Anatomy: Lower Leg, Knee, & Patella Positioning

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy: Lower Leg, Knee, & Patella Positioning Reading assignment: Lower Leg Anatomy: lower leg, knee, & Merrils, Vol. 1: Chapter 6 Film Critique #3 patella Lab demonstration Positioning: lower leg Positioning: knee Reading assignment: Knee Merrils, Vol. 1: Chapter 6 Film Critique #4 & Lab demonstration Positioning: intercondylar fossa Reading assignment: Intercondylar fossa and patella & patella Merrils, Vol. 1: Chapter 6 Lab demonstration Anatomy: Femur Reading assignment: Femur Positioning: Femur Merrils, Vol. 1: Chapters 6 & 7 Film Critique #5 Lab demonstration Leg…… The leg is composed of two long bones: Tibia – medial bone; second largest bone in the body Fibula – lateral bone The tibia has several anatomical features of note. See whether you can locate each on the diagram. Proximal end: Medial condyle Lateral condyle Tibial plateaus Intercondylar eminence Tibial tuberosity Body – features anterior crest Distal end: Medial malleolus Fibular notch The head of the fibula is located at its proximal end and has a pointed apex laterally. Distally, the fibular features the lateral malleolus. The articulations between the two leg bones are discussed on Screen 1.13. Knee….. The knee joint is the articulation between the femoral condyles and the tibial plateaus. Numerous soft tissues support and reinforce the knee, including the: Menisci Cruciate ligaments Collateral ligaments These supporting soft tissue structures are enclosed in a common joint capsule. The knee joint is of the hinge type, capable of flexion and extension only. The anterior knee joint is protected by the patella and patellofemoral joint. The patella is the largest and most constant sesamoid bone. It develops in the quadriceps femoris tendon between the ages of 3 and 5 years. The anterior distal surface of the femur has a shallow triangular depression, the patellar surface between the two condyles for articulation with the patella. This articulation is termed the patellofemoral joint. This synovial gliding joint protects the knee joint. Femur…. 1.12 Femur The femur, the bone of the thigh region of the lower limb, is the longest, strongest bone in the human body. It has several anatomical features of note. Click to enlarge the illustration and see whether you can locate the following landmarks: Head Patellar surface Neck Lateral condyle Greater trochanter Medial condyle Lesser trochanter Intercondylar fossa Body Adductor tubercle Lateral epicondyle Popliteal surface Medial epicondyle Note that some of these features are only seen on either the anterior or posterior view of the femur. It is useful to try describing the location of each anatomical feature as a means of studying and understanding femoral anatomy. Knee Joint… Six articulations are formed by the bones of the lower limb. The most distal, the ankle mortise, is discussed on Screen 1.6. The most proximal, the hip joint, will be studied in the next module. The remaining four are: Proximal tibiofibular joint o Synovial diarthrosis gliding type Distal tibiofibular joint o Fibrous syndemosis Knee joint o Articulation between the femoral condyles and the tibial plateaus o Synovial diarthrosis hinge type Patellofemoral joint o Patella and patellar surface of anterior, distal femur o Synovial diarthrosis, gliding type Positioning Steps Results/Rationale Patient is seated with leg extended and affected posterior Provides AP projection surface resting on IR or supine with leg and foot in Maximizes patient comfort and cooperation position described above. IR is centered to lower leg. Centers anatomy of interest to IR Lower limb is in anatomic position. Provides true AP of tibia and fibula Tibial condyles are parallel to IR. Foot is dorsiflexed to right angle. Demonstrates ankle joint without Plantar surface is perpendicular to IR. superimposition of calcaneus Perpendicular CR enters center of lower leg. Places lower leg and both joints in center of IR and collimated field Longer limbs may require two exposures to image entire limb and adjacent joints. Collimate to 1 inch (2.5 cm) on the sides and 11⁄2 inches Demonstrates all anatomy of interest (4 cm) beyond the ankle and knee joints. Provides radiation protection Improves image quality Provide gonadal