A Global Analysis of Song Frequency in Passerines Provides No Support for the Acoustic

Total Page:16

File Type:pdf, Size:1020Kb

A Global Analysis of Song Frequency in Passerines Provides No Support for the Acoustic bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179812; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A global analysis of song frequency in passerines provides no support for the acoustic 2 adaptation hypothesis but suggests a role for sexual selection 3 Running title: Evolutionary ecology of song frequency 4 5 Peter Mikula1,2, Mihai Valcu3, Henrik Brumm4, Martin Bulla3,5, Wolfgang Forstmeier3, 6 Tereza Petrusková6, Bart Kempenaers3*, Tomáš Albrecht1,2* 7 8 1Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, 9 Czech Republic 10 2Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech 11 Republic 12 3Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for 13 Ornithology, Eberhard-Gwinner-Str. 7, 82319 Seewiesen, Germany 14 4Communication and Social Behaviour Group, Max Planck Institute for Ornithology, 15 Eberhard-Gwinner-Str. 11, 82319 Seewiesen, Germany 16 5Department of Ecology, Faculty of Environmental Sciences, Czech University of Life 17 Sciences, 16521 Prague, Czech Republic 18 6Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 43, Praha 2, 19 Czech Republic 20 *Authors for correspondence: E-mail: [email protected] and [email protected], 21 phone no.: +498 157 932 232 and +420 608 237 158 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179812; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Statement of authorship: TA and PM conceived and designed the study with input from all 23 authors. TA and BK coordinated the study. PM collected the song data. MV performed the 24 statistical analyses with input from WF. MB made the figures with help from MV and PM. TP 25 and HB provided bioacoustic expertise. PM drafted the first version of the manuscript. TA, 26 BK and PM revised and finalized the manuscript with input from all authors. 27 Data availability statement: The data used in this study were collected from publicly 28 available databases. All data and computer code used to generate the results, as well as 29 supplementary figures and tables will be freely available at https://osf.io/fa9ky/. 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179812; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 30 Abstract 31 Many animals use acoustic signals for communication, implying that the properties of these 32 signals can be under strong selection. The acoustic adaptation hypothesis predicts that species 33 living in dense habitats emit lower-frequency sounds than those in open areas, because low- 34 frequency sounds generally propagate further in denser vegetation. Signal frequency may also 35 be under sexual selection, because it correlates with body size and lower-frequency sounds are 36 perceived as more intimidating. Here, we evaluate these hypotheses by analysing variation in 37 peak song frequency across 5,085 passerine species (Passeriformes). A phylogenetically- 38 informed analysis revealed that song frequency decreases with increasing body mass and with 39 male-biased sexual size dimorphism. However, we found no support for the predicted 40 relationship between frequency and habitat. Our results suggest that the global variation in 41 passerine song frequency is mostly driven by natural and sexual selection causing 42 evolutionary shifts in body size rather than by habitat-related selection on sound propagation. 43 44 Keywords: acoustic adaptation hypothesis, allometry, animal communication, bird song, 45 macroecology, morphological constraints, sexual selection 46 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179812; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 47 INTRODUCTION 48 Acoustic signalling is widespread among animals (Bradbury & Vehrencamp 1998; Gerhardt 49 & Huber 2002; Catchpole & Slater 2008). Successful transmission and reception of acoustic 50 signals between conspecifics are essential in diverse contexts, including predation avoidance 51 (alerting others to a threat), territory defence, mate attraction, and synchronization of breeding 52 activities (Bradbury & Vehrencamp 1998; Catchpole & Slater 2008). One of the fundamental 53 characteristics of acoustic signals is the frequency of the sound, because it strongly affects 54 signal propagation through the environment (Morton 1975; Wiley & Richards 1982; Padgham 55 2004). Low frequency sounds are generally less attenuated during transmission than high 56 frequency sounds (Wiley & Richards 1982; Padgham 2004). Nevertheless, the frequency of 57 acoustic signals is tremendously diverse across the animal kingdom (Gerhardt 1994; Fitch 58 2006; Gillooly & Ophir 2010; Pijanowski et al. 2011) and several hypotheses have been 59 proposed to explain this diversity. Here, we focus on the three most compelling ones: (1) the 60 acoustic adaptation hypothesis, (2) the morphological constraint hypothesis, and (3) the sexual 61 selection hypothesis. 