly of the order is supported strongly by several studies, although interfamilial relationships are still poorly resolved and vary between studies; a situation common in higher level phylogenetic studies of ancient, rapid radiations. In this study, we carried out simulation analyses with previously published matK and rbcL regions. The results of our simulation analyses have shown that Fabales phylogeny can be solved and the 5,000 bp fast-evolving data type may be sufficient to resolve the Fabales phylogeny question. In our simulation analyses, while support increased as the sequence length did (up until a certain point), resolution showed mixed results. Interestingly, the accuracy of the phylogenetic trees did not improve with the increase in sequence length. Therefore, this study sounds a note of caution, with respect to interpreting the results of the “more data” approach, because the results have shown that large datasets can easily support an arbitrary root of Fabales. Keywords: Data type, Fabales, phylogeny, sequence length, simulation. 1. Introduction Fabales Bromhead is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae) Juss., Polygalaceae Hoffmanns. -
Insects in Amber
Annu. Rev. Entomol. 1993.46:145-59 Copyright © 1993 by Annual Reviews Inc. All righis reserved INSECTS IN AMBER George O. Poinar, Jr. Department of Entomological Sciences, University of California, Berkeley, California 94720 KEY WORDS: fossil insects, tissue preservation, paleoentomology, paleosymbiosis, paleoen vironments Introduction Aside from their beauty, insects in amber represent the finest fossil remains of the Insecta and offer numerous opportunities to study microevolution, biogeography, mimicry, behavior, environmental reconstruction, extinction, paleosymbiosis, and molecular phylogeny. Amberization (changes involved in the process of forming amber from fresh resin) is a gentle process inducive to the preservation of insects that are small, delicate, and soft-bodied. It is the most complete type of fossilization known for insects, and by preserving the three-dimensional form, color pattern, and minute details of the exoskeleton, such fossils can be easily compared with their extant descendants. The study of amber insects was initiated over 200 years ago with the fIrst investigation of the Baltic amber fauna and flora (10). Indeed, most of the descriptions of amber insects today pertain to Baltic deposits. However, in the past 50 years, workers have begun to explore additional amber deposits. These are listed in Table 1. Access provided by Oregon State University on 12/22/16. For personal use only. The oldest amber deposits containing insects are from the Middle East and Annu. Rev. Entomol. 1993.38:145-159. Downloaded from www.annualreviews.org are commonly known as Lebanese amber. They date from the Early Cretaceous and extend back 135 million years. In the past 20 years, attention has centered on the highly fossiliferous Tertiary amber deposits in the Dominican Republic, which are fairly extensive and provide a steady income for Dominican workers primarily through sale for use as jewelry. -
Fossil Species of Boehmerieae Gaudich. (Urticaceae)
Botany Fossil species of Boehmerieae Gaudich. (Urticaceae) in Dominican and Mexican amber: A new genus (Ekrixanthera) and two new species with anemophilous pollination by explosive pollen release, and possible lepidopteran herbivory Journal: Botany Manuscript ID cjb-2016-0006.R2 Manuscript Type: Article Date Submitted by the Author: 04-May-2016Draft Complete List of Authors: Poinar, Jr., George; Oregon State University, Department of Integrative Biology Kevan, Peter; Environmental Biology Jackes, Betsy; James Cook University palaeobotany, anemophily, Ekrixanthera hispaniolae, Ekrixanthera ehecatli, Keyword: paleoecology https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 31 Botany Fossil species in Boehmerieae Gaudich. (Urticaceae) in Dominican and Mexican amber: A new genus ( Ekrixanthera ) and two new species with anemophilous pollination by explosive pollen release, and possible lepidopteran herbivory GEORGE POINAR, JR. 1 PETER G. KEVAN 2 AND BETSY R. JACKES 3 1Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331 USA 2School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada 3College of Marine and Environmental DraftSciences, James Cook University, Townsville, QLD 4811, Australia Corresponding Author: Peter G. Kevan [email protected] Received; revised; accepted for publication Running title: Fossil species of Boehmerieae (Ekrixanthera gen. nov.) https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 31 ABSTRACT The first fossil flowers of Neotropical Urticaceae (Boehmerieae) are described from the Dominican Republic and Mexico as belonging to a new genus, Ekrixanthera . Ekrixanthera hispaniolae sp. nov. from Dominican amber has pentamerous staminate flowers on short pedicels with a pilose pistillode and heteromorphic pilose tepals, two are clavate and three linear. Ekrixanthera ehecatli sp. nov. -
