Biosolids Frequently Asked Questions

Total Page:16

File Type:pdf, Size:1020Kb

Biosolids Frequently Asked Questions Virginia Department of Environmental Quality GET THE FACTS July 2015 Biosolids Frequently Asked Questions Where do biosolids come from? What are biosolids? ............................................... page 1 Biosolids are created through the treatment of sewage What is the difference between biosolids and sludge in a municipal wastewater treatment facility. sewage sludge? Wastewater treatment facilities receive sewage – the Where do biosolids come from? solids and liquids from toilets and drains. If the sewage How are biosolids used? comes from an industrial location, it must meet certain Are there different types of biosolids? standards before being sent down the drain. This is called How much biosolids is applied to land in Virginia? ....page 2 pre-treatment, where specialized processes are used to Who determines how and where biosolids are remove or reduce certain pollutants. In recent years, applied? these processes have dramatically reduced the amount of How do we know what’s in biosolids? heavy metals in sewage. Who can apply biosolids to land? ............................ page 3 Once the sewage reaches the municipal treatment facility, How much biosolids can be spread as fertilizer and it goes through physical, chemical and biological process- when? es to treat the liquids known as wastewater and remove What type of crops can be fertilized with biosolids? the solids known as sewage sludge. The sewage sludge Can biosolids be spread near my home? is broken down and sanitized to control disease-causing How do the biosolids rules protect human health organisms and reduce odor. Once the sewage sludge is and the environment? treated, it is called biosolids. When applied according to What has changed about biosolids regulations in DEQ regulations, biosolids are suitable for applying to Virginia? land as fertilizer to improve and maintain productive soils Who checks to see if the biosolids regulations are and stimulate plant growth. followed? ............................................................... page 4 Many processes and techniques exist to treat sewage What is a local monitor? and they vary by treatment facility. Contact your local Where can I find out more about biosolids in my wastewater treatment facility for details on treating area? sewage sludge and generating biosolids in your area. What are biosolids? How are biosolids used? Biosolids is a term that refers to solid, semisolid, or liquid When processed and applied according to DEQ and materials removed from municipal sewage and treated to federal regulations, biosolids are suitable for applying to be suitable for recycling as fertilizer. As fertilizer, land as fertilizer to improve and maintain productive soils biosolids are used to improve and maintain productive and stimulate plant growth. Biosolids may also be used to soils and stimulate plant growth. The use of biosolids is establish vegetation and reduce soil erosion on land subject to the Virginia Department of Environmental which has been mined, and improve drought resistance Quality regulatory requirements that exist to help keep because the additional organic matter increases the soil’s rivers, lakes, streams, bays and ground water clean; ability to absorb and hold moisture. Sewage sludge may protect plants; and prevent the transmission of diseases. be sent as waste to landfills or incinerators. What is the difference between biosolids Are there different types of biosolids? and sewage sludge? Biosolids that are used as fertilizer are divided into two When wastewater arrives at a treatment facility, the categories: Class A and Class B. Class A biosolids have solids are separated out and become sewage sludge. received a level of treatment that virtually eliminates Sewage sludge may be sent to a landfill, incinerated or disease-causing organisms or pathogens. If the levels of receive additional treatment to become biosolids. This heavy metals are low enough and the treatment additional treatment must occur for sewage sludge to be includes methods to reduce the possibility that animals called biosolids. will be attracted to the material, Class A biosolids 629 E. Main St., Richmond, VA 23218 804-698-4000 or toll-free in Virginia 800-592-5482 www.deq.virginia.gov may be distributed as Exceptional Quality biosolids. Because following 30 days, the public is encouraged to provide of the extra treatment, no special distance setbacks from comment on the proposed permit. Members of the public may wells or streams are required by the regulations to provide also request that DEQ host a public hearing. At the end of 30 environmental and health protection from pathogens. Excep- days, DEQ will consider all comments received and either tional Quality material may be bagged and is often sold approve or deny the permit. Before applying biosolids to alongside commercial fertilizers. Producers of Exceptional newly permitted lands, the permit holder must first notify the Quality biosolids are required to obtain permits from DEQ and local government and then wait 100 days. register with the Virginia Department of Agriculture and Consumer Services before selling the material. DEQ has biosolids specialists at its seven offices throughout the state who are dedicated to overseeing the proper Class B biosolids have less restrictive standards for content of management of biosolids. To read more about the regulations metals and disease-causing organisms, and thus require for applying biosolids on land, please visit more restrictive permit limitations so that specific land