Effects of Control of the Invasive Plant, Phragmites Australis, on Microbes and Invertebrates in Detritus
Total Page:16
File Type:pdf, Size:1020Kb
EFFECTS OF CONTROL OF THE INVASIVE PLANT, PHRAGMITES AUSTRALIS, ON MICROBES AND INVERTEBRATES IN DETRITUS A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Science By Emmalisa Kennedy August 2008 Thesis written by Emmalisa Kennedy B.S., Hiram College, 2003 M.S., Kent State University, 2008 Approved by _______Dr. Laura G. Leff_______________________, Advisor _______Dr. Ferenc de Szalay_____________________, Advisor _______Dr. James L. Blank______________________, Chair, Department of Biological Sciences _______Dr. John Stalvey________________________, Dean, College of Arts and Sciences ii TABLE OF CONTENTS List of Tables...................................................................................................iv List of Figures.................................................................................................v Introduction.................................................................................................... 1 Wetland Function and Decomposition...............................................1 Food Web Dynamics..........................................................................2 Litter Quality...................................................................................... 5 Study Organism: Phragmites australis.............................................. 7 Control of Phragmites australis........................................................ 9 Hypotheses......................................................................................... 15 Methods......................................................................................................... 17 Study Site Description....................................................................... 17 Experimental Design.......................................................................... 18 Sample Processing............................................................................. 20 C:N Analysis...................................................................................... 21 Bacteria Analyses...............................................................................22 Ergosterol Content............................................................................. 23 Invertebrate Analysis......................................................................... 25 Statistical Analyses............................................................................ 25 Results............................................................................................................ 27 Physical and Chemical Conditions.................................................... 27 Leaf Litter Decomposition................................................................. 27 Microbial Counts and Biomass.......................................................... 30 Invertebrate Communities.................................................................. 31 Multivariate Analysis......................................................................... 33 Discussion...................................................................................................... 34 Effects of Herbiciding Phragmites.................................................... 34 Native Scirpus Litter Compared to Non-native Phragmites Litter.... 39 Overall Trends in Litter Decay.......................................................... 41 Management Implications.................................................................. 43 Future Research................................................................................. 45 Literature Cited.............................................................................................. 47 Tables............................................................................................................. 60 Figures............................................................................................................73 Appendix........................................................................................................ 91 iii LIST OF TABLES Table 1. Physicochemical conditions in the mesocosms............................... 60 Table 2. Average decay rates (k-1day) of leaf litter........................................ 61 Table 3. Repeated measures ANOVAs for leaf litter characteristics............. 62 Table 4. One-way ANOVAs of percent carbon............................................. 63 Table 5. One-way ANOVAs of percent nitrogen.......................................... 64 Table 6. Repeated measures ANOVAs for microbial communities...............65 Table 7. One-way ANOVAs of ergosterol content........................................ 66 Table 8. One-way ANOVAs of bacterial biomass......................................... 67 Table 9. Repeated measures ANOVAs for invertebrate measures................ 68 Table 10. One-way ANOVAs of taxa richness.............................................. 69 Table 11. Repeated measures ANOVAs for specific FFG and TG............... 70 Table 12. Repeated measures ANOVAs for dominant invertebrate taxa...... 71 Table 13. Principle components matrix......................................................... 72 iv LIST OF FIGURES Figure 1. Hydrograph of flood pulsing wetlands at HAERF......................... 73 Figure 2. Mesocosm cross sectional view..................................................... 74 Figure 3. Percent leaf litter remaining........................................................... 75 Figure 4. Percent organic matter of leaf litter................................................ 76 Figure 5. Percent carbon of leaf litter............................................................ 77 Figure 6. Percent nitrogen of leaf litter.......................................................... 78 Figure 7. C:N ratio of leaf litter..................................................................... 79 Figure 8. Ergosterol concentration of leaf litter............................................. 80 Figure 9. Fungal biomass on leaf litter g-1 of dry mass ................................ 81 Figure 10. Bacterial counts on leaf litter........................................................ 82 Figure 11. Bacterial biomass g-1 of dry mass................................................ 83 Figure 12. Total number of invertebrates per sample.................................... 84 Figure 13. Average number of invertebrates g-1 of dry mass........................ 85 Figure 14. Invertebrate taxa richness. g-1 of dry mass................................... 86 Figure 15. Number of detritivores g-1 of dry mass.........................................87 Figure 16. Number of detritivores g-1 of dry mass without chironomids...... 88 Figure 17. Number of collector-gatherers g-1 of dry mass............................ 89 Figure 18. Principle components analysis graph........................................... 90 v ACKNOWLEDGMENTS The enjoyment and thrill of investigating nature was instilled upon me at an early age by my grandparents Chuck and Emily Brown and my father, Tom Brown, whom I am forever grateful to for propagating this thirst for knowledge. I am endlessly blessed with support from my mother, Sheryl Wheatcroft, and my husband, Michael Kennedy, who have lent a helping hand and ear for support whenever I was in need. I gratefully thank my advisors, Dr. Laura G. Leff and Dr. Ferenc de Szalay, for their input in brainstorming to create this multidisciplinary project and for all of their time in editing and revising my work. Thank you also to Dr. Oscar Rocha, my third committee member. I am indebted to Dr. Ksenija Namjesnik-Dejanovic and Dr. Palmer in the Geology Department for help, use and repair of the HPLC. Also, I thank Dr. Mahinda Gangoda in the Department of Chemistry at Kent State University and Dr. Kurt Smemo from the Holden Arboretum for use of the CHNS machines. Full development of a student could not happen without collaboration with other graduate students whom I am thankful to. I appreciate the help from Dr. Mitali Das, Dr. Melissa Bartlett, Curtis Clevinger, Jennifer Clark, Raja Vukanti, Larry Feinstein, Jaclyn Johnston and Justin Montemarano. This project would not have been completed without the funding sources awarded to me through the Art and Margaret Herrick Aquatic Ecology Research Facility Student Research Grant in 2006 and 2007. Thank you to Arthur and Margaret Herrick for the financial support they provided. The opportunity to pursue research I am genuinely interest in was a wonderful and mind opening experience. vi INTRODUCTION Wetland Function and Decomposition Wetlands serve many important roles in global ecosystem structure and function. Some important ecosystem-level processes that are regulated by environmental attributes in wetlands are: primary production, decomposition, energy flow, export of organic materials, sedimentation and maintenance of nutrient budgets (Mitsch and Gosselink, 2000). These processes provide local and global ecosystem value by mitigating storm flooding, recharging groundwater, maintaining water quality, supporting terrestrial and aquatic food webs, and adding aesthetic value. Specifically, wetlands are highly productive habitats with net primary production of 1,000-6,000 g m-2 yr-1 (Květ and Husak, 1978) and provide a rich food base for wetland invertebrates, fish and wildlife. Furthermore, wetland habitats are essential components in global biogeochemical cycles, particularly the nitrogen, sulfur and carbon cycles. Changes to these cycles are