A Checklist of Mushrooms of Cambodia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Phylogenetic Studies in the Genus Amanita
1170 Molecular phylogenetic studies in the genus Amanita I5ichael Weiß, Zhu-Liang Yang, and Franz Oberwinkler Abstracl A group of 49 Amanita species that had been thoroughly examined morphologically and amtomically was analyzed by DNA sequence compadson to estimate natural groups and phylogenetic rclationships within the genus. Nuclear DNA sequences coding for a part of the ribosomal large subunit were determined and evaluated using neighbor-joining with bootstrap analysis, parsimony analysis, conditional clustering, and maximum likelihood methods, Sections Amanita, Caesarea, Vaginatae, Validae, Phalloideae, and Amidella were substantially confirmed as monophyletic groups, while the monophyly of section Lepidell.t remained unclear. Branching topologies between and within sections could also pafiially be derived. Stbgenera Amanita an'd Lepidella were not supported. The Mappae group was included in section Validae. Grouping hypotheses obtained by DNA analyses are discussed in relation to the distribution of morphological and anatomical chamcters in the studied species. Key words: fungi, basidiomycetes phylogeny, Agarrcales, Amanita systematics, large subunit rDNA, 28S. R6sum6 : A partir d'un groupe de 49 esp,ces d'Amanita prdalablement examinees morphologiquement et anatomiquement, les auteurs ont utilisd la comparaison des s€quences d'ADN pour ddfinir les groupes naturels et les relations phylog6ndtiques de ce genre. Les sdquences de I'ADN nucl6aire codant pour une partie de la grande sous-unit6 ribosomale ont 6t6 ddterminEes et €valu6es en utilisant l'analyse par liaison en lacet avec le voisin (neighbor-joining with bootstrap), l'analyse en parcimonie, le rcgroupement conditionnel et les m€thodes de ressemblance maximale. Les rdsultats confirment substantiellement les sections Afiarira, Caesarea, Uaqinatae, Ualidae, Phalloideae et Amidella, comme groupes monophyldtiques, alors que la monophylie de la section Lepidella demerxe obscure. -
Annotated Check List and Host Index Arizona Wood
Annotated Check List and Host Index for Arizona Wood-Rotting Fungi Item Type text; Book Authors Gilbertson, R. L.; Martin, K. J.; Lindsey, J. P. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 28/09/2021 02:18:59 Link to Item http://hdl.handle.net/10150/602154 Annotated Check List and Host Index for Arizona Wood - Rotting Fungi Technical Bulletin 209 Agricultural Experiment Station The University of Arizona Tucson AÏfJ\fOTA TED CHECK LI5T aid HOST INDEX ford ARIZONA WOOD- ROTTlNg FUNGI /. L. GILßERTSON K.T IyIARTiN Z J. P, LINDSEY3 PRDFE550I of PLANT PATHOLOgY 2GRADUATE ASSISTANT in I?ESEARCI-4 36FZADAATE A5 S /STANT'" TEACHING Z z l'9 FR5 1974- INTRODUCTION flora similar to that of the Gulf Coast and the southeastern United States is found. Here the major tree species include hardwoods such as Arizona is characterized by a wide variety of Arizona sycamore, Arizona black walnut, oaks, ecological zones from Sonoran Desert to alpine velvet ash, Fremont cottonwood, willows, and tundra. This environmental diversity has resulted mesquite. Some conifers, including Chihuahua pine, in a rich flora of woody plants in the state. De- Apache pine, pinyons, junipers, and Arizona cypress tailed accounts of the vegetation of Arizona have also occur in association with these hardwoods. appeared in a number of publications, including Arizona fungi typical of the southeastern flora those of Benson and Darrow (1954), Nichol (1952), include Fomitopsis ulmaria, Donkia pulcherrima, Kearney and Peebles (1969), Shreve and Wiggins Tyromyces palustris, Lopharia crassa, Inonotus (1964), Lowe (1972), and Hastings et al. -