62 Since the 1970s, it has been postulated that the frequency of acoustic signals could reflect an 63 adaptation to maximize the effectiveness of sound transmission in specific habitats (Morton 64 1975). This is known as the acoustic adaptation hypothesis (Boncoraglio & Saino 2007; Ey & 65 Fischer 2009). Sounds transmitted through the natural environment are subject to degradation, 66 for example due to environmental absorption, reverberation and scattering. The degree of this 67 degradation depends both on the sound structure and on the physical characteristics of the 68 environment (Wiley & Richards 1982; Brumm & Naguib 2009). Specifically, because of 69 frequency-dependent attenuation, low-frequency sounds transmit generally further than high- 70 frequency sounds. However, the slope of the frequency dependence is steeper in dense, 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179812; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 71 forested habitats because of the high degree of sound absorption and scattering from foliage. 72 Hence, high-frequency signals are attenuated more strongly in closed than in open habitats 73 (Morton 1975; Marten & Marler 1977; Wiley & Richards 1978). Therefore, species living in 74 forested habitats are expected to produce vocalizations of lower frequencies than those living 75 in open habitats (Ey & Fischer 2009). Despite this strong theoretical underpinning, empirical 76 evidence for the acoustic adaptation hypothesis is equivocal (Morton 1975; Wiley 1991; 77 Buskirk 1997; Bertelli & Tubaro 2002; Blumstein & Turner 2005; Ey & Fischer 2009). For 78 instance, a meta-analysis by Boncoraglio & Saino (2007) showed that song frequency in birds 79 tends to be lower in closed compared with open habitats, but the effect size was small. A 80 review by Ey & Fischer (2009) concluded that habitat-related adjustments of frequency 81 parameters of acoustic signals of birds, anurans and mammals are not as widespread as 82 previously thought. 83 The morphological constraint hypothesis simply posits that body size sets a limit on the 84 frequency of the sound an animal can produce. Morphological constraints generally seem to 85 play a pervasive role in the evolution of animal acoustic communication (Ryan & Brenowitz 86 1985; Bradbury & Vehrencamp 1998; Fitch & Hauser 2002). A negative relationship between 87 body size and frequency of acoustic signals, i.e. larger species tend to produce lower 88 frequency sounds than smaller species, seems to be a general rule in animal bioacoustics and 89 has been documented across various groups, including insects, fishes, amphibians, reptiles, 90 birds, and mammals (Wallschläger 1980; McClatchie et al. 1996; Fitch & Hauser 2002; 91 Gillooly & Ophir 2010; Pearse et al. 2018). In birds, it has been suggested that the frequency 92 of vocalizations negatively scales with body size, simply because body size influences the 93 morphology and functional aspects of the vocal apparatus, such as the size of vibratory 94 structures (Bertelli & Tubaro 2002; Suthers & Zollinger 2008; Seneviratne et al. 2012; 95 Gonzalez-Voyer et al. 2013; Tietze et al. 2015). However, body size alone does not explain 5 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.179812; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint
Recommended publications
  • A Comprehensive Multilocus Phylogeny of the Neotropical Cotingas
    Molecular Phylogenetics and Evolution 81 (2014) 120–136 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive multilocus phylogeny of the Neotropical cotingas (Cotingidae, Aves) with a comparative evolutionary analysis of breeding system and plumage dimorphism and a revised phylogenetic classification ⇑ Jacob S. Berv 1, Richard O. Prum Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208105, New Haven, CT 06520, USA article info abstract Article history: The Neotropical cotingas (Cotingidae: Aves) are a group of passerine birds that are characterized by Received 18 April 2014 extreme diversity in morphology, ecology, breeding system, and behavior. Here, we present a compre- Revised 24 July 2014 hensive phylogeny of the Neotropical cotingas based on six nuclear and mitochondrial loci (7500 bp) Accepted 6 September 2014 for a sample of 61 cotinga species in all 25 genera, and 22 species of suboscine outgroups. Our taxon sam- Available online 16 September 2014 ple more than doubles the number of cotinga species studied in previous analyses, and allows us to test the monophyly of the cotingas as well as their intrageneric relationships with high resolution. We ana- Keywords: lyze our genetic data using a Bayesian species tree method, and concatenated Bayesian and maximum Phylogenetics likelihood methods, and present a highly supported phylogenetic hypothesis. We confirm the monophyly Bayesian inference Species-tree of the cotingas, and present the first phylogenetic evidence for the relationships of Phibalura flavirostris as Sexual selection the sister group to Ampelion and Doliornis, and the paraphyly of Lipaugus with respect to Tijuca.
