Stripe-Winged Grasshopper a Medium-Large Grasshopper: Males Reach

Total Page:16

File Type:pdf, Size:1020Kb

Stripe-Winged Grasshopper a Medium-Large Grasshopper: Males Reach Stripe-winged Grasshopper * Rattle Grasshopper I Slcl/o/)()t!Jrlfs Iil/mllfS f's()pfJ/ls siridlf/lfs A medium-large grasshopper: males reach A largish species; males reach 25mm long, 19mm and females 26mm long. They are but females may be up to 40mm. They are basically green, often mottled, and the dull mottled brownish, with a distinct keel males usually have a red tip to the ab• on the pronotum (see p.66). In flight, the domen. Both sexes have a curved white hindwings are bright orange-red with a nar• mark on the forewing, and the female has a row dark margin, and the insects make a white stripe along the edge. The song is a distinct rattling sound as they fly. This and distinctive wheezy buzzing that rises and the Blue-winged Grasshopper, below, falls in pitch, lasting 10-20 seconds. belong to a group of grasshoppers with Habitat Dry grassland and heath land coloured wings, visible as 'flash coloration' areas. in flight. Status and distribution Locally com• Habitat Rough, warm, grassy areas, mon in the UK in Sand E Eng!and; WIde• including the uplands. spread and generally common on the Status and distribution Local, from S Continent, from S Scandinavia southwards. Scandinavia southwards. Season 7-10. Season 7-10. Similar species Similar species Lesser Mottled Grasshopper S. stig• * Red-winged Grasshopper Oedipoda matieus resembles a small version of S. lin• germanico is very similar, but differs in hav• eatus, with females reaching 20mm long. ing the pronotum keel broken by a distinct The white 'comma' on the wing is less well notch; the forewings are more striped, and marked. Restricted in Britain to the Isle of the hindwings have a broader dark margin. Man, but more widespread in Europe from A local, mainly southern species. S Scandinavia southwards. * Blue-winged Grasshopper * Green Mountain Grasshopper Ocdif)()da cacrtl/esccl/s Miramcl/a a/pil/a This species is very similar in size and struc• An attractive medium-large grasshopper; ture to the red-winged species above, females reach about 30mm, males up to especially O. germanico, but differs in having 23mm. The colour is bright green, strongly bright blue hindwings, broadly edged with marked with black, especially in male, and black, and ending in a clear tip. The overall the hind legs are partly red. The wings are body colour can vary according to the habi• very small, brownish and widely separated. tat in which the insect lives. Habitat Montane grasslands from about Habitat Occurs in dry, sunny, partly bare I,OOOmupwards. places, such as rocky grassland and old Status and distribution Widespread in quarries. suitable habitats from Germany south• Status and distribution Locally abun• wards. dant, from S Scandinavia southwards. Season 6-9. Season 7-10. Similar species Similar species * Podisma pedestris occurs in similar habi• * Sphingonotus caerulans is more slender, tats, but is basically brown, marked with with longer wings. The hindwings are pale yellow and black. Its distribution is broadly blue, without a dark margin. Widespread similar, though it is found at lower altitudes. but local in dry places on the Continent. 72 ORTHOPTERA Groundhoppers, Family Season All year, in suitable weather. T etrigidae Similar species * T. tenuicornis is more thick-set and has A small group of rather inconspicuous slender antennae; there are usually 2 dark insects that have a pronotum which spots on the pronotum. In dry habitats extends back over the whole abdomen, and through continental Europe, rarest in the is sometimes prolonged beyond it. The west. forewings are reduced to scales, but the * T. biPunaoto is very similar to T. tenuicor• hindwings are well developed. They are all nis, but has shorter, thicker antennae, and vegetarian, and overwinter as adults or the 2 pronotum spots are especially well nymphs. They have no discernible song. marked. Widespread, especially in dry They are closely I-elated to the grasshop• places. pers, Acrididae, and resemble them super• ficially, but close examination reveals the Slender Groundhopper very different pronotum structure (see Telri:>: s1I/m/ala illustration below and on p.66). A slightly longer insect than the Common Common Groundhopper Groundhopper, reaching about ISmm to -- the tip of the pronotum. In this species, the pronotum extends well beyond the end of the abdomen, and the hindwings reach only to the end of the pronotum. The pronotum is less strongly keeled than in the above species. They can fly readily, and will groundhopper also swim. Habitat Damp places, often close to Common Groundhopper water. Telri:>: IIl1d1l/ala Status and distribution Local in the UK A small brown insect, with a body length of north as far as Lincolnshire; widespread about IOmm. In this species, the pronotum