Stripe-Winged Grasshopper a Medium-Large Grasshopper: Males Reach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesson 3 Life Cycles of Insects
Praying Mantis 3A-1 Hi, boys and girls. It’s time to meet one of the most fascinating insects on the planet. That’s me. I’m a praying mantis, named for the way I hold my two front legs together as though I am praying. I might look like I am praying, but my incredibly fast front legs are designed to grab my food in the blink of an eye! Praying Mantis 3A-1 I’m here to talk to you about the life stages of insects—how insects develop from birth to adult. Many insects undergo a complete change in shape and appearance. I’m sure that you are already familiar with how a caterpillar changes into a butterfly. The name of the process in which a caterpillar changes, or morphs, into a butterfly is called metamorphosis. Life Cycle of a Butterfly 3A-2 Insects like the butterfly pass through four stages in their life cycles: egg, larva [LAR-vah], pupa, and adult. Each stage looks completely different from the next. The young never resemble, or look like, their parents and almost always eat something entirely different. Life Cycle of a Butterfly 3A-2 The female insect lays her eggs on a host plant. When the eggs hatch, the larvae [LAR-vee] that emerge look like worms. Different names are given to different insects in this worm- like stage, and for the butterfly, the larva state is called a caterpillar. Insect larvae: maggot, grub and caterpillar3A-3 Fly larvae are called maggots; beetle larvae are called grubs; and the larvae of butterflies and moths, as you just heard, are called caterpillars. -
Coastal Popuiations of the Wartbiter to Biotope
Colour variation in two coastal popuiations of the wartbiter (Decticus verrucivorus (L.); Insecta: Orthoptera) in relation to biotope Rolf Tienstra P.G. Otterweg 5 8459 EV Luinjeberd Photographs: T. Tienstra - van derStaak, exceptfor nrs. 1,3 and 4 by the author Samenvatting In de jaren ’60 kwamen in het Gooi nog wrattenbijters (Decticus verrucivorus) voor, verdeeld over 2 popula- ties met elk zo’n 100 zingende mannetjes. Deze dieren hadden minimale afmetingen en waren vrijwel altijd van een donker-blauwgroene kleur. Het analis-cubitalis foto of veld (a, 5) was eveneens donkergroen, zeer don- kerbruin. Toen ik in 1981 tijdens een bezoek aan het Deense Hanstholm reservaat dezelfde kleurvariëteit van kwam ik de de wrattenbijter aantrof, tot hypothese van een ‘atlantische vorm’, die kustheiden van Noordwest- Europa zou bewonen. In 1992 moest ik deze veronderstelling laten vallen: in dat jaar bezocht ik grote delen van het schiereiland Thy en hoorde duizenden wrattenbijters sjirpen. Ze kwamen in verschillende biotopen voor, waren heel gevarieerd van kleur en hadden behoorlijke afmetingen. Dieren met een blauwgroene kop en pronotum werden, naast andere variaties, echter uitsluitend in de heidehabitat aangetroffen (bijlage 1). dit ik In artikel probeer de zeer karakteristieke Gooise dierente duiden als aanpassingen aan een zeer eenzijdi- Figuur 1. locatlon studied sites: A. Gooi (Nl), B. Thy (Den.) ge habitat, nl. de dofgroene, door menselijke invloed ontstane struikheide-akker (Genisto anglicae-Callune- tatie, die, als de schapen enige jaren geleden het De vallen hierin min- betreffende bezocht tum). donkergroene wrattenbijters perceel hebben, over grote opper- der op dan de lichtgroen gekleurde. Feitelijk bestaat het vlakten tot gelijke hoogte is uitgegroeid (foto 1). -