    [Show full text]
  • Ornithological Surveys in Serranía De Los Churumbelos, Southern Colombia
    Ornithological surveys in Serranía de los Churumbelos, southern Colombia Paul G. W . Salaman, Thomas M. Donegan and Andrés M. Cuervo Cotinga 12 (1999): 29– 39 En el marco de dos expediciones biológicos y Anglo-Colombian conservation expeditions — ‘Co­ conservacionistas anglo-colombianas multi-taxa, s lombia ‘98’ and the ‘Colombian EBA Project’. Seven llevaron a cabo relevamientos de aves en lo Serranía study sites were investigated using non-systematic de los Churumbelos, Cauca, en julio-agosto 1988, y observations and standardised mist-netting tech­ julio 1999. Se estudiaron siete sitios enter en 350 y niques by the three authors, with Dan Davison and 2500 m, con 421 especes registrados. Presentamos Liliana Dávalos in 1998. Each study site was situ­ un resumen de los especes raros para cada sitio, ated along an altitudinal transect at c. 300- incluyendo los nuevos registros de distribución más m elevational steps, from 350–2500 m on the Ama­ significativos. Los resultados estabilicen firme lo zonian slope of the Serranía. Our principal aim was prioridad conservacionista de lo Serranía de los to allow comparisons to be made between sites and Churumbelos, y aluco nos encontramos trabajando with other biological groups (mammals, herptiles, junto a los autoridades ambientales locales con insects and plants), and, incorporating geographi­ cuiras a lo protección del marcizo. cal and anthropological information, to produce a conservation assessment of the region (full results M e th o d s in Salaman et al.4). A sizeable part of eastern During 14 July–17 August 1998 and 3–22 July 1999, Cauca — the Bota Caucana — including the 80-km- ornithological surveys were undertaken in Serranía long Serranía de los Churumbelos had never been de los Churumbelos, Department of Cauca, by two subject to faunal surveys.
    [Show full text]
  • Peru: from the Cusco Andes to the Manu
    The critically endangered Royal Cinclodes - our bird-of-the-trip (all photos taken on this tour by Pete Morris) PERU: FROM THE CUSCO ANDES TO THE MANU 26 JULY – 12 AUGUST 2017 LEADERS: PETE MORRIS and GUNNAR ENGBLOM This brand new itinerary really was a tour of two halves! For the frst half of the tour we really were up on the roof of the world, exploring the Andes that surround Cusco up to altitudes in excess of 4000m. Cold clear air and fantastic snow-clad peaks were the order of the day here as we went about our task of seeking out a number of scarce, localized and seldom-seen endemics. For the second half of the tour we plunged down off of the mountains and took the long snaking Manu Road, right down to the Amazon basin. Here we traded the mountainous peaks for vistas of forest that stretched as far as the eye could see in one of the planet’s most diverse regions. Here, the temperatures rose in line with our ever growing list of sightings! In all, we amassed a grand total of 537 species of birds, including 36 which provided audio encounters only! As we all know though, it’s not necessarily the shear number of species that counts, but more the quality, and we found many high quality species. New species for the Birdquest life list included Apurimac Spinetail, Vilcabamba Thistletail, Am- pay (still to be described) and Vilcabamba Tapaculos and Apurimac Brushfnch, whilst other montane goodies included the stunning Bearded Mountaineer, White-tufted Sunbeam the critically endangered Royal Cinclodes, 1 BirdQuest Tour Report: Peru: From the Cusco Andes to The Manu 2017 www.birdquest-tours.com These wonderful Blue-headed Macaws were a brilliant highlight near to Atalaya.
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version Available for Download From
    Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Beatriz de Aquino Ribeiro - Bióloga - Analista Ambiental / [email protected], (95) Designation date Site Reference Number 99136-0940. Antonio Lisboa - Geógrafo - MSc. Biogeografia - Analista Ambiental / [email protected], (95) 99137-1192. Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio Rua Alfredo Cruz, 283, Centro, Boa Vista -RR. CEP: 69.301-140 2.