throughout the area on the Continent. reaches to about the end of the abdomen, Season Virtually all year. and is strongly arched; the wings are Similar species shorter than the pronotum. Cepero's Groundhopper T. ceperoi is Habitat Damp, but not usually wet places hard to separate from T. subu/oto In the such as woodland clearings, margins of field. It is slightly smaller, often more mot• Slender Groundhopper lakes and old pasture, where there is plenty tled, and the head is parallel-sided when of moss. seen from above. Rare in the UK. only Status and distribution Widespread occurring close to the S coast; a southern and locally frequent throughout the UK and species on the Continent, occurring mainland W Europe. patchily further north. 74 ORTHOPTERA Bush-crickets, Family Wart-biter Tettigoniidae Decticus verrucivorus A large and bulky insect, with a body length Although similar in appearance to the true of up to 3Bmm (male) and 4Smm (female). It grasshoppers in some respects, the bush• is predominantly green, mottled with brown crickets differ in possessing very long patches, and with brown eyes, though rather antennae (usually longer than the body), variable. The ovipositor is long and ~Iightly and the females have dagger-like oviposi• curved. Its call consists of long bursts of tick• tors. The wings are frequently much re• ing sounds, gradually speeding up, produced duced. Bush-crickets are more nocturnal mainly in sunny conditions. than grasshoppers. Habitat Open grassy places, especially in the uplands, and heaths. Long-winged Conehead Status and distribution Rare in the UK, Conocepha/us disc%r confined to a few extreme southern sites; A rather small, slender bush-cricket; its widespread on the Continent. body length is about ISmm, but the anten• Season 7-10. nae are much longer. Colour mainly green, Similar species with brown wings and a brown stripe on * Gampsodeis glabra is very similar in shape, the back. The female's ovipositor is virtually but smaller (up to 26mm, both sexes), and straight. The song consists of long bursts of the ovipositor is slightly down-curved. gentle sewing-machine ticking, of constant Local in similar habitats on the Continent, tone. absent further north. Habitat Long grass, in both dry and damp sites, often in river valleys. Great Green Bush-cricket Status and distribution Very local in Tettigonia viridissima the UK, and entirely southern, but it is Northern Europe's largest bush-cricket, gradually spreading inland; on the Conti• similar in body size to Wart-biter, but wIth nent, it is widespread in N Europe. south• longer wings. Both sexes are primarily wards from N Germany. green, with a brown stripe down the back, Season 7-10. and green eyes. Ovipositor long, reaching Similar species the tip of the wings, slightly down-curved. Short-winged Conehead C. dorsalis dif• The song is a loud continuous bicycle-like fers in having very short wings (except for ticking, which continues well into the night. a small percentage of the population), a Habitat Many types of rough vegetation, curved ovipositor, and a song that varies in from long grass to trees. intensity. It is local and mainly coastal in Status and distribution Mainly coastal the UK, from Yorkshire southwards, but in the UK, from Norfolk to Pembrokeshire; is found throughout the area on the widespread on the Continent except in the Continent. north and in mountains. * Ruspolia nitidula is a longer insect, up to Season 7-10. 30mm, with long green wings exceeding Similar species the abdomen in length, and a long slender * T. cantans is slightly smaller, and has much ovipositor. Locally common intall grassland shorter wings, so the ovipositor stands out from S Germany southwards. more clearly. Locally common in Europe in montane grasslands, from which the Great Green Bush-cricket is usually absent. 76 ORTHOPTERA Bog Bush-cricket strongly curved upwards. The call is a sin• /v1e/riu!'/ITd !,rd(/;V!I{iTd gle sho"t high-pitched bleat, repeated fre• A bulky but quite short insect; body length quently, well into the night. 15-18mm. Colour usually dark brown with Habitat Almost any rough vegetation. green on the pronotum and forewings, but Status and distribution Very common may be almost all bmwn (rather like Dark in the south of the UK, local elsewhere; 'i) Bush-cricket, see below). The ovipositor is widespread and common on the Conti• 8-1 Omm long, slightly curved upwards. The nent. song is a series of short chirrups, in long Season 7-11. sequences. Habitat Mainlya bog/wet heath species in Grey Bush-cricket the UK, but also in damp meadows on the I'/'Ilve/cis ,rI/IIi/IlIIl(/d/d Continent. Medium-sized, up to 22mm long. Rather Status and distribution Local and similar in colou,-ing to Dark Bush-cricket, mainly southern in UK, widespread and but is not bright yellow below, and both quite frequent on the Continent. sexes have long wings, extending beyond Similar species the abdomen.