Populations of the Wartbiter to Biotope
Dimensions in two coastal populations of the wartbiter (Decticus verrucivorus (L.)) in relation to biotope R.T. Tienstra P.G. Otterweg 5 8549 EV Luinjeberd Samenvatting biotope (see De Smidt, 1981), as opposed to the greater In een vorig artikel (Tientra, 1992a) heb ik de kleurvaria- variability of the Thy animals, caused by a much more and former tie binnen de wrattenbijterpopulaties van het Gooi en Thy varied biotope, consisting of heathland, dunes (Denemarken) besproken. agricultural vegetation. will the differences in dimensions of Hier komt het verschil in afmetingen tussen dieren van In this article I treat deze locaties aan de orde. the animals from these two areas. De Gooise wrattenbijters hebben minimale afmetingen (tabel 1). Dit kan te maken hebben met het ontbreken van 1. Size I voldoende eiwitrijke voeding in de arme Genista anglicae The Gooi wartbiters were extremely small (Table 1). their - Callunetum vegetatie, de door eeuwenlange begrazing consider this to be another result of differences in met schaapskudden ontstane heide-akker, die in het Gooi biotope. The larvae of Decticus verrucivorus are probably the in de jaren ’60, vóórdat vergrassing en verbossing toesloe- predominanüy camivorous (Cherrill, 1989); adults, habitat of are herbivorous: in gen, de belangrijkste was van de volwassen dieren. probably out sheer necessity, capti- brunneus and Op Thy bevinden de dieren zich in een zeer gevarieerd vity they immediately hunt for Chorthippus biotoop en ze hebben dan ook flinke afmetingen. De die- C. albomarginatus, and this from the very start of their ren van de heidehabitatlijken hier eveneens iets kleiner te captivity. In their natural habitat in the Gooi area, a dry zijn (tabel 1). -
ARTICULATA 1993 8(2): 1 -22 SYSTEMATIK to the Knowledge Of
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Articulata - Zeitschrift der Deutschen Gesellschaft für Orthopterologie e.V. DGfO Jahr/Year: 1993 Band/Volume: 8_2_1993 Autor(en)/Author(s): Storozhenko Sergey Artikel/Article: To the knowledge of the tribe Melanoplini (Orthoptera, Acrididae: Catantopinae) of the Eastern Palearctlca 1-22 Deutschen Gesellschaft für Orthopterologie e.V.; download http://www.dgfo-articulata.de/ ARTICULATA 1993 8(2): 1 -22 SYSTEMATIK To the knowledge of the tribe Melanoplini (Orthoptera, Acrididae: Catantopinae) of the Eastern Palearctlca Sergey Storozhenko Abstract Data on the grasshoppers of the tribe Melanoplini SCUDDER, 1897 (= Podismini JACOBSON, 1905 = Parapodisminae INOUE, 1985, syn. n) of Eastern Palearctica are given. Podisma kanoi sp. n. and Podisma sapporensis ashibetsuensis ssp. n. from Japan are described. The new synonyms are established: Rhinopodisma MISTSHENKO, 1954 = Aserratus HUANG, 1981, syn. n., Sinopodisma CHANG, 1940 = Pedopodisma ZHENG, 1980, syn. n., Parapodisma MISTSHENKO, 1947 = Pseudoparapodisma INOUE, 1985, syn. n., Monopterus FISCHER-WALDHEIM, 1846 = Bohemanella RAMME, 1951, syn.n. Tribe Melanoplini SCUDDER, 1897 Type genus: Melanoplus STAL, 1873. Notes The tribe Melanoplini was established by S.SCUDDER (1897) as a group Melanopli. JACOBSON (1905) proposed Podismini as a new name for this group. In the most modem classification the position of tribe Melanoplini is following: MISTSHENKO (1952) considered it as a tribe Podismini of subfamily Catanto pinae (Acrididae); UVAROV (1966) as Catantopinae (without division on tribes); DIRSH (1975) as subfamily Podisminae of family Catantopidae; HARZ (1975) as tribe Podismini of subfamily Catantopinae (Acrididae); VICKERY & KEVAN (1983) as subfamily Melanoplinae of family Acrididae with two tribes (Melanoplini and Podismini) and YIN (1984) as subfamily Podisminae of family Oedipodidae. -