    [Show full text]
  • Rochely Santos Morandini
    Rochely Santos Morandini Diversidade funcional das aves do Cerrado com simulações da perda de fisionomias campestres e de espécies ameaçadas: implicações para a conservação. (VERSÃO CORRIGIDA – versão original disponível na Biblioteca do IB-USP e na Biblioteca Digital de Teses e Dissertações (BDTD) da USP) Functional Diversity of Cerrado birds with a simulation of the loss of open areas and endangered species: implications for conservation. São Paulo 2013 Rochely Santos Morandini Diversidade funcional das aves do Cerrado com simulações da perda de fisionomias campestres e de espécies ameaçadas: implicações para a conservação. Functional Diversity of Cerrado birds with a simulation of the loss of open areas and endangered species: implications for conservation. Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo para a obtenção do Título de Mestre em Ciências, na Área de Ecologia. Orientador: Prof. Dr. José Carlos Motta Junior. São Paulo 2013 Morandini, Rochely Santos Diversidade funcional das aves do Cerrado com simulações da perda de fisionomias campestres e de espécies ameaçadas: implicações para conservação. 112 páginas Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Ecologia. 1. Aves 2. Cerrado 3. Diversidade Funcional I. Universidade de São Paulo. Instituto de Biociências. Departamento de Ecologia Comitê de Acompanhamento: Luís Fábio Silveira Marco Antônio P. L. Batalha Comissão Julgadora: ________________________ ________________________ Prof(a). Dr. Marco Ant ônio Prof(a). Dr. Sergio Tadeu Meirelles Monteiro Granzinolli ____________________________________ Orientador: Prof. Dr. José Carlos Motta Junior Dedicatória A melhor lembrança que tenho da infância são as paisagens de minha terra natal. Dedico este estudo ao Cerrado, com seus troncos retorcidos, seu amanhecer avermelhado, paisagens onde habitam aves tão encantadoras que me tonteiam.
    [Show full text]
  • Passerines: Perching Birds
    3.9 Orders 9: Passerines – perching birds - Atlas of Birds uncorrected proofs 3.9 Atlas of Birds - Uncorrected proofs Copyrighted Material Passerines: Perching Birds he Passeriformes is by far the largest order of birds, comprising close to 6,000 P Size of order Cardinal virtues Insect-eating voyager Multi-purpose passerine Tspecies. Known loosely as “perching birds”, its members differ from other Number of species in order The Northern or Common Cardinal (Cardinalis cardinalis) The Common Redstart (Phoenicurus phoenicurus) was The Common Magpie (Pica pica) belongs to the crow family orders in various fine anatomical details, and are themselves divided into suborders. Percentage of total bird species belongs to the cardinal family (Cardinalidae) of passerines. once thought to be a member of the thrush family (Corvidae), which includes many of the larger passerines. In simple terms, however, and with a few exceptions, passerines can be described Like the various tanagers, grosbeaks and other members (Turdidae), but is now known to belong to the Old World Like many crows, it is a generalist, with a robust bill adapted of this diverse group, it has a thick, strong bill adapted to flycatchers (Muscicapidae). Its narrow bill is adapted to to feeding on anything from small animals to eggs, carrion, as small birds that sing. feeding on seeds and fruit. Males, from whose vivid red eating insects, and like many insect-eaters that breed in insects, and grain. Crows are among the most intelligent of The word passerine derives from the Latin passer, for sparrow, and indeed a sparrow plumage the family is named, are much more colourful northern Europe and Asia, this species migrates to Sub- birds, and this species is the only non-mammal ever to have is a typical passerine.
    [Show full text]
  • Supplementary Information For
    Supplementary Information for Earth history and the passerine superradiation Oliveros, Carl H., Daniel J. Field, Daniel T. Ksepka, F. Keith Barker, Alexandre Aleixo, Michael J. Andersen, Per Alström, Brett W. Benz, Edward L. Braun, Michael J. Braun, Gustavo A. Bravo, Robb T. Brumfield, R. Terry Chesser, Santiago Claramunt, Joel Cracraft, Andrés M. Cuervo, Elizabeth P. Derryberry, Travis C. Glenn, Michael G. Harvey, Peter A. Hosner, Leo Joseph, Rebecca Kimball, Andrew L. Mack, Colin M. Miskelly, A. Townsend Peterson, Mark B. Robbins, Frederick H. Sheldon, Luís Fábio Silveira, Brian T. Smith, Noor D. White, Robert G. Moyle, Brant C. Faircloth Corresponding authors: Carl H. Oliveros, Email: [email protected] Brant C. Faircloth, Email: [email protected] This PDF file includes: Supplementary text Figs. S1 to S10 Table S1 to S3 References for SI reference citations Other supplementary materials for this manuscript include the following: Supplementary Files S1 to S3 1 www.pnas.org/cgi/doi/10.1073/pnas.1813206116 Supplementary Information Text Extended Materials and Methods Library preparation and sequencing. We extracted and purified DNA from fresh muscle tissue, liver tissue, or toepad clips from 113 vouchered museum specimens (Supplementary File S1) using the Qiagen DNeasy Blood and Tissue Kit following the manufacturer’s protocol. We quantified DNA extracts using a Qubit fluorometer, and we prepared aliquots of DNA extracted from muscle and liver at 10 ng/µL in 60 µL volume for shearing. We sheared each DNA sample to 400–600 bp using a Qsonica Q800R sonicator for 15–45 cycles, with each cycle running for 20 seconds on and 20 seconds off at 25% amplitude.