Recommended publications
  • Lesson 3 Life Cycles of Insects
    Praying Mantis 3A-1 Hi, boys and girls. It’s time to meet one of the most fascinating insects on the planet. That’s me. I’m a praying mantis, named for the way I hold my two front legs together as though I am praying. I might look like I am praying, but my incredibly fast front legs are designed to grab my food in the blink of an eye! Praying Mantis 3A-1 I’m here to talk to you about the life stages of insects—how insects develop from birth to adult. Many insects undergo a complete change in shape and appearance. I’m sure that you are already familiar with how a caterpillar changes into a butterfly. The name of the process in which a caterpillar changes, or morphs, into a butterfly is called metamorphosis. Life Cycle of a Butterfly 3A-2 Insects like the butterfly pass through four stages in their life cycles: egg, larva [LAR-vah], pupa, and adult. Each stage looks completely different from the next. The young never resemble, or look like, their parents and almost always eat something entirely different. Life Cycle of a Butterfly 3A-2 The female insect lays her eggs on a host plant. When the eggs hatch, the larvae [LAR-vee] that emerge look like worms. Different names are given to different insects in this worm- like stage, and for the butterfly, the larva state is called a caterpillar. Insect larvae: maggot, grub and caterpillar3A-3 Fly larvae are called maggots; beetle larvae are called grubs; and the larvae of butterflies and moths, as you just heard, are called caterpillars.
    [Show full text]
  • Coastal Popuiations of the Wartbiter to Biotope
    Colour variation in two coastal popuiations of the wartbiter (Decticus verrucivorus (L.); Insecta: Orthoptera) in relation to biotope Rolf Tienstra P.G. Otterweg 5 8459 EV Luinjeberd Photographs: T. Tienstra - van derStaak, exceptfor nrs. 1,3 and 4 by the author Samenvatting In de jaren ’60 kwamen in het Gooi nog wrattenbijters (Decticus verrucivorus) voor, verdeeld over 2 popula- ties met elk zo’n 100 zingende mannetjes. Deze dieren hadden minimale afmetingen en waren vrijwel altijd van een donker-blauwgroene kleur. Het analis-cubitalis foto of veld (a, 5) was eveneens donkergroen, zeer don- kerbruin. Toen ik in 1981 tijdens een bezoek aan het Deense Hanstholm reservaat dezelfde kleurvariëteit van kwam ik de de wrattenbijter aantrof, tot hypothese van een ‘atlantische vorm’, die kustheiden van Noordwest- Europa zou bewonen. In 1992 moest ik deze veronderstelling laten vallen: in dat jaar bezocht ik grote delen van het schiereiland Thy en hoorde duizenden wrattenbijters sjirpen. Ze kwamen in verschillende biotopen voor, waren heel gevarieerd van kleur en hadden behoorlijke afmetingen. Dieren met een blauwgroene kop en pronotum werden, naast andere variaties, echter uitsluitend in de heidehabitat aangetroffen (bijlage 1). dit ik In artikel probeer de zeer karakteristieke Gooise dierente duiden als aanpassingen aan een zeer eenzijdi- Figuur 1. locatlon studied sites: A. Gooi (Nl), B. Thy (Den.) ge habitat, nl. de dofgroene, door menselijke invloed ontstane struikheide-akker (Genisto anglicae-Callune- tatie, die, als de schapen enige jaren geleden het De vallen hierin min- betreffende bezocht tum). donkergroene wrattenbijters perceel hebben, over grote opper- der op dan de lichtgroen gekleurde. Feitelijk bestaat het vlakten tot gelijke hoogte is uitgegroeid (foto 1).