Taxon Order Family Scientific Name Common Name Non-Native No. of Individuals/Abundance Notes Bees Hymenoptera Andrenidae Calliop
Taxon Order Family Scientific Name Common Name Non-native No. of individuals/abundance Notes Bees Hymenoptera Andrenidae Calliopsis andreniformis Mining bee 5 Bees Hymenoptera Apidae Apis millifera European honey bee X 20 Bees Hymenoptera Apidae Bombus griseocollis Brown belted bumble bee 1 Bees Hymenoptera Apidae Bombus impatiens Common eastern bumble bee 12 Bees Hymenoptera Apidae Ceratina calcarata Small carpenter bee 9 Bees Hymenoptera Apidae Ceratina mikmaqi Small carpenter bee 4 Bees Hymenoptera Apidae Ceratina strenua Small carpenter bee 10 Bees Hymenoptera Apidae Melissodes druriella Small carpenter bee 6 Bees Hymenoptera Apidae Xylocopa virginica Eastern carpenter bee 1 Bees Hymenoptera Colletidae Hylaeus affinis masked face bee 6 Bees Hymenoptera Colletidae Hylaeus mesillae masked face bee 3 Bees Hymenoptera Colletidae Hylaeus modestus masked face bee 2 Bees Hymenoptera Halictidae Agapostemon virescens Sweat bee 7 Bees Hymenoptera Halictidae Augochlora pura Sweat bee 1 Bees Hymenoptera Halictidae Augochloropsis metallica metallica Sweat bee 2 Bees Hymenoptera Halictidae Halictus confusus Sweat bee 7 Bees Hymenoptera Halictidae Halictus ligatus Sweat bee 2 Bees Hymenoptera Halictidae Lasioglossum anomalum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum ellissiae Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum laevissimum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum platyparium Cuckoo sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum versatum Sweat bee 6 Beetles Coleoptera Carabidae Agonum sp. A ground beetle -
Isolation, Propagation and Rapid Molecular Detection
University of Alberta Enhanced Revegetation and Reclamation of Oil Sand Disturbed Land Using Mycorrhizae. By Nnenna Esther Onwuchekwa A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science In Land Reclamation and Remediation Department of Renewable Resources © Nnenna Esther Onwuchekwa Spring 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-90260-8 Our file Notre référence ISBN: 978-0-494-90260-8 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque -
Climacodon Pulcherrimus a Badly Known Tropical Species, Present in Europe
Cryptogamie,Mycologie, 2007, 28 (1): 3-11 © 2007 Adac. Tous droits réservés Climacodon pulcherrimus a badly known tropical species, present in Europe Gabriel MORENOa*, María Natividad BLANCOa , Ibai OLARIAGAb &Julia CHECAa a Dpto. Biología Vegetal, Fac. Biología. Univ. de Alcalá, E-28871,Alcalá de Henares, Madrid. e-mail: [email protected] b Dpto. Biología Vegetal y Ecología (Botánica). Fac. Ciencias y Tecnología. Campus de Leioa. Univ. del País Vasco. Apartado 644. E-48080 Bilbao. Abstract – Climacodon pulcherrimus,apolymorphous species with a large distribution and habitat, is described macro- and microscopically. Its uncertain taxonomic position has led to the description of many synonymous species and placement in different genera. The type species of Hydnum pulcherrimum Berk. &M.A. Curtis is examined for the first time and it is compared with other collections from Malay Peninsula, Pakistan, USA and Spain. The study of Spanish collections enlarges the distribution to the South of Europe. Basidiomycota / Meruliaceae / Climacodon / Donkia / Hydnum / systematics / chorology / taxonomy INTRODUCTION In the last four years, we have collected some basidiomata of a saprophyte fungus with a basidioma of medium size, normally dimidiate with trametoid appearance and hydnoid hymenophore. Microscopically it is characterized by the presence of double or multiple clamp connections, ellipsoid basidiospores and absence of cystidia. Finally, we could determine it, with some difficulties, as a member of the genus Climacodon P. Karst., belonging to the family Meruliaceae P. Karst., order Polyporales Gäum. (Kirk et al., 2001). This genus includes species with conspicuous cystidia and hyphae with single clamp connections, with the only exception of C. pulcherrimus (Berk. -