Cheniella Gen. Nov. (Leguminosae: Cercidoideae) from Southern China, Indochina and Malesia
© European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 360: 1–37 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.360 www.europeanjournaloftaxonomy.eu 2017 · Clark R.P. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Cheniella gen. nov. (Leguminosae: Cercidoideae) from southern China, Indochina and Malesia Ruth P. CLARK 1,*, Barbara A. MACKINDER 1,2 & Hannah BANKS 3 1,3 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK. 2 Royal Botanic Garden, Edinburgh, 20A Inverleith Row, EH3 5LR, UK. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] Abstract. For much of the last thirty years, the caesalpinioid genus Bauhinia has been recognised by numerous authors as a broadly circumscribed, ecologically, morphologically and palynologically diverse pantropical taxon, comprising several subgenera. One of these, Bauhinia subg. Phanera has recently been reinstated at generic rank based on a synthesis of morphological and molecular data. Nevertheless, there remains considerable diversity within Phanera. Following a review of palynological and molecular studies of Phanera in conjunction with a careful re-examination of the morphological heterogeneity within the genus, we have found strong evidence that the species of Phanera subsect. Corymbosae are a natural group that warrant generic status. We describe here the genus Cheniella R.Clark & Mackinder gen. nov. to accommodate them. It comprises 10 species and 3 subspecies, one newly described here. Generic characters include leaves that are simple and emarginate or bilobed; fl owers with elongate hypanthia which are as long as or much longer than the sepals; pods that are glabrous, compressed, oblong, indehiscent or tardily dehiscent; and with numerous seeds, the seeds bearing an unusually long funicle extending most of the way around their circumference. -
Of the Proposed Vhembe-Dongola National Park, Limpopo Province, South Africa
gotze.qxd 2005/12/09 10:52 Page 45 Analysis of the riparian vegetation (Ia land type) of the proposed Vhembe-Dongola National Park, Limpopo Province, South Africa A.R. GÖTZE, S.S. CILLIERS, H. BEZUIDENHOUT and K. KELLNER A.R. Götze, S.S. Cilliers, H. Bezuidenhout and K. Kellner. 2003. Analysis of the ripar- ian vegetation (Ia land type) of the proposed Vhembe-Dongola National Park, Limpopo Province, South Africa. Koedoe 46(2): 45-64. Pretoria. ISSN 0075-6458. The establishment of the Vhembe-Dongola National Park has been an objective of sev- eral conservationists for many years. The ultimate objective is that this park would become a major component of a transfrontier park shared by Botswana, Zimbabwe and South Africa. The aim of this study was to identify, classify and describe the plant com- munities present in the Ia land type of the proposed area for the park. Sampling was done by means of the Braun-Blanquet method. A total of 70 stratified random relevés were sampled in the Ia land type. All relevé data was imported into the database TUR- BOVEG after which the numerical classification technique TWINSPAN was used as a first approximation. Subsequently Braun-Blanquet procedures were used to refine data and a phytosociological table was constructed, using the visual editor, MEGATAB. From the phytosociological table four plant communities were identified and described in the Ia land type. The ordination algorithm, DECORANA, was applied to the floristic data in order to illustrate floristic relationships between plant communities, to detect possible gradients in and between communities and to detect possible habitat gradients and/or disturbance gradients associated with vegetation gradients.