    [Show full text]
  • Populations of the Wartbiter to Biotope
    Dimensions in two coastal populations of the wartbiter (Decticus verrucivorus (L.)) in relation to biotope R.T. Tienstra P.G. Otterweg 5 8549 EV Luinjeberd Samenvatting biotope (see De Smidt, 1981), as opposed to the greater In een vorig artikel (Tientra, 1992a) heb ik de kleurvaria- variability of the Thy animals, caused by a much more and former tie binnen de wrattenbijterpopulaties van het Gooi en Thy varied biotope, consisting of heathland, dunes (Denemarken) besproken. agricultural vegetation. will the differences in dimensions of Hier komt het verschil in afmetingen tussen dieren van In this article I treat deze locaties aan de orde. the animals from these two areas. De Gooise wrattenbijters hebben minimale afmetingen (tabel 1). Dit kan te maken hebben met het ontbreken van 1. Size I voldoende eiwitrijke voeding in de arme Genista anglicae The Gooi wartbiters were extremely small (Table 1). their - Callunetum vegetatie, de door eeuwenlange begrazing consider this to be another result of differences in met schaapskudden ontstane heide-akker, die in het Gooi biotope. The larvae of Decticus verrucivorus are probably the in de jaren ’60, vóórdat vergrassing en verbossing toesloe- predominanüy camivorous (Cherrill, 1989); adults, habitat of are herbivorous: in gen, de belangrijkste was van de volwassen dieren. probably out sheer necessity, capti- brunneus and Op Thy bevinden de dieren zich in een zeer gevarieerd vity they immediately hunt for Chorthippus biotoop en ze hebben dan ook flinke afmetingen. De die- C. albomarginatus, and this from the very start of their ren van de heidehabitatlijken hier eveneens iets kleiner te captivity. In their natural habitat in the Gooi area, a dry zijn (tabel 1).
    [Show full text]
  • ARTICULATA 1993 8(2): 1 -22 SYSTEMATIK to the Knowledge Of
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Articulata - Zeitschrift der Deutschen Gesellschaft für Orthopterologie e.V. DGfO Jahr/Year: 1993 Band/Volume: 8_2_1993 Autor(en)/Author(s): Storozhenko Sergey Artikel/Article: To the knowledge of the tribe Melanoplini (Orthoptera, Acrididae: Catantopinae) of the Eastern Palearctlca 1-22 Deutschen Gesellschaft für Orthopterologie e.V.; download http://www.dgfo-articulata.de/ ARTICULATA 1993 8(2): 1 -22 SYSTEMATIK To the knowledge of the tribe Melanoplini (Orthoptera, Acrididae: Catantopinae) of the Eastern Palearctlca Sergey Storozhenko Abstract Data on the grasshoppers of the tribe Melanoplini SCUDDER, 1897 (= Podismini JACOBSON, 1905 = Parapodisminae INOUE, 1985, syn. n) of Eastern Palearctica are given. Podisma kanoi sp. n. and Podisma sapporensis ashibetsuensis ssp. n. from Japan are described. The new synonyms are established: Rhinopodisma MISTSHENKO, 1954 = Aserratus HUANG, 1981, syn. n., Sinopodisma CHANG, 1940 = Pedopodisma ZHENG, 1980, syn. n., Parapodisma MISTSHENKO, 1947 = Pseudoparapodisma INOUE, 1985, syn. n., Monopterus FISCHER-WALDHEIM, 1846 = Bohemanella RAMME, 1951, syn.n. Tribe Melanoplini SCUDDER, 1897 Type genus: Melanoplus STAL, 1873. Notes The tribe Melanoplini was established by S.SCUDDER (1897) as a group Melanopli. JACOBSON (1905) proposed Podismini as a new name for this group. In the most modem classification the position of tribe Melanoplini is following: MISTSHENKO (1952) considered it as a tribe Podismini of subfamily Catanto­ pinae (Acrididae); UVAROV (1966) as Catantopinae (without division on tribes); DIRSH (1975) as subfamily Podisminae of family Catantopidae; HARZ (1975) as tribe Podismini of subfamily Catantopinae (Acrididae); VICKERY & KEVAN (1983) as subfamily Melanoplinae of family Acrididae with two tribes (Melanoplini and Podismini) and YIN (1984) as subfamily Podisminae of family Oedipodidae.