http://www.deq.virginia.gov/Programs/Water/LandApplicationB application practices are observed and environmental and eneficialReuse/Permits,Fees,Regulations.aspx health impacts are avoided. Class B biosolids standards are considered to protect human health and the environment as How do we know what’s in biosolids? well as Class A biosolids standards when coupled with DEQ regulations require sampling on a prescribed schedule to specific application restrictions, such as distance between ensure that the regulated parameters are measured and land with biosolids and any wells and streams, access treatment levels are achieved. The nutrient content of the restrictions for people and livestock, and certain crop material is measured so that the appropriate rate for the crop exclusions. to be grown can be determined. The frequency of testing depends upon the amount of biosolids a particular generator How much biosolids is applied to land produces; more production requires more frequent sampling. in Virginia? At a minimum, the following parameters are analyzed: From 2008 – 2013, an average of 220,000 dry tons of biosolids were applied annually to approximately 65,000 Nutrients Metals Other acres of permitted land application sites in Virginia. There are Total kjeldahl Arsenic Percent solids 7.89 million acres of cropland, pastureland, and woodland on nitrogen Cadmium Volatile solids Virginia farms, and biosolids was used on less than 1 percent Ammonia nitrogen Copper pH of this area. In comparison, commercial fertilizer was used on Nitrates Lead CaCO3 (for lime stabi- more than 1.9 million acres and animal manure on more than Total phosphorus Mercury lized biosolids) 363,000 acres (2012 U.S. Department of Agriculture Total potassium Molybdenum Alkalinity as CaCO3 Census). Nickel Additional parameters Selenium may be analyzed for Who determines how and where Zinc screening purposes biosolids are applied? when approving a new Wastewater treatment facilities that produce biosolids, and source. For example, any persons contracting with the facility to apply biosolids on analysis for PCBs land, must obtain a permit from DEQ before application. (poly-chlorinated biphe- DEQ’s permit regulations require that only biosolids that meet nyls) is required before a specific requirements are applied, and only on approved new biosolids source will be approved. lands with ongoing testing, notification and monitoring. To determine whether biosolids can be applied to a particular The U.S. Environmental Protection Agency has conducted site, an evaluation of the site is first performed by the land surveys of sewage sludge throughout the United States to applier. The evaluation examines water supplies, soil evaluate whether there are other constituents found in characteristics, slopes, vegetation, crop needs and the biosolids that would warrant further testing requirements distance to streams, lakes, rivers and groundwater. When before land application. Additional research is being con- DEQ receives a permit application with this initial information, ducted to determine not only the amount present, but also DEQ staff reviews the proposed biosolids sources and whether these amounts pose significant concerns. DEQ proposed land application sites to confirm if they are suitable. monitors the ongoing work of EPA in this respect, and if DEQ notifies the local government and residents adjacent to necessary, will respond to these findings with additions to the the land application sites. For the initial permit in a locality, list of regulated parameters. DEQ also holds a public meeting to discuss the proposed permit. After the public meeting, the staff will assemble a permit with consideration of comments from the public, local government and other state agencies. Once the draft permit is complete, a notice will appear in the local paper. During the 2 Who can apply biosolids to land? What type of crops can be fertilized Anyone who wants to apply biosolids
Recommended publications
  • Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview
    sustainability Review Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview Maria Cristina Collivignarelli 1 , Alessandro Abbà 2, Andrea Frattarola 1, Marco Carnevale Miino 1 , Sergio Padovani 3, Ioannis Katsoyiannis 4,* and Vincenzo Torretta 5 1 Department of Civil and Architectural Engineering, University of Pavia, via Ferrata 1, 27100 Pavia, Italy; [email protected] (M.C.C.); [email protected] (A.F.); [email protected] (M.C.M.) 2 Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze 43, 25123 Brescia, Italy; [email protected] 3 ARPA Lombardia, Pavia Department, via Nino Bixio 13, 27100 Pavia, Italy; [email protected] 4 Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 5 Department of Theoretical and Applied Sciences, University of Insubria, via G.B. Vico 46, 21100 Varese, Italy; [email protected] * Correspondence: [email protected] Received: 17 September 2019; Accepted: 25 October 2019; Published: 29 October 2019 Abstract: The issues concerning the management of sewage sludge produced in wastewater treatment plants are becoming more important in Europe due to: (i) the modification of sludge quality (biological and chemical sludge are often mixed with negative impacts on sludge management, especially for land application); (ii) the evolution of legislation (landfill disposal is banned in many European countries); and (iii) the technologies for energy and material recovery from sludge not being fully applied in all European Member States. Furthermore, Directive 2018/851/EC introduced the waste hierarchy that involved a new strategy with the prevention in waste production and the minimization of landfill disposal.