    [Show full text]
  • Endangered Species (Import and Export) Act (Chapter 92A)
    1 S 23/2005 First published in the Government Gazette, Electronic Edition, on 11th January 2005 at 5:00 pm. NO.S 23 ENDANGERED SPECIES (IMPORT AND EXPORT) ACT (CHAPTER 92A) ENDANGERED SPECIES (IMPORT AND EXPORT) ACT (AMENDMENT OF FIRST, SECOND AND THIRD SCHEDULES) NOTIFICATION 2005 In exercise of the powers conferred by section 23 of the Endangered Species (Import and Export) Act, the Minister for National Development hereby makes the following Notification: Citation and commencement 1. This Notification may be cited as the Endangered Species (Import and Export) Act (Amendment of First, Second and Third Schedules) Notification 2005 and shall come into operation on 12th January 2005. Deletion and substitution of First, Second and Third Schedules 2. The First, Second and Third Schedules to the Endangered Species (Import and Export) Act are deleted and the following Schedules substituted therefor: ‘‘FIRST SCHEDULE S 23/2005 Section 2 (1) SCHEDULED ANIMALS PART I SPECIES LISTED IN APPENDIX I AND II OF CITES In this Schedule, species of an order, family, sub-family or genus means all the species of that order, family, sub-family or genus. First column Second column Third column Common name for information only CHORDATA MAMMALIA MONOTREMATA 2 Tachyglossidae Zaglossus spp. New Guinea Long-nosed Spiny Anteaters DASYUROMORPHIA Dasyuridae Sminthopsis longicaudata Long-tailed Dunnart or Long-tailed Sminthopsis Sminthopsis psammophila Sandhill Dunnart or Sandhill Sminthopsis Thylacinidae Thylacinus cynocephalus Thylacine or Tasmanian Wolf PERAMELEMORPHIA
    [Show full text]
  • Adobe PDF, Job 6
    Noms français des oiseaux du Monde par la Commission internationale des noms français des oiseaux (CINFO) composée de Pierre DEVILLERS, Henri OUELLET, Édouard BENITO-ESPINAL, Roseline BEUDELS, Roger CRUON, Normand DAVID, Christian ÉRARD, Michel GOSSELIN, Gilles SEUTIN Éd. MultiMondes Inc., Sainte-Foy, Québec & Éd. Chabaud, Bayonne, France, 1993, 1re éd. ISBN 2-87749035-1 & avec le concours de Stéphane POPINET pour les noms anglais, d'après Distribution and Taxonomy of Birds of the World par C. G. SIBLEY & B. L. MONROE Yale University Press, New Haven and London, 1990 ISBN 2-87749035-1 Source : http://perso.club-internet.fr/alfosse/cinfo.htm Nouvelle adresse : http://listoiseauxmonde.multimania.
    [Show full text]
  • PERU: Manu and Machu Picchu Aug-Sept
    Tropical Birding Trip Report PERU: Manu and Machu Picchu Aug-Sept. 2015 A Tropical Birding SET DEPARTURE tour PERU: MANU and MACHU PICCHU th th 29 August – 16 September 2015 Tour Leader: Jose Illanes Andean Cock-of-the-rock near Cock-of-the-rock Lodge! Species highlighted in RED are the ones illustrated with photos in this report. INTRODUCTION Not everyone is fortunate enough to visit Peru; a marvelous country that boasts a huge country bird list, which is second only to Colombia. Unlike our usual set departure, we started out with a daylong extension to Lomas de Lachay first, before starting out on the usual itinerary for the main tour. On this extra day we managed to 1 www.tropicalbirding.com +1-409-515-0514 [email protected] Page Tropical Birding Trip Report PERU: Manu and Machu Picchu Aug-Sept. 2015 find many extra birds like Peruvian Thick-knee, Least Seedsnipe, Peruvian Sheartail, Raimondi’s Yellow- Finch and the localized Cactus Canastero. The first site of the main tour was Huacarpay Lake, near the beautiful Andean city of Cusco (accessed after a short flight from Lima). This gave us a few endemic species like Bearded Mountaineer and Rusty-fronted Canastero; along with other less local species like Many-colored Rush-tyrant, Plumbeous Rail, Puna Teal, Andean Negrito and Puna Ibis. The following day we birded along the road towards Manu where we picked up birds like Peruvian Sierra-Finch, Chestnut-breasted Mountain-Finch, Spot-winged Pigeon, and a beautiful Peruvian endemic in the form of Creamy-crested Spinetail. We also saw Yungas Pygmy-Owl, Black-faced Ibis, Hooded and Scarlet-bellied Mountain- Tanagers, Red-crested Cotinga and the gorgeous Grass-green Tanager.