    [Show full text]
  • Wax, Wings, and Swarms: Insects and Their Products As Art Media
    Wax, Wings, and Swarms: Insects and their Products as Art Media Barrett Anthony Klein Pupating Lab Biology Department, University of Wisconsin—La Crosse, La Crosse, WI 54601 email: [email protected] When citing this paper, please use the following: Klein BA. Submitted. Wax, Wings, and Swarms: Insects and their Products as Art Media. Annu. Rev. Entom. DOI: 10.1146/annurev-ento-020821-060803 Keywords art, cochineal, cultural entomology, ethnoentomology, insect media art, silk 1 Abstract Every facet of human culture is in some way affected by our abundant, diverse insect neighbors. Our relationship with insects has been on display throughout the history of art, sometimes explicitly, but frequently in inconspicuous ways. This is because artists can depict insects overtly, but they can also allude to insects conceptually, or use insect products in a purely utilitarian manner. Insects themselves can serve as art media, and artists have explored or exploited insects for their products (silk, wax, honey, propolis, carmine, shellac, nest paper), body parts (e.g., wings), and whole bodies (dead, alive, individually, or as collectives). This review surveys insects and their products used as media in the visual arts, and considers the untapped potential for artistic exploration of media derived from insects. The history, value, and ethics of “insect media art” are topics relevant at a time when the natural world is at unprecedented risk. INTRODUCTION The value of studying cultural entomology and insect art No review of human culture would be complete without art, and no review of art would be complete without the inclusion of insects. Cultural entomology, a field of study formalized in 1980 (43), and ambitiously reviewed 35 years ago by Charles Hogue (44), clearly illustrates that artists have an inordinate fondness for insects.
    [Show full text]
  • Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815)
    Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815) Pierre-Etienne Stockland Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2017 Etienne Stockland All rights reserved ABSTRACT Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815) Pierre-Etienne Stockland Naturalists, state administrators and farmers in France and its colonies developed a myriad set of techniques over the course of the long eighteenth century to manage the circulation of useful and harmful insects. The development of normative protocols for classifying, depicting and observing insects provided a set of common tools and techniques for identifying and