    [Show full text]
  • Revegetation of Mine Tailings Throughthe Use of Biosolid Amendment1
    REVEGETATION OF MINE TAILINGS THROUGHTHE USE OF BIOSOLID AMENDMENT1 I.L. Pepper2, S.A. Bengson, P.R. Rao, and K.L. Josephson Abstract. Mine tailings represent the end product of mineral ores that are processed to extract specific metals such as copper. Tailings are in essence crushed rock with 0% organic matter, and can be layered to depths of 30B36m. We evaluated revegetation of mine tailings through the one time application of municipal biosolids. Specifically a 2 hectare copper mine-tailing plot near the Mission Mine in Southern Arizona was designated for this study. Approximately 220 dry tons per hectare of biosolids was added and incorporated in December 1998. The potential for successful revegetation was evaluated by monitoring soil microbial populations, which quickly become established at •107 heterotrophic bacteria per gram of biosolid amended mine tailings. By September 2001 vegetative cover had increased from zero to 77%. Initially bermudagrass and Russian Thistle were the predominant species involved. More recently Buffalo grass and Lehmans Lovegrass have become more prominent. Monitoring of soil metal concentrations as a function of depth showed that the tailings were the major source of metals, not the biosolids. There was no evidence that metals were leaching under the low rainfall, non-irrigated conditions. Plant tissue metal concentrations showed that phytoremediation could remove metals from the surface depths of tailings. Soil nitrate concentrations varied seasonally and with tailing depth. Nitrogen transformations included ammonification, nitrification and denitrification, which allowed nitrogen to be removed from tailings. Leaching of nitrate appeared to be minimal. Overall biosolid amendment of mine tailings appeared to be a successful technological approach to enhance revegetation of the mine tailings.
    [Show full text]
  • Safe Use of Wastewater in Agriculture: Good Practice Examples
    SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors PREFACE Population growth, rapid urbanisation, more water intense consumption patterns and climate change are intensifying the pressure on freshwater resources. The increasing scarcity of water, combined with other factors such as energy and fertilizers, is driving millions of farmers and other entrepreneurs to make use of wastewater. Wastewater reuse is an excellent example that naturally explains the importance of integrated management of water, soil and waste, which we define as the Nexus While the information in this book are generally believed to be true and accurate at the approach. The process begins in the waste sector, but the selection of date of publication, the editors and the publisher cannot accept any legal responsibility for the correct management model can make it relevant and important to any errors or omissions that may be made. The publisher makes no warranty, expressed or the water and soil as well. Over 20 million hectares of land are currently implied, with respect to the material contained herein. known to be irrigated with wastewater. This is interesting, but the The opinions expressed in this book are those of the Case Authors. Their inclusion in this alarming fact is that a greater percentage of this practice is not based book does not imply endorsement by the United Nations University. on any scientific criterion that ensures the “safe use” of wastewater. In order to address the technical, institutional, and policy challenges of safe water reuse, developing countries and countries in transition need clear institutional arrangements and more skilled human resources, United Nations University Institute for Integrated with a sound understanding of the opportunities and potential risks of Management of Material Fluxes and of Resources wastewater use.