shielding. Provides radiation protection/fulfills ethical responsibility Instruct patient to hold still in position for exposure. Reduces possibility of motion Lateral Projection: Tibia and Fibula Positioning Steps Results/Rationale Patient is seated with leg extended. Provides mediolateral projection Lateral side of affected limb rests on IR or patient is Maximizes patient comfort and cooperation supine with leg and foot in position described above. IR is centered to lower leg. Centers anatomy of interest to IR Tibial condyles are perpendicular to IR. Provides true lateral of tibia and fibula Malleoli are superimposed and perpendicular to IR. Foot is dorsiflexed to right angle. Demonstrates ankle joint without superimposition of calcaneus Perpendicular CR enters center of lower leg. Places lower leg and both joints in center of IR and collimated field Longer limbs may require two exposures to image entire limb and adjacent joints. Collimate to 1 inch (2.5 cm) on the sides and 11⁄2 Demonstrates all anatomy of interest inches (4 cm) beyond the ankle and knee joints. Provides radiation protection Improves image quality Provide gonadal shielding. Provides radiation protection/fulfills ethical responsibility Instruct patient to hold still in position for exposure. Reduces possibility of motion Chapter 6, Essential 1. What degenerative conditions Projections of the of the knee are best Knee, pp. 286-297, demonstrated with weight- 300-302, and 304-305 bearing projections? 2. How does patient size affect knee radiography? Chapter 6, Essential 1. How many variations are there Projections of the for the PA axial—Holmblad Intercondylar Fossa projection for intercondylar Projections, pp. 306- fossa? 309 2. How is the degree of central ray angulation determined for the Camp-Coventry method? Chapter 6, Essential 1. What amount of knee flexion Patella and is optimal in demonstrating Patellofemoral Joint the patella in a lateral Projections, pp. 311- position? 312 and 316-317 2. What is the relationship between flexion of the knee and the appearance of the patellofemoral joint space? 3. What is the primary disadvantage of the tangential (Settegast method) in demonstrating the patellofemoral joint space? Chapter 6, Essential 1. How is the angle of the Projections of the femoral body affected by the Femur, pp. 318-321 width of the pelvis? AP Projection: Knee Positioning Steps Results/Rationale Patient is seated or supine, with leg extended. Provides AP projection Maximizes patient comfort and cooperation Table bucky is centered to knee joint. Centers anatomy of interest to IR (Located ½ inch [1.3 cm] below patellar apex.) Reduces distortion Lower limb is in anatomic position. Provides true AP of knee joint Tibial condyles are parallel to IR. CR is directed to a point ½ inch (1.3 cm) inferior to the patellar Aligns CR to open knee joint apex. Angle varies, depending on the measurement between the anterior superior iliac spine (ASIS) and the tabletop, as follows: <19 cm = 3 to 5 degrees caudad (thin pelvis) 19 to 24 cm = 0 degrees >24 cm = 3 to 5 degrees cephalad (large pelvis) Collimate to 10 x 12 inches (25 x 30 cm) field size. Demonstrates all anatomy of interest Provides radiation protection Improves image quality Provide gonadal shielding. Provides radiation protection/fulfills ethical responsibility Instruct patient to hold still in position for exposure. Reduces possibility of motion Close Window Lateral Projection: Knee Positioning Steps Results/Rationale Patient is recumbent, turned on Provides mediolateral projection affected side with lateral surface of Maximizes patient comfort and cooperation knee on table. Removes opposite limb from anatomy of interest Knee is abducted, with unaffected limb behind. Table bucky is centered to knee Centers anatomy of interest to IR joint. Knee is in lateral position with tibial Provides true lateral position of knee joint condyles perpendicular to IR. Degree of flexion relaxes muscles to demonstrate maximum Knee is flexed 20 to 30 degrees. volume of joint cavity CR angle is 5 to 7 degrees Aligns CR to open knee joint cephalad. Slight angle on the CR prevents the joint space from being Enters knee joint 1 inch (2.5 cm) obscured by the magnified image of the medial femoral condyle. distal to the medial epicondyle. Collimate to 10 x 12-inch (25 