Wax, Wings, and Swarms: Insects and Their Products As Art Media
Wax, Wings, and Swarms: Insects and their Products as Art Media Barrett Anthony Klein Pupating Lab Biology Department, University of Wisconsin—La Crosse, La Crosse, WI 54601 email: [email protected] When citing this paper, please use the following: Klein BA. Submitted. Wax, Wings, and Swarms: Insects and their Products as Art Media. Annu. Rev. Entom. DOI: 10.1146/annurev-ento-020821-060803 Keywords art, cochineal, cultural entomology, ethnoentomology, insect media art, silk 1 Abstract Every facet of human culture is in some way affected by our abundant, diverse insect neighbors. Our relationship with insects has been on display throughout the history of art, sometimes explicitly, but frequently in inconspicuous ways. This is because artists can depict insects overtly, but they can also allude to insects conceptually, or use insect products in a purely utilitarian manner. Insects themselves can serve as art media, and artists have explored or exploited insects for their products (silk, wax, honey, propolis, carmine, shellac, nest paper), body parts (e.g., wings), and whole bodies (dead, alive, individually, or as collectives). This review surveys insects and their products used as media in the visual arts, and considers the untapped potential for artistic exploration of media derived from insects. The history, value, and ethics of “insect media art” are topics relevant at a time when the natural world is at unprecedented risk. INTRODUCTION The value of studying cultural entomology and insect art No review of human culture would be complete without art, and no review of art would be complete without the inclusion of insects. Cultural entomology, a field of study formalized in 1980 (43), and ambitiously reviewed 35 years ago by Charles Hogue (44), clearly illustrates that artists have an inordinate fondness for insects. -
Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815)
Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815) Pierre-Etienne Stockland Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2017 Etienne Stockland All rights reserved ABSTRACT Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815) Pierre-Etienne Stockland Naturalists, state administrators and farmers in France and its colonies developed a myriad set of techniques over the course of the long eighteenth century to manage the circulation of useful and harmful insects. The development of normative protocols for classifying, depicting and observing insects provided a set of common tools and techniques for identifying and tracking useful and harmful insects across great distances. Administrative techniques for containing the movement of harmful insects such as quarantine, grain processing and fumigation developed at the intersection of science and statecraft, through the collaborative efforts of diplomats, state administrators, naturalists and chemical practitioners. The introduction of insectivorous animals into French colonies besieged by harmful insects was envisioned as strategy for restoring providential balance within environments suffering from human-induced disequilibria. Naturalists, administrators, and agricultural improvers also collaborated in projects to maximize the production of useful substances secreted by insects, namely silk, dyes and medicines. A study of -