    [Show full text]
  • 2.2 Sewage Sludge Incineration
    2.2 Sewage Sludge Incineration There are approximately 170 sewage sludge incineration (SSI) plants in operation in the United States. Three main types of incinerators are used: multiple hearth, fluidized bed, and electric infrared. Some sludge is co-fired with municipal solid waste in combustors based on refuse combustion technology (see Section 2.1). Refuse co-fired with sludge in combustors based on sludge incinerating technology is limited to multiple hearth incinerators only. Over 80 percent of the identified operating sludge incinerators are of the multiple hearth design. About 15 percent are fluidized bed combustors and 3 percent are electric. The remaining combustors co-fire refuse with sludge. Most sludge incinerators are located in the Eastern United States, though there are a significant number on the West Coast. New York has the largest number of facilities with 33. Pennsylvania and Michigan have the next-largest numbers of facilities with 21 and 19 sites, respectively. Sewage sludge incinerator emissions are currently regulated under 40 CFR Part 60, Subpart O and 40 CFR Part 61, Subparts C and E. Subpart O in Part 60 establishes a New Source Performance Standard for particulate matter. Subparts C and E of Part 61--National Emission Standards for Hazardous Air Pollutants (NESHAP)--establish emission limits for beryllium and mercury, respectively. In 1989, technical standards for the use and disposal of sewage sludge were proposed as 40 CFR Part 503, under authority of Section 405 of the Clean Water Act. Subpart G of this proposed Part 503 proposes to establish national emission limits for arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, and total hydrocarbons from sewage sludge incinerators.
    [Show full text]
  • Energy Recovery from Sewage Sludge: the Case Study of Croatia
    energies Article Energy Recovery from Sewage Sludge: The Case Study of Croatia Dinko Đurđevi´c 1,* , Paolo Blecich 2 and Željko Juri´c 1 1 Energy Institute Hrvoje Požar, 10000 Zagreb, Croatia; [email protected] 2 Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected] Received: 26 April 2019; Accepted: 16 May 2019; Published: 20 May 2019 Abstract: Croatia produced 21,366 tonnes of dry matter (DM) sewage sludge (SS) in 2016, a quantity expected to surpass 100,000 tonnes DM by 2024. Annual production rates for future wastewater treatment plants (WWTP) in Croatia are estimated at 5.8–7.3 Nm3/people equivalent (PE) for biogas and 20–25 kgDM/PE of sewage sludge. Biogas can be converted into 12–16 kWhel/PE of electricity and 19–24 kWhth/PE of heat, which is sufficient for 30–40% of electrical and 80–100% of thermal autonomy. The WWTP autonomy can be increased using energy recovery from sewage sludge incineration by 60% for electricity and 100% of thermal energy (10–13 kWhel/PE and 30–38 kWhth/PE). However, energy for sewage sludge drying exceeds energy recovery, unless solar drying is performed. 2 The annual solar drying potential is estimated between 450–750 kgDM/m of solar drying surface. The lower heating value of dried sewage sludge is 2–3 kWh/kgDM and this energy can be used for assisting sludge drying or for energy generation and supply to WWTPs. Sewage sludge can be considered a renewable energy source and its incineration generates substantially lower greenhouse gases emissions than energy generation from fossil fuels.
    [Show full text]
  • Safe Use of Wastewater in Agriculture Safe Use of Safe Wastewater in Agriculture Proceedings No
    A UN-Water project with the following members and partners: UNU-INWEH Proceedings of the UN-Water project on the Safe Use of Wastewater in Agriculture Safe Use of Wastewater in Agriculture Wastewater Safe of Use Proceedings No. 11 No. Proceedings | UNW-DPC Publication SeriesUNW-DPC Coordinated by the UN-Water Decade Programme on Capacity Development (UNW-DPC) Editors: Jens Liebe, Reza Ardakanian Editors: Jens Liebe, Reza Ardakanian (UNW-DPC) Compiling Assistant: Henrik Bours (UNW-DPC) Graphic Design: Katja Cloud (UNW-DPC) Copy Editor: Lis Mullin Bernhardt (UNW-DPC) Cover Photo: Untited Nations University/UNW-DPC UN-Water Decade Programme on Capacity Development (UNW-DPC) United Nations University UN Campus Platz der Vereinten Nationen 1 53113 Bonn Germany Tel +49-228-815-0652 Fax +49-228-815-0655 www.unwater.unu.edu [email protected] All rights reserved. Publication does not imply endorsement. This publication was printed and bound in Germany on FSC certified paper. Proceedings Series No. 11 Published by UNW-DPC, Bonn, Germany August 2013 © UNW-DPC, 2013 Disclaimer The views expressed in this publication are not necessarily those of the agencies cooperating in this project. The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of the UN, UNW-DPC or UNU concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Unless otherwise indicated, the ideas and opinions expressed by the authors do not necessarily represent the views of their employers.