tracking useful and harmful insects across great distances. Administrative techniques for containing the movement of harmful insects such as quarantine, grain processing and fumigation developed at the intersection of science and statecraft, through the collaborative efforts of diplomats, state administrators, naturalists and chemical practitioners. The introduction of insectivorous animals into French colonies besieged by harmful insects was envisioned as strategy for restoring providential balance within environments suffering from human-induced disequilibria. Naturalists, administrators, and agricultural improvers also collaborated in projects to maximize the production of useful substances secreted by insects, namely silk, dyes and medicines. A study of
    [Show full text]
  • (Orthoptera: Ensifera) ﺑﺮ اﺳﺎس وﻳﮋﮔﻲ ﻫﺎي ﺑﻴﻮاﻛﻮﺳﺘﻴﻜﻲ
    [Type text] داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ اراك ﻓﺼﻠﻨﺎﻣﻪ ﺗﺨﺼﺼﻲ ﺗﺤﻘﻴﻘﺎت ﺣﺸﺮه ﺷﻨﺎﺳﻲ ﺷﺎﭘﺎ 4668- 2008 (ﻋﻠﻤﻲ - ﭘﮋوﻫﺸﻲ) http://jer.iau-arak.ac.ir ﺟﻠﺪ 8 ، ﺷﻤﺎره 1 ، ﺳﺎل 1395 ، ( 11- )27 ﻛﻠﻴﺪ ﺷﻨﺎﺳﺎﻳﻲ 16 ﮔﻮﻧﻪ از راﺳﺖ ﺑﺎﻻن ﺷﺎﺧﻚ ﺑﻠﻨﺪ (Orthoptera: Ensifera) ﺑﺮ اﺳﺎس وﻳﮋﮔﻲ ﻫﺎي ﺑﻴﻮاﻛﻮﺳﺘﻴﻜﻲ ١ * ٣ ﺷﺒﻨﻢ ﺟﻌﻔﺮي ، ﻣﺤﻤﺪﺣﺴﻴﻦ ﻛﺎﻇﻤﻲ2 ، ﻣﺤﻤﻮد ﺷﺠﺎﻋﻲ ، ﺣﺴﻴﻦ ﻟﻄﻔﻌﻠﻲ زاده ، ﻣﺤﺴﻦ ﻣﻔﻴﺪي ﻧﻴﺴﺘﺎﻧﻚ -1 داﻧﺶ آﻣﻮﺧﺘﻪ، دﻛﺘﺮي ﺗﺨﺼﺼﻲ ﺣﺸﺮه ﺷﻨﺎﺳﻲ ﻛﺸﺎورزي، ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ ﻋﻠﻮم و ﺗﺤﻘﻴﻘﺎت ﺗﻬﺮان -2 اﺳﺘﺎد، ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ ﺗﺒﺮﻳﺰ -3 اﺳﺘﺎد، ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ ، واﺣﺪ ﻋﻠﻮم و ﺗﺤﻘﻴﻘﺎت ﺗﻬﺮان -4 داﻧﺸﻴﺎر، ﺑﺨﺶ ﺗﺤﻘﻴﻘﺎت ﮔﻴﺎه ﭘﺰﺷﻜﻲ، ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﺞ ﻛﺸﺎورزي، ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎت ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ اﺳﺘﺎن آذرﺑﺎﻳﺠﺎن ﺷﺮﻗﻲ، ﺗﺒﺮﻳﺰ -5 اﺳﺘﺎدﻳﺎر، ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﮔﻴﺎه ﭘﺰﺷﻜﻲ ﻛﺸﻮر، ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﺞ ﻛﺸﺎورزي، ﺗﻬﺮان ﭼﻜﻴﺪه ﺳﻴﮕﻨﺎل ﻫﺎي ﺻﻮﺗﻲ در ﺑﺴﻴﺎري از راﺳﺘﻪ ﻫﺎي ﺣﺸﺮات ﻣﺘﺪاول ﺑﻮده و راﺳﺖ ﺑﺎﻻن ﻳﻜﻲ از ﺷﻨﺎﺧﺘﻪ ﺷﺪه ﺗﺮﻳﻦ راﺳﺘﻪ ﻫﺎي ﺣﺸﺮات در ﻓﻌﺎﻟﻴﺖ ﻫﺎي ﺻﻮﺗﻲ ﻣﻲ ﺑﺎﺷﻨﺪ. در ﺗﺤﻘﻴﻖ ﻛﻨﻮﻧﻲ، آواز ﻓﺮاﺧﻮاﻧﻲ 16 ﮔﻮﻧﻪ از راﺳﺖ ﺑﺎﻻن ﺷﺎﺧﻚ ﺑﻠﻨﺪ ﻣﺘﻌﻠﻖ ﺑﻪ ﺧﺎﻧﻮاده ﻫﺎي Gryllotalpidae ، Gryllidae و Tettigoniidae ﺛﺒﺖ ﮔﺮدﻳﺪ. ﺻﺪاﻫﺎ در ﻃﺒﻴﻌﺖ ﻳﺎ آزﻣﺎﻳﺸﮕﺎه از ﺣﺸﺮات زﻧﺪه ﺿﺒﻂ ﺷﺪﻧﺪ. ﺳﻴﮕﻨﺎل ﻫﺎي ﺻﻮﺗﻲ ﺗﻮﺳﻂ ﻧﺮم اﻓﺰار MATLAB ( ﻧﺴﺨﻪ 2013 ) ﭘﺮدازش و ﻛﻠﻴﺪ ﺷﻨﺎﺳﺎﻳﻲ ﺗﺎ ﺳﻄﺢ ﮔﻮﻧﻪ ﺑﺮ اﺳﺎس وﻳﮋﮔﻲ ﻫﺎي ﺻﻮﺗﻲ ﺑﻪ دﺳﺖ آﻣﺪه ﻃﺮاﺣﻲ ﮔﺮدﻳﺪﻧﺪ. واژه ﻫﺎي ﻛﻠﻴﺪي : ﺳﻴﮕﻨﺎل ﻫﺎي ﺑﻴﻮاﻛﻮﺳﺘﻴﻜﻲ، آواز ﻓﺮاﺧﻮاﻧﻲ، ﺳﻴﻼﺑﻞ، اﻛﻢ، Ensifera * ﻧﻮﻳﺴﻨﺪه راﺑﻂ، ﭘﺴﺖ اﻟﻜﺘﺮوﻧﻴﻜﻲ: [email protected] ﺗﺎرﻳﺦ درﻳﺎﻓﺖ ﻣﻘﺎﻟﻪ ( /7/18 94 -) ﺗﺎرﻳﺦ ﭘﺬﻳﺮش ﻣﻘﺎﻟﻪ ( /19 /12 )94 ١١ ﺟﻌﻔﺮي و ﻫﻤﻜﺎران: ﻛﻠﻴﺪ ﺷﻨﺎﺳﺎﻳﻲ 16 ﮔﻮﻧﻪ از راﺳﺖ ﺑﺎﻻن ﺷﺎﺧﻚ ﺑﻠﻨﺪ (Orthoptera: Ensifera) ..