x 30- Demonstrates all anatomy of interest cm) field size. Provides radiation protection Improves image quality Provide gonadal shielding. Provides radiation protection/fulfills ethical responsibility Instruct patient to hold still in Reduces possibility of motion position for exposure. Close Window AP Projection: Knees, Standing Positioning Steps Results/Rationale Patient stands upright, back against vertical grid device. Provides AP weight-bearing projection Vertical grid device is centered to knee joints (located ½ Centers anatomy of interest to IR inch [1.3 cm] below patellar apex). Reduces distortion Weight is equally distributed on both feet, which are facing Provides weight bearing to demonstrate forward. joint narrowing Reduces risk of rotation or distortion Horizontal CR is directed perpendicular and enters ½ inch Centers knees to collimated field (1.3 cm) inferior to the patellar apices. Collimate to a 14 x 17-inch (35 x 43-cm) field size. Demonstrates all anatomy of interest Provides radiation protection
Recommended publications
  • Anatomy, Bony Pelvis and Lower Limb, Leg Bones
    NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Anatomy, Bony Pelvis and Lower Limb, Leg Bones Authors Austin J. Cantrell1; Matthew Varacallo2. Affiliations 1 University of Oklahoma College of Med. 2 Department of Orthopaedic Surgery, University of Kentucky School of Medicine Last Update: January 17, 2019. Introduction The leg is the region of the lower limb between the knee and the foot. It comprises two bones: the tibia and the fibula. The role of these two bones is to provide stability and support to the rest of the body, and through articulations with the femur and foot/ankle and the muscles attached to these bones, provide mobility and the ability to ambulate in an upright position. The tibia articulates with the femur at the knee joint. The knee joint consists of three compartments [1][2] medial tibiofemoral compartment lateral tibiofemoral compartment patellofemoral compartment At the ankle, the tibia and fibula create the articular surface for the talus. The ankle mortise is a specialized articulation providing support and optimizing motion and function through the ankle joint. A normal ankle joint ultimately optimizes and allows for physiologic mobility of the foot and its associated joints and articulations. The bones and fascia also divide the lower leg into four compartments [3][4] anterior compartment lateral compartment posterior compartment, superficial posterior compartment, deep Structure and Function The tibia is the second largest bone in the body and provides support for a significant portion of the weight-bearing forces transmitted from the rest of the body.
    [Show full text]
  • Bones of the Lower Limb Doctors Notes Notes/Extra Explanation Editing File Objectives
    Color Code Important Bones of the Lower Limb Doctors Notes Notes/Extra explanation Editing File Objectives Classify the bones of the three regions of the lower limb (thigh, leg and foot). Memorize the main features of the – Bones of the thigh (femur & patella) – Bones of the leg (tibia & Fibula) – Bones of the foot (tarsals, metatarsals and phalanges) Recognize the side of the bone. ﻻ تنصدمون من عدد ال رشائح نصها رشح زائد وملخصات واسئلة Some pictures in the original slides have been replaced with other pictures which are more clear BUT they have the same information and labels. Terminology (Team 434) شيء مرتفع /Eminence a small projection or bump Terminology (Team 434) Bones of thigh (Femur and Patella) Femur o Articulates (joins): (1) above with Acetabulum of hip bone to form the hip joint, (2) below with tibia and patella to form the knee joint. Body of femur (shaft) o Femur consists of: I. Upper end. II. Shaft. III. Lower end. Note: All long bones consist of three things: 1- upper/proximal end posterior 2- shaft anterior 3- lower/distal end I. Upper End of Femur The upper end contains: A. Head B. Neck C. Greater trochanter & D. Lesser trochanter A. Head: o Articulates (joins) with acetabulum of hip bone to form the hip joint. o Has a depression in the center called Fovea Capitis. o The fovea capitis is for the attachment of ligament of the head of Femur. o An artery called Obturator Artery passes along this ligament to supply head of Femur. B. Neck: o Connects head to the shaft.