(Orthoptera: Ensifera) ﺑﺮ اﺳﺎس وﻳﮋﮔﻲ ﻫﺎي ﺑﻴﻮاﻛﻮﺳﺘﻴﻜﻲ
[Type text] داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ اراك ﻓﺼﻠﻨﺎﻣﻪ ﺗﺨﺼﺼﻲ ﺗﺤﻘﻴﻘﺎت ﺣﺸﺮه ﺷﻨﺎﺳﻲ ﺷﺎﭘﺎ 4668- 2008 (ﻋﻠﻤﻲ - ﭘﮋوﻫﺸﻲ) http://jer.iau-arak.ac.ir ﺟﻠﺪ 8 ، ﺷﻤﺎره 1 ، ﺳﺎل 1395 ، ( 11- )27 ﻛﻠﻴﺪ ﺷﻨﺎﺳﺎﻳﻲ 16 ﮔﻮﻧﻪ از راﺳﺖ ﺑﺎﻻن ﺷﺎﺧﻚ ﺑﻠﻨﺪ (Orthoptera: Ensifera) ﺑﺮ اﺳﺎس وﻳﮋﮔﻲ ﻫﺎي ﺑﻴﻮاﻛﻮﺳﺘﻴﻜﻲ ١ * ٣ ﺷﺒﻨﻢ ﺟﻌﻔﺮي ، ﻣﺤﻤﺪﺣﺴﻴﻦ ﻛﺎﻇﻤﻲ2 ، ﻣﺤﻤﻮد ﺷﺠﺎﻋﻲ ، ﺣﺴﻴﻦ ﻟﻄﻔﻌﻠﻲ زاده ، ﻣﺤﺴﻦ ﻣﻔﻴﺪي ﻧﻴﺴﺘﺎﻧﻚ -1 داﻧﺶ آﻣﻮﺧﺘﻪ، دﻛﺘﺮي ﺗﺨﺼﺼﻲ ﺣﺸﺮه ﺷﻨﺎﺳﻲ ﻛﺸﺎورزي، ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ ﻋﻠﻮم و ﺗﺤﻘﻴﻘﺎت ﺗﻬﺮان -2 اﺳﺘﺎد، ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ ﺗﺒﺮﻳﺰ -3 اﺳﺘﺎد، ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ ، واﺣﺪ ﻋﻠﻮم و ﺗﺤﻘﻴﻘﺎت ﺗﻬﺮان -4 داﻧﺸﻴﺎر، ﺑﺨﺶ ﺗﺤﻘﻴﻘﺎت ﮔﻴﺎه ﭘﺰﺷﻜﻲ، ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﺞ ﻛﺸﺎورزي، ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎت ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ اﺳﺘﺎن آذرﺑﺎﻳﺠﺎن ﺷﺮﻗﻲ، ﺗﺒﺮﻳﺰ -5 اﺳﺘﺎدﻳﺎر، ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﮔﻴﺎه ﭘﺰﺷﻜﻲ ﻛﺸﻮر، ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﺞ ﻛﺸﺎورزي، ﺗﻬﺮان ﭼﻜﻴﺪه ﺳﻴﮕﻨﺎل ﻫﺎي ﺻﻮﺗﻲ در ﺑﺴﻴﺎري از راﺳﺘﻪ ﻫﺎي ﺣﺸﺮات ﻣﺘﺪاول ﺑﻮده و راﺳﺖ ﺑﺎﻻن ﻳﻜﻲ از ﺷﻨﺎﺧﺘﻪ ﺷﺪه ﺗﺮﻳﻦ راﺳﺘﻪ ﻫﺎي ﺣﺸﺮات در ﻓﻌﺎﻟﻴﺖ ﻫﺎي ﺻﻮﺗﻲ ﻣﻲ ﺑﺎﺷﻨﺪ. در ﺗﺤﻘﻴﻖ ﻛﻨﻮﻧﻲ، آواز ﻓﺮاﺧﻮاﻧﻲ 16 ﮔﻮﻧﻪ از راﺳﺖ ﺑﺎﻻن ﺷﺎﺧﻚ ﺑﻠﻨﺪ ﻣﺘﻌﻠﻖ ﺑﻪ ﺧﺎﻧﻮاده ﻫﺎي Gryllotalpidae ، Gryllidae و Tettigoniidae ﺛﺒﺖ ﮔﺮدﻳﺪ. ﺻﺪاﻫﺎ در ﻃﺒﻴﻌﺖ ﻳﺎ آزﻣﺎﻳﺸﮕﺎه از ﺣﺸﺮات زﻧﺪه ﺿﺒﻂ ﺷﺪﻧﺪ. ﺳﻴﮕﻨﺎل ﻫﺎي ﺻﻮﺗﻲ ﺗﻮﺳﻂ ﻧﺮم اﻓﺰار MATLAB ( ﻧﺴﺨﻪ 2013 ) ﭘﺮدازش و ﻛﻠﻴﺪ ﺷﻨﺎﺳﺎﻳﻲ ﺗﺎ ﺳﻄﺢ ﮔﻮﻧﻪ ﺑﺮ اﺳﺎس وﻳﮋﮔﻲ ﻫﺎي ﺻﻮﺗﻲ ﺑﻪ دﺳﺖ آﻣﺪه ﻃﺮاﺣﻲ ﮔﺮدﻳﺪﻧﺪ. واژه ﻫﺎي ﻛﻠﻴﺪي : ﺳﻴﮕﻨﺎل ﻫﺎي ﺑﻴﻮاﻛﻮﺳﺘﻴﻜﻲ، آواز ﻓﺮاﺧﻮاﻧﻲ، ﺳﻴﻼﺑﻞ، اﻛﻢ، Ensifera * ﻧﻮﻳﺴﻨﺪه راﺑﻂ، ﭘﺴﺖ اﻟﻜﺘﺮوﻧﻴﻜﻲ: [email protected] ﺗﺎرﻳﺦ درﻳﺎﻓﺖ ﻣﻘﺎﻟﻪ ( /7/18 94 -) ﺗﺎرﻳﺦ ﭘﺬﻳﺮش ﻣﻘﺎﻟﻪ ( /19 /12 )94 ١١ ﺟﻌﻔﺮي و ﻫﻤﻜﺎران: ﻛﻠﻴﺪ ﺷﻨﺎﺳﺎﻳﻲ 16 ﮔﻮﻧﻪ از راﺳﺖ ﺑﺎﻻن ﺷﺎﺧﻚ ﺑﻠﻨﺪ (Orthoptera: Ensifera) .. -
Grasshopper Life Cycle Overwinter As Nymphs
Twostriped grasshopper Redlegged grasshopper Clearwinged grasshopper Striped grasshopper Differential grasshopper Takes bran bait well. Pest of crops, trees, shrubs, and range. Peak hatch Takes bran bait well. Pest of crops and forage. Peak hatch range: Takes bran bait well. Pest of crops and forage. Peak hatch range: Does not take bran bait. Pest of range grasses. Peak hatch range: Takes bran bait well. Pest of crops, trees, and shrubs. Peak hatch range: range: May 15 – June 15. Female body length: June 21 – July 1. Female body length: May 15 – June 15. Female body length: May 15 – June 15. Female body length: June 21 – July 1. Female body length: 1. Hatching usually occurs mid-May to late June. A few species hatch in the summer and Grasshopper Life Cycle overwinter as nymphs. Western grasshoppers produce only one generation per year 2. Grasshoppers have to shed their hard exoskeleton to grow bigger through each nymphal phase (instar) to adulthood. They often hang upside down on grass stems to molt. It takes five to seven days to complete First and second instar nymphs (or an instar. hoppers) are usually less than 3/8” Migratory grasshopper long and no wing pads are visible. 3. Most species have five nymphal instars. Spottedwinged grasshopper Takes bran bait well. Pest of crops, range, and trees. Peak hatch range: Does not take bran bait. Pest of range grasses. Peak hatch range: May 15 – June 15. Female body length: 4. The last molt results in an adult with functional May 15 – June 15. Female body length: Third and fourth instars are usually wings that allow low, evasive flights. -