    [Show full text]
  • Grasshopper Life Cycle Overwinter As Nymphs
    Twostriped grasshopper Redlegged grasshopper Clearwinged grasshopper Striped grasshopper Differential grasshopper Takes bran bait well. Pest of crops, trees, shrubs, and range. Peak hatch Takes bran bait well. Pest of crops and forage. Peak hatch range: Takes bran bait well. Pest of crops and forage. Peak hatch range: Does not take bran bait. Pest of range grasses. Peak hatch range: Takes bran bait well. Pest of crops, trees, and shrubs. Peak hatch range: range: May 15 – June 15. Female body length: June 21 – July 1. Female body length: May 15 – June 15. Female body length: May 15 – June 15. Female body length: June 21 – July 1. Female body length: 1. Hatching usually occurs mid-May to late June. A few species hatch in the summer and Grasshopper Life Cycle overwinter as nymphs. Western grasshoppers produce only one generation per year 2. Grasshoppers have to shed their hard exoskeleton to grow bigger through each nymphal phase (instar) to adulthood. They often hang upside down on grass stems to molt. It takes five to seven days to complete First and second instar nymphs (or an instar. hoppers) are usually less than 3/8” Migratory grasshopper long and no wing pads are visible. 3. Most species have five nymphal instars. Spottedwinged grasshopper Takes bran bait well. Pest of crops, range, and trees. Peak hatch range: Does not take bran bait. Pest of range grasses. Peak hatch range: May 15 – June 15. Female body length: 4. The last molt results in an adult with functional May 15 – June 15. Female body length: Third and fourth instars are usually wings that allow low, evasive flights.
    [Show full text]
  • Grasshoppers
    Grasshoppers Orthoptera: Acrididae Plains Lubber Pictured grasshoppers Great crested grasshopper Snakeweed grasshoppers Primary Pest Grasshoppers • Migratory grasshopper • Twostriped grasshopper • Differential grasshopper • Redlegged grasshopper • Clearwinged grasshopper Twostriped Grasshopper, Melanoplus bivittatus Redlegged Grasshopper, Melanoplus femurrubrum Differential Grasshopper, Melanoplus differentialis Migratory Grasshopper, Melanoplus sanguinipes Clearwinged Grasshopper Camnula pellucida Diagram courtesy of Alexandre Latchininsky, University of Wyoming Photograph courtesy of Jean-Francoise Duranton, CIRAD Grasshoppers lay pods of eggs below ground Grasshopper Egg Pods Molting is not for wimps! Grasshopper Nymphs Some grasshoppers found in winter and early spring Velvet-striped grasshopper – a common spring species Grasshopper Controls • Weather (rainfall mediated primarily) • Natural enemies – Predators, diseases • Treatment of breeding areas • Biological controls • Row covers Temperature and rainfall are important mortality factors Grasshoppers and Rainfall Moisture prior to egg hatch generally aids survival – Newly hatched young need succulent foliage Moisture after egg hatch generally reduces problems – Assists spread of diseases – Allows for plenty of food, reducing competition for rangeland and crops Grasshopper predators Robber Flies Larvae of many blister beetles develop on grasshopper egg pods Blister beetle larva Fungus-killed Grasshoppers Pathogen: Entomophthora grylli Mermis nigrescens, a nematode parasite of grasshoppers
    [Show full text]
  • Pehr Kalm's Description of the Periodical Cicada, Magicicada Septendecim L.1
    PEHR KALM'S DESCRIPTION OF THE PERIODICAL CICADA, MAGICICADA SEPTENDECIM L.1 From Kongl. Svenska Vetenskaps Academiens Handlingar, 17: 101-116, 1756. Trans- lated by Esther Louise Larsen (Mrs. K. E. Doak) of Crown Point, Ind.., and submitted for publication by Professor J. J. Davis, Purdue University, Lafayette, Ind. INTRODUCTION In 1749, a heavy infestation of the periodical cicada occurred in Pennsylvania. Pehr Kalm, who was visiting there, described in detail the insect in its 18th century surroundings. His paper was published in Kongl. Svenska Vetenskaps Academiens, Handlingar, 17: 101-116, 1756, under the title "Beskrifning pa et slags Grashopper uti Norra America" (Description of a type of Grasshopper