    [Show full text]
  • Bones of Lower Limb
    BONES OF LOWER LIMB ANATOMY DEPARTMENT Dr. Sanaa Alshaarawi OBJECTIVES • At the end of the lecture the students should be able to: • Classify the bones of the three regions of the lower limb (thigh, leg and foot). • Memorize the main features of the – Bones of the thigh (femur & patella) – Bones of the leg (tibia & Fibula). – Bones of the foot (tarsals, metatarsals and phalanges) • Recognize the side of the bone BONES OF THIGH (Femur and Patella) Femur: . Articulates above with acetabulum of hip bone to form the hip joint. Articulates below with tibia and patella to form the knee joint. BONES OF THIGH (Femur and Patella) • Femur : Consists of : • Upper end • Shaft • Lower end Posterior view Anterior View UPPER END OF FEMUR • Head : • It articulates with acetabulum of hip bone to form hip joint. • Has a depression in the center (fovea capitis), for the attachment of ligament NECK of the head of femur. • Obturator artery passes along this ligament to supply head of femur. • Neck : • It connects head to the shaft. UPPER END OF FEMUR • Greater & lesser trochanters : • Anteriorly, connecting the 2 trochanters, the inter-trochanteric line, where the iliofemoral ligament is attached. • Posteriorly, the inter- trochanteric crest, on which is the quadrate tubercle (Qudratus femoris muscle). SHAFT OF FEMUR It has 3 surfaces Anterior Medial Lateral It has 3 borders Two rounded medial and lateral One thick posterior border or ridge called Anterior view Posterior view linea aspera SHAFT OF FEMUR • Anteriorly : is smooth and rounded. • Posteriorly : has a ridge, the linea aspera. • Posteriorly : below the greater trochanter is the gluteal tuberosity for attachment of gluteus M maximus muscle.
    [Show full text]
  • A Fibular Notch Approach for the Treatment of Ankle Fractures Involving the Distal Tibial Plafond
    A Fibular Notch Approach for the Treatment of Ankle Fractures Involving the Distal Tibial Plafond Tong Liu Department of Orthopaedics, Yantaishan Hospital Yiheng Cheng Department of Orthopaedics, Yantaishan Hospital Wenqing Qu ( [email protected] ) Department of Orthopaedics, Qilu Hospital(Qingdao) , Shandong University; 2 Department of Orthopedics,Yantaishan Hospital https://orcid.org/0000-0002-0099-1858 Research article Keywords: Ankle fractures, Pilon fractures, Distal tibial plafond fractures, Surgical approach, Fibular notch Posted Date: December 21st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-129852/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on February 8th, 2021. See the published version at https://doi.org/10.1186/s13018-021-02270-3. Page 1/12 Abstract BACKGROUND: Although several approaches have been used for the treatment of complex ankle fractures, there are still some ankle fractures which can not obtain ideal intraoperative exposure with these traditional approaches. The purpose of this study was to present an innovative bular notch approach in detail for the treatment of ankle fractures involving the distal tibial plafond and to present a series of patients with either functional or radiographic outcomes. METHODS: Between March 2015 and October 2018, 22 patients with distal tibial plafond fractures with concomitant bular and distal tibiobular syndesmosis injuries were treated through a bular notch approach. The details of the surgical technique were reviewed from the operative notes. Relevant data were reviewed from the medical records. The quality of fractures and syndesmosis reduction was examined using CT scans, and lateral stability of the ankle was assessed by physical examination and stress radiographs.