Grasshoppers
Grasshoppers Orthoptera: Acrididae Plains Lubber Pictured grasshoppers Great crested grasshopper Snakeweed grasshoppers Primary Pest Grasshoppers • Migratory grasshopper • Twostriped grasshopper • Differential grasshopper • Redlegged grasshopper • Clearwinged grasshopper Twostriped Grasshopper, Melanoplus bivittatus Redlegged Grasshopper, Melanoplus femurrubrum Differential Grasshopper, Melanoplus differentialis Migratory Grasshopper, Melanoplus sanguinipes Clearwinged Grasshopper Camnula pellucida Diagram courtesy of Alexandre Latchininsky, University of Wyoming Photograph courtesy of Jean-Francoise Duranton, CIRAD Grasshoppers lay pods of eggs below ground Grasshopper Egg Pods Molting is not for wimps! Grasshopper Nymphs Some grasshoppers found in winter and early spring Velvet-striped grasshopper – a common spring species Grasshopper Controls • Weather (rainfall mediated primarily) • Natural enemies – Predators, diseases • Treatment of breeding areas • Biological controls • Row covers Temperature and rainfall are important mortality factors Grasshoppers and Rainfall Moisture prior to egg hatch generally aids survival – Newly hatched young need succulent foliage Moisture after egg hatch generally reduces problems – Assists spread of diseases – Allows for plenty of food, reducing competition for rangeland and crops Grasshopper predators Robber Flies Larvae of many blister beetles develop on grasshopper egg pods Blister beetle larva Fungus-killed Grasshoppers Pathogen: Entomophthora grylli Mermis nigrescens, a nematode parasite of grasshoppers -
Pehr Kalm's Description of the Periodical Cicada, Magicicada Septendecim L.1
PEHR KALM'S DESCRIPTION OF THE PERIODICAL CICADA, MAGICICADA SEPTENDECIM L.1 From Kongl. Svenska Vetenskaps Academiens Handlingar, 17: 101-116, 1756. Trans- lated by Esther Louise Larsen (Mrs. K. E. Doak) of Crown Point, Ind.., and submitted for publication by Professor J. J. Davis, Purdue University, Lafayette, Ind. INTRODUCTION In 1749, a heavy infestation of the periodical cicada occurred in Pennsylvania. Pehr Kalm, who was visiting there, described in detail the insect in its 18th century surroundings. His paper was published in Kongl. Svenska Vetenskaps Academiens, Handlingar, 17: 101-116, 1756, under the title "Beskrifning pa et slags Grashopper uti Norra America" (Description of a type of Grasshopper in North America). Because of the misleading title, it is doubtful that many scientists are aware of the existence of this early report on the periodical cicada. Kalm refers to the insect as a type of grasshopper, but he also says that it may well prove to be a cicada. The annual cicada, which Kalm and his contemporaries heard, was thought to be a vagrant periodical cicada. Although he was not clear on the taxonomy of the insect, his sharp observa- tions have given us an accurate account of the infestation. Among the many flying insects in North America there is a species of grass- hopper which seems to merit special discussion because of its extraordinary characteristics. The English refer to this species as locust, the Swedes, grashoppor. The Latin name may well be Cicada, maxilla utraque lineis octo transversis concavis; alarum margine inferiore lutescents. This cicada would seem to be exactly the same species as that found in the Provence and Languedoc in France, which is illustrated and described by Mr. -