in North America). Because of the misleading title, it is doubtful that many scientists are aware of the existence of this early report on the periodical cicada. Kalm refers to the insect as a type of grasshopper, but he also says that it may well prove to be a cicada. The annual cicada, which Kalm and his contemporaries heard, was thought to be a vagrant periodical cicada. Although he was not clear on the taxonomy of the insect, his sharp observa- tions have given us an accurate account of the infestation. Among the many flying insects in North America there is a species of grass- hopper which seems to merit special discussion because of its extraordinary characteristics. The English refer to this species as locust, the Swedes, grashoppor. The Latin name may well be Cicada, maxilla utraque lineis octo transversis concavis; alarum margine inferiore lutescents. This cicada would seem to be exactly the same species as that found in the Provence and Languedoc in France, which is illustrated and described by Mr.
    [Show full text]
  • 1 Summer Smorgasbord of Environmental Learning: the Insect
    Summer Smorgasbord of Environmental Learning: The Insect Orchestra Warm summer days and nights in New Jersey come with the gentle chirping of the insect orchestra. Summer weather brings out a variety of insects that you have probably heard before. You just have to know what to listen for to detect them by sound, so let’s start listening and learning! Let’s Meet the Musicians Grasshoppers, crickets, and katydids all belong to the same taxonomy order called Orthoptera. Insects in this order share a few common characteristics including modified and long hind legs meant for jumping, chewing mouth parts, and the ability to create a unique song by rubbing specific body parts together. The reason for these insects’ songs is an attempt to attract a mate. Grasshoppe r: The mid-day pick-me-up Cricket: The evening vocalist Katydid: The late-night star Grasshoppers are a daytime insect with short antennae. They eat mainly vegetations including grasses, and leaves, but they will also eat flowers, stems, and seeds. On occasion they will scavenge for dead insects as well. As their name suggests, if you are ever walking through grasslands or a meadow keep your eye out for the hopping creatures as they prefer to be tucked away in tall grasses. You may hear them before you see them. If you hear a noise that sounds like a gentle flickering it might be a grasshopper. They “sing” or make noise by rubbing their long legs against their wings. They can detect sound by their little ears that are located on the base of their abdomen.
    [Show full text]
  • Orthoptera: Acrididae)
    bioRxiv preprint doi: https://doi.org/10.1101/119560; this version posted March 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Ecological drivers of body size evolution and sexual size dimorphism 3 in short-horned grasshoppers (Orthoptera: Acrididae) 4 5 Vicente García-Navas1*, Víctor Noguerales2, Pedro J. Cordero2 and Joaquín Ortego1 6 7 8 *Corresponding author: [email protected]; [email protected] 9 Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo 10 Vespucio s/n, Seville E-41092, Spain 11 12 13 Running head: SSD and body size evolution in Orthopera 14 1 bioRxiv preprint doi: https://doi.org/10.1101/119560; this version posted March 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 15 Sexual size dimorphism (SSD) is widespread and variable in nature. Although female-biased 16 SSD predominates among insects, the proximate ecological and evolutionary factors promoting 17 this phenomenon remain largely unstudied. Here, we employ modern phylogenetic comparative 18 methods on 8 subfamilies of Iberian grasshoppers (85 species) to examine the validity of 19 different models of evolution of body size and SSD and explore how they are shaped by a suite 20 of ecological variables (habitat specialization, substrate use, altitude) and/or constrained by 21 different evolutionary pressures (female fecundity, strength of sexual selection, length of the 22 breeding season).
    [Show full text]