    [Show full text]
  • Lab Activity 9
    Lab Activity 9 Appendicular Skeleton Martini Chapter 8 Portland Community College BI 231 Appendicular Skeleton • Upper & Lower extremities • Shoulder Girdle • Pelvic Girdle 2 Humerus 3 Humerus: Proximal End Greater tubercle Lesser tubercle Head: Above the epiphyseal line Anatomical Neck Surgical neck Intertubercular groove Anterior Medial Posterior4 Deltoid Tuberosity 5 Radial Groove 6 Trochlea (Distal Humerus) Anterior Posterior Anterior Posterior 7 Capitulum (Distal Humerus) Anterior Posterior Anterior Posterior 8 Olecranon Fossa (Distal Humerus) Anterior Posterior Anterior Posterior 9 Medial Epicondyle (Distal Humerus) Anterior Posterior Anterior Posterior 10 Lateral Epicondyle (Distal Humerus) Anterior Posterior Anterior Posterior 11 Radial Fossa (Distal Humerus) Anterior Posterior Anterior Posterior 12 Coronoid Fossa (Distal Humerus) Anterior Posterior Anterior Posterior 13 Lateral Supracondylar Ridge (Distal Humerus) Anterior Posterior Anterior Posterior 14 Medial Supracondylar Ridge (Distal Humerus) Anterior Posterior Anterior Posterior 15 Humerus: Distal End/Anterior Medial Lateral Supracondylar Supracondylar Ridge Ridge Coronoid Fossa Radial fossa Lateral Medial Epicondyle Epicondyle Capitulum Trochlea 16 Humerus: Distal End/Posterior Olecranon Fossa Medial Epicondyle Lateral Epicondyle Trochlea 17 Radius • “Rotates” • On the thumb side of the forearm 18 Radius: Head 19 Radial Tuberosity 20 Ulnar Notch of the Radius 21 Ulnar Notch of the Radius 22 Radius: Interosseous Ridge 23 Styloid Process of the Radius 24 Radius Distal Anterior
    [Show full text]
  • Appendicular Skeleton
    Humerus Appendicular Skeleton Head Greater Tubercle Intertubercular Groove Lesser Tubercle Humerus Patella Deltoid Tuberosity Radius Tibia Lateral Epicondyle D L M V Ulna Fibula Medial Epicondyle Capitulum Hands Talus Trochlea Femur Calcaneus Olecrenon Fossa Intertubercular Groove Greater Tubercle Lesser Tubercle Capitulum Trochlea Head Lateral Epicondyle Medial Shoulder Epicondyle Girdle Olecrenon Fossa Muscle Attachments Proximal End Distal End Biceps & Triceps Deltoid 1 Radius Ulna Head Neck Radial Tuberosity Interosseous Crest Styloid Process Olecrenon Process Ulnar Notch Radial Notch Tuberosity L M D V Styloid Process D L M V Interosseous Crest Trochlea Radial Tuberosity Olecrenon Process Capitulum Head Medial Epicondyle Phalanges 1st 3rd Proximal Phalange 3rd Metacarpals 1st Proximal Phalange 2 Femur Head, medial Larger epicondyle, lateral Femur head Olecrenon fossa, distal Fovea capitus Olecrenon process, proximal Greater trochanter Radial notch, lateral Lesser trochanter Styloid process, towards ‘pinky’ Linea aspera Head, proximal Medial condyle Tuberosity, medial Lateral condyle Styloid towards thumb Intercondylar fossa V D L M Patellar articular surface Proximal Femur Fovea capitus Trochanteric Fossa Greater Trochanter Lesser femur humerus Trochanter Proximal Femur Medial condyle Lateral condyle Patella Patellar articular surface Intercondylar notch V D Apex Base Facet for lateral femoral condyle Distal Femur Facet for medial femoral condyle 3 Tibia Tibia Lateral condyle Lateral condyle Medial condyle Medial condyle Fibular
    [Show full text]
  • Lab Manual Appendicular Skele
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the appendicular skeleton, which is formed from the pectoral and pelvic girdles and the upper and lower limbs. View Module 7.2 Axial and Appendicular Skeleton to highlight the bones of the appendicular skeleton and compare them to those of the axial skeleton. Examine Module 11.1 Appendicular Skeleton to view only the bones of the appendicular skeleton. In addition to learning about all the bones of the appendicular skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Proximal: Trochanter: Tubercle: Tuberosity: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the appendicular skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens.