    [Show full text]
  • Biosolids Management in New York State
    Biosolids Management in New York State MARCH 2018 DIVISION OF MATERIALS MANAGEMENT | 625 BROADWAY, ALBANY, NY 12233-7253 Preface This report is an update to the Division of Materials Management 2011 edition of “Biosolids Management in New York State.” It provides the most current information available concerning biosolids management practices in New York State. Biosolids was previously called sewage sludge. 6 NYCRR Part 360 regulations define biosolids as: the accumulated semi-solids or solids resulting from treatment of wastewaters from publicly or privately owned or operated sewage treatment plants. Biosolids does not include grit or screenings, or ash generated from the incineration of biosolids. We would like to thank all chief operators and managers of the wastewater treatment facilities in New York State that responded to our survey questionnaires. The report could not be completed as comprehensively without their assistance. Any comments, questions, or requests for specific data regarding this report may be sent to Molly Baker at [email protected]. Table of Contents Findings Summary ......................................................................................................................................... 1 Biosolids Management Survey ...................................................................................................................... 3 Sources of Information ............................................................................................................................. 3 Biosolids
    [Show full text]
  • Sewage (Wastewater) Treatment*
    Sewage (Wastewater) Treatment* Sewage, or wastewater, includes all the water Primary Sewage Treatment from a household that is used for washing and toilet The usual first step in sewage treatment is called wastes. Rainwater flowing into street drains and primary sewage treatment (Figure 2). In this proc- some industrial wastes enter the sewage system in ess, large floating materials in incoming wastewater many cities. Sewage is mostly water and contains are screened out, the sewage is allowed to flow little particulate matter, perhaps only 0.03%. Even so, through settling chambers to remove sand and similar in large cities the solid portion of sewage can total gritty material, skimmers remove floating oil and more than 1000 tons of solid material per day. grease, and floating debris is shredded and ground. Until environmental awareness intensified, a After this step, the sewage passes through sedimenta- surprising number of large American cities had only tion tanks, where more solid matter settles out. Sew- a rudimentary sewage treatment system or no system age solids collecting on the bottom are called at all. Raw sewage, untreated or nearly so, was sim- sludge—at this stage, primary sludge. About 40– ply discharged into rivers or oceans. A flowing, well- 60% of suspended solids are removed from sewage aerated stream is capable of considerable self- by this settling treatment, and flocculating chemicals purification. Therefore, until expanding populations that increase the removal of solids are sometimes and their wastes exceeded this capability, this casual added at this stage. Biological activity is not particu- treatment of municipal wastes did not cause prob- larly important in primary treatment, although some lems.
    [Show full text]
  • The Causes of Urban Stormwater Pollution
    THE CAUSES OF URBAN STORMWATER POLLUTION Some Things To Think About Runoff pollution occurs every time rain or snowmelt flows across the ground and picks up contaminants. It occurs on farms or other agricultural sites, where the water carries away fertilizers, pesticides, and sediment from cropland or pastureland. It occurs during forestry operations (particularly along timber roads), where the water carries away sediment, and the nutrients and other materials associated with that sediment, from land which no longer has enough living vegetation to hold soil in place. This information, however, focuses on runoff pollution from developed areas, which occurs when stormwater carries away a wide variety of contaminants as it runs across rooftops, roads, parking lots, baseball diamonds, construction sites, golf courses, lawns, and other surfaces in our City. The oily sheen on rainwater in roadside gutters is but one common example of urban runoff pollution. The United States Environmental Protection Agency (EPA) now considers pollution from all diffuse sources, including urban stormwater pollution, to be the most important source of contamination in our nation's waters. 1 While polluted runoff from agricultural sources may be an even more important source of water pollution than urban runoff, urban runoff is still a critical source of contamination, particularly for waters near cities -- and thus near most people. EPA ranks urban runoff and storm-sewer discharges as the second most prevalent source of water quality impairment in our nation's estuaries, and the fourth most prevalent source of impairment of our lakes. Most of the U.S. population lives in urban and coastal areas where the water resources are highly vulnerable to and are often severely degraded by urban runoff.