Fungal Community Structural and Functional Responses to Disturbances in a North Temperate Forest
Fungal Community Structural and Functional Responses to Disturbances in a North Temperate Forest By Buck Tanner Castillo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2020 Doctoral Committee: Professor Timothy Y. James, Co-Chair Professor Knute J. Nadelhoffer, Co-Chair Associate Professor Vincent Denef Professor Donald R. Zak Buck T. Castillo [email protected] ORCID ID: 0000-0002-5426-3821 ©Buck T. Castillo 2020 Dedication To my mother: Melinda Kathryn Fry For always instilling in me a sense of wonder and curiosity. For all the adventures down dirt roads and imaginations of centuries past. For all your love, Thank you. ii Acknowledgements Many people have guided, encouraged and inspired me throughout this process. I am eternally grateful for this network of support. First, I must thank my advisors, Knute and Tim for all of the excellent advice, unfaltering confidence, and high expectations they continually provided and set for me. My committee members, Don Zak and Vincent Denef, have been fantastic sources of insight, inspiration, and encouragement. Thank you all so much for your time, knowledge, and most of all for always making me believe in myself. A special thanks to two incredible researchers that were always great mentors who became even better friends: Luke Nave and Jim Le Moine. Jim Le Moine has taught me so much about being a critical thinker and was always more than generous with his time, insight, and advice. Thank you, Jim, for midnight walks through bugcamp and full bowls of delicious popping corn. -
Download Download
LITERATURE UPDATE FOR TEXAS FLESHY BASIDIOMYCOTA WITH NEW VOUCHERED RECORDS FOR SOUTHEAST TEXAS David P. Lewis Clark L. Ovrebo N. Jay Justice 262 CR 3062 Department of Biology 16055 Michelle Drive Newton, Texas 75966, U.S.A. University of Central Oklahoma Alexander, Arkansas 72002, U.S.A. [email protected] Edmond, Oklahoma 73034, U.S.A. [email protected] [email protected] ABSTRACT This is a second paper documenting the literature records for Texas fleshy basidiomycetous fungi and includes both older literature and recently published papers. We report 80 literature articles which include 14 new taxa described from Texas. We also report on 120 new records of fleshy basdiomycetous fungi collected primarily from southeast Texas. RESUMEN Este es un segundo artículo que documenta el registro de nuevas especies de hongos carnosos basidiomicetos, incluyendo artículos antiguos y recientes. Reportamos 80 artículos científicamente relacionados con estas especies que incluyen 14 taxones con holotipos en Texas. Así mismo, reportamos unos 120 nuevos registros de hongos carnosos basidiomicetos recolectados primordialmente en al sureste de Texas. PART I—MYCOLOGICAL LITERATURE ON TEXAS FLESHY BASIDIOMYCOTA Lewis and Ovrebo (2009) previously reported on literature for Texas fleshy Basidiomycota and also listed new vouchered records for Texas of that group. Presented here is an update to the listing which includes literature published since 2009 and also includes older references that we previously had not uncovered. The authors’ primary research interests center around gilled mushrooms and boletes so perhaps the list that follows is most complete for the fungi of these groups. We have, however, attempted to locate references for all fleshy basidio- mycetous fungi. -