    [Show full text]
  • Study of Distal Dimensions of Tibia in Correlation with The
    International Journal of Anatomy and Research, Int J Anat Res 2018, Vol 6(2.3):5354-59. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2018.206 STUDY OF DISTAL DIMENSIONS OF TIBIA IN CORRELATION WITH THE LENGTH OF TIBIA Yogi Anupkumar Balakrishnan 1, S.Vikram *2, Chitra Prakash Rao 3, Sanjay Kumar B Revankar 4. 1 Assistant professor of Anatomy Malankara orthodox syrian church medical college, kolenchery Kerala, India. *2 Associate Professor of Anatomy A.J Institute of Medical Sciences and Research centre, Mangalore,India. 3 Professor and HOD of Anatomy A.J Institute of Medical Sciences and Research centre, Mangalore, India. 4 Assistant professor of Anatomy, A.J Institute of Medical Sciences and Research centre, Mangalore, India. ABSTRACT Background: In forensic analysis, the estimation of the stature is key in identification of an individual. The stature of an individual can be estimated from long bones especially the tibia and the femur as these have direct correlation to the height of an individual. The tibia is ideal in this application as it resists erosion and keeps its anatomical shape for long even after burial. Mechanical loading is especially high in the distal ends of long bones of the lower limb and as such they display significant inter-individual differences. The use of distal dimensions in estimation of the length of the tibia from skeletal remains has not been reported. Materials and methods: 150 dry and processed tibias irrespective of side, grossly normal and complete were randomly collected from a medical college of south India.
    [Show full text]
  • Morphological and Morphometrical Analysis of Fibula in Relation to Fibular Facet P
    Research Article Morphological and morphometrical analysis of fibula in relation to fibular facet P. Santhanam, Karthik Ganesh Mohanraj* ABSTRACT Introduction: The fibula bone is also known as the calf bone, which was introduced into anatomical nomenclature by Vesalius during the 16th century. Fibula is a slender lateral bone of the leg, the fibula is identified by a proximal head, with a twisted shaft and a distal lateral malleolus. The lower ends of the bone fibula and tibia form an anatomic and functional unit. In view of the widespread clinical relevance, the purpose of this study was to investigate the morphology and morphometric analysis of the human fibula bone in relation to fibular incisura within South Indian population group. Materials and Methods: In the present study, a total of 30 dry human fibula bones of unknown sex and without any gross abnormality will be collected from the Department of Anatomy, Saveetha Dental College, Chennai, for evaluation. With the help of Vernier caliper and ruler, the measurements such as the length, breadth, and diameter of the orbital cavity will be measured. The maximum orbital length and the maximal orbital breadth are measured to calculate the orbital index. The results obtained were analyzed, tabulated, and represented graphically. Results: After analyzing the data we come to know that diameter from upper and lower articulating facet seems to lie between 2 cm and 2.5 cm and height of lateral malleolus tend to be between 2.5 cm and 3 cm in the analyzed dry bone. About 50% of the bone sample contains nutrient foramen at inferior one-third, 40% contain at superior one-third, and only 10% contain nutrient foramen at the middle one-third.
    [Show full text]
  • Anatomy Lab: the Skeletal System Part I: Vertebrae and Thoracic Cage
    ANA Lab: Bone 1 Anatomy Lab: The skeletal system Part I: Vertebrae and Thoracic cage Spine (Vertebrae) Body Vertebral arch Vertebral canal Pedicle Lamina Spinous process Transverse process Sup. articular facets Inf. articular facets Sup. vertebral notch Inf. vertebral notch Intervertebral foramen Cervical vertebrae: 7 Typical (C3-C6) Transverse foramen C1, Atlas C2, Axis: dens C7 Thoracic vertebrae: 12 Typical (T2-T10) T1 T11, 12 Lumbar vertebrae: 5 Typical (L1-4) Sacrum: 5 Ala Anterior sacral foramina Posterior sacral foramina Sacral canal ANA Lab: Bone 2 Sacral hiatus promontory median sacral crest intermediate crest lateral crest Coccyx Horns Transverse process Thoracic cages Ribs: 12 pairs Typical ribs (R3-R10): Head, 2 facets intermediate