    [Show full text]
  • Overview of Anaerobic Digestion for Municipal Solid Waste
    Global Methane Initiative Overview of Anaerobic Digestion for Municipal Solid Waste Updated: October 2016 1 About This Presentation . Introduces the process of anaerobic digestion (AD) for municipal solid waste (MSW) . Provides an overview of anaerobic digestion microbiology . Helps you understand how you might benefit from AD . Guides you through the key areas to consider when developing an AD project . Reviews the status of AD globally and provides selected case studies Using Bookmarks to Navigate This presentation contains bookmarks to help you navigate. Using the panel on the left, click the bookmark to jump to the slide. For Chrome users, the bookmarks can be viewed by clicking on the bookmark icon ( ) at the top right of the screen. 2 Global Methane Initiative GMI is a voluntary, multilateral partnership that aims to reduce global methane emissions and to advance the abatement, recovery and use of methane as a valuable clean energy source. OBJECTIVES BENEFITS . Reduce anthropogenic methane . Decline in methane concentrations emissions and advance the and methane utilization will result recovery and use of methane in: while: – Sustainability – Enhancing economic growth – Energy security – Promoting energy security – Health and safety – Improving local air quality – Profitability and public health. 3 GMI Partners . Grew from 14 to 42 Partner governments, plus the European Commission . Accounts for nearly 70% of global anthropogenic methane emissions 4 Main Menu 1. Introduction – what is AD and why should it interest me? Click here for an introduction to AD 2. Is AD suitable for me? Click here for more info about the potential for AD 3. Step-by-step guide Click here for detailed information about the key issues to consider when developing an AD project 4.
    [Show full text]
  • A Review of Pretreatment Methods to Enhance Solids Reduction During
    applied sciences Review A Review of Pretreatment Methods to Enhance Solids Reduction during Anaerobic Digestion of Municipal Wastewater Sludges and the Resulting Digester Performance: Implications to Future Urban Biorefineries Bimi Shrestha 1, Rafael Hernandez 1, Dhan Lord B. Fortela 1, Wayne Sharp 2, Andrei Chistoserdov 3, Daniel Gang 2 , Emmanuel Revellame 4, William Holmes 5 and Mark E. Zappi 1,* 1 Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; [email protected] (B.S.); [email protected] (R.H.); [email protected] (D.L.B.F.) 2 Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; [email protected] (W.S.); [email protected] (D.G.) 3 Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; [email protected] 4 Department of Industrial Technology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; [email protected] 5 Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA 70503, USA; [email protected] * Correspondence: [email protected] Received: 18 November 2020; Accepted: 18 December 2020; Published: 21 December 2020 Abstract: The rapid increase in the population is expected to result in the approaching of design capacity for many US wastewater treatment plants (WWTPs) over the next decade. WWTPs treat both municipal and industrial wastewater influents, resulting in the production of biosolids after digestion. Biogas, a potential recovered alternative energy source, is also produced as an output from successful anaerobic digestion. More than 7M of dry tons/year of biosolids produced in the US are most often disposed in either landfills or land-applied (~80%).
    [Show full text]
  • REVIEW of TURBIDITY: Information for Regulators and Water Suppliers
    WHO/FWC/WSH/17.01 WATER QUALITY AND HEALTH - TECHNICAL BRIEF TECHNICAL REVIEW OF TURBIDITY: Information for regulators and water suppliers 1. Summary This technical brief provides information on the uses and significance of turbidity in drinking-water and is intended for regulators and operators of drinking-water supplies. Turbidity is an extremely useful indicator that can yield valuable information quickly, relatively cheaply and on an ongoing basis. Measurement of turbidity is applicable in a variety of settings, from low-resource small systems all the way through to large and sophisticated water treatment plants. Turbidity, which is caused by suspended chemical and biological particles, can have both water safety and aesthetic implications for drinking-water supplies. Turbidity itself does not always represent a direct risk to public health; however, it can indicate the presence of pathogenic microorganisms and be an effective indicator of hazardous events throughout the water supply system, from catchment to point of use. For example, high turbidity in source waters can harbour microbial pathogens, which can be attached to particles and impair disinfection; high turbidity in filtered water can indicate poor removal of pathogens; and an increase in turbidity in distribution systems can indicate sloughing of biofilms and oxide scales or ingress of contaminants through faults such as mains breaks. Turbidity can be easily, accurately and rapidly measured, and is commonly used for operational monitoring of control measures included in water safety plans (WSPs), the recommended approach to managing drinking-water quality in the WHO Guidelines for Drinking-water Quality (WHO, 2017). It can be used as a basis for choosing between alternative source waters and for assessing the performance of a number of control measures, including coagulation and clarification, filtration, disinfection and management of distribution systems.
    [Show full text]