Phylum Order Number of Species Number of Orders Family Genus Species Japanese Name Properties Phytopathogenicity Date Pref
Phylum Order Number of species Number of orders family genus species Japanese name properties phytopathogenicity date Pref. points R inhibition H inhibition R SD H SD Basidiomycota Polyporales 98 12 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-18 Kumamoto Haru, Kikuchi 40.4 -1.6 7.6 3.2 Basidiomycota Agaricales 171 1 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-16 Hokkaido Shari, Shari 74 39.3 2.8 4.3 Basidiomycota Agaricales 269 1 Agaricaceae Agaricus Agaricus arvensis シロオオハラタケ saprobic "-" 2000-09-25 Gunma Kawaba, Tone 87 49.1 2.4 2.3 Basidiomycota Polyporales 181 12 Agaricaceae Agaricus Agaricus bisporus ツクリタケ saprobic "-" 2004-04-16 Gunma Horosawa, Kiryu 36.2 -23 3.6 1.4 Basidiomycota Hymenochaetales 129 8 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-07-15 Gunma Hirai, Kiryu 64.4 44.4 9.6 4.4 Basidiomycota Polyporales 105 12 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-06-26 Nagano Minamiminowa, Kamiina 70.1 3.7 2.5 5.3 Basidiomycota Auriculariales 37 2 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2001-08-20 Fukushima Showa 67.9 37.8 0.6 0.6 Basidiomycota Boletales 251 3 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2000-09-25 Yamanashi Hakusyu, Hokuto 80.7 48.3 3.7 7.4 Basidiomycota Agaricales 9 1 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 85.9 68.1 1.9 3.1 Basidiomycota Hymenochaetales 129 8 Strophariaceae Agrocybe Agrocybe cylindracea ヤナギマツタケ saprobic "-" 2003-08-23 -
Bacău Preliminary Research
COMPLEXUL MUZEAL DE ŞTIINŢELE NATURII „ION BORCEA” BACĂU STUDII ŞI COMUNICĂRI 2010 Vol. 23: 14 – 23 PRELIMINARY RESEARCH CONCERNING THE DIVERSITY OF MACROMYCETES IN PRALEA BROOK BASIN (BACĂU COUNTY) OTILIA CARMEN PAVEL * ABSTRACT Mycological research conducted in the Pralea brook basin (Bacău County) showed the diversity of the macromycete species in the phytocenoses of the following associations: Hieracio transsilvanico – Piceetum Pawlowski et Br.-Bl. 1939, Pulmonario rubrae - Fagetum (Soó 1964) Täuber 1987, Leucanthemo waldsteinii – Fagetum (Soó 1964) Täuber 1987, Symphyto cordati – Fagetum Vida 1959. There have been identified 205 taxa from Fungi kingdom out of which 20 species belong to the Ascomycota phylum and 185 species to the Basidiomycota phylum. Key words: fungi, macromycetes, museum, Pralea, Căiuţ, Bacău, Romania Introduction Material and method The Pralea brook is an important tributary to The mycological material was collected in Trotuş river, with 22 km length and is situated on the phytocenoses of the associations: Hieracio territory of the Căiuţi commune, Bacău County (fig. transilvanico-Piceetum Pawlowski et Br.-Bt. 1939, 1, 2). The hydrographical basin occupies a 65 km2 Pulmonario rubrae - Fagetum (Soó 1964) Täuber surface and it stretches between 46°11' N and 26°46' 1987, Leucanthemo waldsteinii – Fagetum E, at altitudes varying from 155 m (at emptying (Soó1964) Täuber 1987, Symphyto cordati – point in Trotuş river) to 771 m (at Coada Văii Baba Fagetum Vida 1959. summit). The mycological research was conducted From a geological point of view, the whole during 2009 – 2010 in 4 forests situated in the basin of Pralea brook is included in the superior basin of Pralea brook: Ursoaia Mică forest Subcarpathian piedmont developed East to Ouşorul (PUm), Coconaşi forest (PC), Bourului forest (PB), summit which is the northernmost sector of Vrancea Pralea Ursoaia Mare forest (PUM) (tab. -
44(4) 06.장석기A.Fm