1 Summer Smorgasbord of Environmental Learning: the Insect
Summer Smorgasbord of Environmental Learning: The Insect Orchestra Warm summer days and nights in New Jersey come with the gentle chirping of the insect orchestra. Summer weather brings out a variety of insects that you have probably heard before. You just have to know what to listen for to detect them by sound, so let’s start listening and learning! Let’s Meet the Musicians Grasshoppers, crickets, and katydids all belong to the same taxonomy order called Orthoptera. Insects in this order share a few common characteristics including modified and long hind legs meant for jumping, chewing mouth parts, and the ability to create a unique song by rubbing specific body parts together. The reason for these insects’ songs is an attempt to attract a mate. Grasshoppe r: The mid-day pick-me-up Cricket: The evening vocalist Katydid: The late-night star Grasshoppers are a daytime insect with short antennae. They eat mainly vegetations including grasses, and leaves, but they will also eat flowers, stems, and seeds. On occasion they will scavenge for dead insects as well. As their name suggests, if you are ever walking through grasslands or a meadow keep your eye out for the hopping creatures as they prefer to be tucked away in tall grasses. You may hear them before you see them. If you hear a noise that sounds like a gentle flickering it might be a grasshopper. They “sing” or make noise by rubbing their long legs against their wings. They can detect sound by their little ears that are located on the base of their abdomen. -
Orthoptera: Acrididae)
bioRxiv preprint doi: https://doi.org/10.1101/119560; this version posted March 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Ecological drivers of body size evolution and sexual size dimorphism 3 in short-horned grasshoppers (Orthoptera: Acrididae) 4 5 Vicente García-Navas1*, Víctor Noguerales2, Pedro J. Cordero2 and Joaquín Ortego1 6 7 8 *Corresponding author: [email protected]; [email protected] 9 Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo 10 Vespucio s/n, Seville E-41092, Spain 11 12 13 Running head: SSD and body size evolution in Orthopera 14 1 bioRxiv preprint doi: https://doi.org/10.1101/119560; this version posted March 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 15 Sexual size dimorphism (SSD) is widespread and variable in nature. Although female-biased 16 SSD predominates among insects, the proximate ecological and evolutionary factors promoting 17 this phenomenon remain largely unstudied. Here, we employ modern phylogenetic comparative 18 methods on 8 subfamilies of Iberian grasshoppers (85 species) to examine the validity of 19 different models of evolution of body size and SSD and explore how they are shaped by a suite 20 of ecological variables (habitat specialization, substrate use, altitude) and/or constrained by 21 different evolutionary pressures (female fecundity, strength of sexual selection, length of the 22 breeding season).