crest neck tubercle angle costal cartilage costal groove R1 R2 R11,12 Sternum Manubrium of sternum Clavicular notch for sternoclavicular joint body xiphoid process ANA Lab: Bone 3 Part II: Skull and Facial skeleton Skull Cranial skeleton, Calvaria (neurocranium) Facial skeleton (viscerocranium) Overview: identify the margin of each bone Cranial skeleton 1. Lateral view Frontal Temporal Parietal Occipital 2. Cranial base midline: Ethmoid, Sphenoid, Occipital bilateral: Temporal Viscerocranium 1. Anterior view Ethmoid, Vomer, Mandible Maxilla, Zygoma, Nasal, Lacrimal, Inferior nasal chonae, Palatine 2. Inferior view Palatine, Maxilla, Zygoma Sutures: external view vs. internal view Coronal suture Sagittal suture Lambdoid suture External appearance of skull Posterior view external occipital protuberance
    [Show full text]
  • Upper Extremity 2 Lower Extremity 1
    Upper extremity 2 Lower extremity 1 Carpal bones Scaphoid Lunate Triquetrum Pisiform Trapezium Phalanges Metacarpals [I-V] Proximal phalanx Base Trapezoid Middle phalanx Shaft; Body Capitate Distal phalanx Head Hamate Tuberosity of distal phalanx Styloid process of Hook of hamate Base of phalanx third metacarpal [III] Carpal groove Body of phalanx Head of phalanx,Trochlea of phalanx Hip bone; Coxal bone; Pelvic bone Ischium, Ilium, Pubic Acetabulum Acetabular margin Acetabular fossa Acetabular notch Lunate surface Ischiopubic ramus Obturator foramen Greater sciatic notch Ilium Body of ilium Ala of ilium; Wing of ilium Arcuate line Iliac crest Anterior superior iliac spine Anteriror inferior iliac spine Posterior superior iliac spine Posterior inferior iliac spine Iliac fossa Gluteal surface Anterior gluteal line Posterior gluteal line Inferior gluteal line Sacropelvic surface Auricular surface Iliac tuberosity Ischium Body Ramus Ischial tuberosity Ischial spine Lesser sciatic notch Pubis Body Pubic tubercle Symphysial surface Superior pubic ramus Iliopubic ramus Pecten pubis; Pectineal line Obturator groove Inferior pubic ramus Head Fovea for ligament Neck Lesser trochanter Intertrochanteric line and crest Shaft of femur; Body of femur Linea aspera, Lateral lip, Medial lip Pectinal line; Gluteal tuberosity Popliteal surface Medial condyle, Medial epicondyle Adductor tubercle Lateral condyle and epicondyle Patellar surface Intercondylar fossa Intercondylar line The proximal femur is bent (L-shaped) so that the long axis of the head and neck project superomedially at an angle to that of the obliquely oriented shaft This obtuse angle of inclination in the adult is 115 to 140 degrees, averaging 126 degrees. The angle is less in females because of the increased width between the acetabula and the greater obliquity of the shaft.
    [Show full text]
  • Bones of the Appendicular Skeleton
    BONES OF THE APPENDICULAR SKELETON The appendicular skeleton is composed of the 126 bones of the appendages and the pectoral and pelvic girdles, which attach the limbs to the axial skeleton. Although the bones of the upper and lower limbs differ in their functions and mobility, they have the same fundamental plan – each limb is composed of three major segments connected by movable joints. LOWER LIMB Thirty-two (32) separate bones form the bony framework of each lower limb. The lower limbs carry the entire weight of the erect body and are subjected to exceptional forces when we jump or run. Thus, it is not surprising that the bones of the lower limb are thicker and stronger than the comparable bones of the upper limb. Each of the lower limb bones may be described regionally as a bone of the pelvic girdle, thigh, leg, or foot (Figure 7). Figure 7: Bones of the lower limb Pelvic (Hip) Girdle (Marieb / Hoehn – Chapter 7; Pgs. 234 – 238) The pelvic girdle is formed by the paired os coxae (coxal bones). Together with the sacrum and coccyx of the axial skeleton, this group of bones forms the bony pelvis. The ability to bear weight is more important in the pelvic girdle than the pectoral girdle. Thus, the os coxae are heavy and massive with a firm attachment to the axial skeleton. Each os coxa is a result of the fusion of three bones: the ilium, ischium, and pubis. These three bones fuse at the deep hemispherical socket, the acetabulum, which receives the femur. Figure 8: Right os coxa, lateral and medial views A.
    [Show full text]