    [Show full text]
  • Notes on the Behaviour of Bare-Necked Umbrellabird Cephalopterus Glabricollis in the Monteverde Cloud Forest Preserve, Costa Rica
    Notes on the behaviour of Bare-necked Umbrellabird Cephalopterus glabricollis in the Monteverde Cloud Forest Preserve, Costa Rica Michael P. L. Fogden and Patricia M. Fogden Se presentan apuntes sobre los movimientos locales y tamaño de población, actividad de lek, descripciones de las vocalizaciones y despliegues, comportamiento alimentario, el primer registro de nido y estado de conservación de Cephalopterus glabricollis, basados en observaciones en la Reserva de Bosque Nublado Monteverde, Costa Rica. Dentro del área de estudio, la especie aparentemente ocupa del 20–30% del habitat adecuado, todo dentro del rango de 750–1300 msnm. Se sugiere, a partir de observaciones detalladas desde 1986–1988, que la especie adopta leks explosivos, muy espaciados, en vez de pequeños leks, como se había registrado en la literatura. El primer nido en ser descrito para esta especie se descubrió en un árbol relativamente aislado en abril de 1988; como otras cotingas grandes, la postura consiste en un sólo huevo, pero esta especie construye un nido mucho mayor que otras cotingas estrechamente emparentadas. La especie come frutos y presas animales, generalmante arrebatado al follaje en vuelo, aunque ocasionalmente cuando esta perchado. Se anota un declive en las poblaciones en elevaciones menores; por debajo de los 1000 msnm las perchas de vocalización han sido abandonadas desde 1988, aunque el bosque se mantiene intacto en estas áreas. Se sugiere que un movimiento altitudinal ascendente en los rangos de muchas especies en esta área durante los últimos diez años, atribuido al calentamiento global, puede haber afectado adversamente a la especie Cephalopterus glabricollis. Introduction Bare-necked Umbrellabird Cephalopterus glabri-collis is one of three closely related species which replace each other geographically in Central and South American rainforests.
    [Show full text]
  • Cotingidae, Aves) with a Comparative Evolutionary Analysis of Breeding System and Plumage Dimorphism and a Revised Phylogenetic Classification ⇑ Jacob S
    Molecular Phylogenetics and Evolution 81 (2014) 120–136 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A comprehensive multilocus phylogeny of the Neotropical cotingas (Cotingidae, Aves) with a comparative evolutionary analysis of breeding system and plumage dimorphism and a revised phylogenetic classification ⇑ Jacob S. Berv 1, Richard O. Prum Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208105, New Haven, CT 06520, USA article info abstract Article history: The Neotropical cotingas (Cotingidae: Aves) are a group of passerine birds that are characterized by Received 18 April 2014 extreme diversity in morphology, ecology, breeding system, and behavior. Here, we present a compre- Revised 24 July 2014 hensive phylogeny of the Neotropical cotingas based on six nuclear and mitochondrial loci (7500 bp) Accepted 6 September 2014 for a sample of 61 cotinga species in all 25 genera, and 22 species of suboscine outgroups. Our taxon sam- Available online 16 September 2014 ple more than doubles the number of cotinga species studied in previous analyses, and allows us to test the monophyly of the cotingas as well as their intrageneric relationships with high resolution. We ana- Keywords: lyze our genetic data using a Bayesian species tree method, and concatenated Bayesian and maximum Phylogenetics likelihood methods, and present a highly supported phylogenetic hypothesis. We confirm the monophyly Bayesian inference Species-tree of the cotingas, and present the first phylogenetic evidence for the relationships of Phibalura flavirostris as Sexual selection the sister group to Ampelion and Doliornis, and the paraphyly of Lipaugus with respect to Tijuca.
    [Show full text]