한국균학회지 The Korean Journal of Mycology Research Article 변산반도 국립공원의 외생균근성 버섯 발생과 기후 요인 과의 관계 김상욱 · 장석기 * 원광대학교 산림조경학과 Relationship between Climatic Factors and Occurrence of Ectomycorrhizal Fungi in Byeonsanbando National Park Sang-Wook Kim and Seog-Ki Jang* Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University, Iksan 54538, Korea ABSTRACT : A survey of ectomycorrhizal fungi was performed during 2009–2011 and 2015 in Byeonsanbando National Park. A total of 3,624 individuals were collected, which belonged one division, 1 class, 5 orders, 13 families, 33 genera, 131 species. The majority of the fruiting bodies belonged to orders Agaricales, Russulales, and Boletales, whereas a minority belonged to orders Cantharellales and Thelephorale. In Agaricales, there were 6 families, 9 genera, 49 species, and 1,343 individuals; in Russulales, 1 family, 2 genera, 35 species, and 854 individuals; in Boletales, 4 families, 19 genera, 40 species, and 805 individuals; in Cantharellales, 1 family, 2 genera, 5 species, and 609 individuals; and in Thelephorale, 1 family, 1 genus, 2 species, and 13 individuals. The most frequently observed families were Russulaceae (854 individuals representing 35 species), Boletaceae (652 individuals representing 34 species), and Amanitaceae (754 individuals representing 25 species). The greatest numbers of overall and dominant species and individual fruiting bodies were observed in July. Most species and individuals were observed at altitudes of 1~99 m, and population sizes dropped significantly at altitudes of 300 m and higher. Apparently, the highest diversity o of species and individuals occurred at climatic conditions with a mean temperature of 23.0~25.9 C, maximum temperature of o o 28.0~29.9 C, minimum temperature of 21.0~22.9 C, relative humidity of 77.0~79.9%, and rainfall of 300 mm or more. -
Pisolithus Arhizus Arhizus Pisolithus 3 De 1 Página 20151205
© Demetrio Merino Alcántara [email protected] Condiciones de uso Pisolithus arhizus (Scop.) Rauschert, Z. Pilzk. 25(2): 50 (1959) Sclerodermataceae, Boletales, Agaricomycetidae, Agaricomycetes, Agaricomycotina, Basidiomycota, Fungi = Cauloglossum novozelandicum (Henn.) Lloyd [as 'novo-zelandicum'], Mycol. Writ.(7): 8 (1905) ≡ Lycoperdodes arrhizon (Scop.) Kuntze, Revis. gen. pl. (Leipzig) 2: 859 (1891) = Lycoperdodes conglomeratum (Fr.) Kuntze, Revis. gen. pl. (Leipzig) 2: 859 (1891) = Lycoperdodes crassipes (DC.) Kuntze, Revis. gen. pl. (Leipzig) 2: 859 (1891) = Lycoperdodes tuberosum (P. Micheli ex Fr.) Kuntze, Revis. gen. pl. (Leipzig) 2: 859 (1891) = Lycoperdodes turgidum (Fr.) Kuntze, Revis. gen. pl. (Leipzig) 2: 859 (1891) ≡ Lycoperdon arrizon Scop., Delic. Fl. Faun. Insubr. 1: 40 (1786) ≡ Pisocarpium arhizum (Scop.) Link, Mag. Gesell. naturf. Freunde, Berlin 8: 44 (1816) [1815] = Pisocarpium clavatum Nees, Syst. Pilze (Würzburg): 138 (1816) [1816-17] = Pisolithus arenarius Alb. & Schwein., Consp. Fung.: 82 (1805) = Pisolithus arenarius Alb. & Schwein., Consp. fung. (Leipzig): 82 (1805) var. arenarius = Pisolithus arenarius var. novozeelandicus Henn. [as 'novo-zeelandica'], Bot. Jb. 18(4 (Beibl. 44)): 37 (1894) = Pisolithus tinctorius (Pers.) Coker & Couch, Gasteromycetes E. U.S. Canada (Chapel Hill): 170 (1928) = Pisolithus tinctorius f. clavatus (Nees) Pilát, Fl. ČSR, B-1, Gasteromycetes: 581 (1958) = Pisolithus tinctorius f. conglomeratus (Fr.) Pilát, Fl. ČSR, B-1, Gasteromycetes: 582 (1958) = Pisolithus tinctorius f. olivaceus (Fr.) Pilát, Fl. ČSR, B-1, Gasteromycetes: 582 (1958) = Pisolithus tinctorius f. pisocarpium (Fr.) Pilát, Fl. ČSR, B-1, Gasteromycetes: 581 (1958) = Pisolithus tinctorius (Pers.) Coker & Couch, Gasteromycetes E. U.S. Canada (Chapel Hill): 170 (1928) f. tinctorius = Pisolithus tinctorius f. tuberosus (P. Micheli ex Fr.) Pilát, Fl. ČSR, B-1, Gasteromycetes: 582 (1958) = Pisolithus tinctorius f. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.