THE TYPE Ia SUPERNOVA 1998Bu in M96 and the HUBBLE CONSTANT
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FY08 Technical Papers by GSMTPO Staff
AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................ -
Star Formation and Galaxy Evolution of the Local Universe Based on HIPASS
Star formation and galaxy evolution of the Local Universe based on HIPASS Oiwei Ivy Wong Submitted in total fulfilment of the requirements of the Degree of Doctor of Philosophy School of Physics University of Melbourne December, 2007 Abstract This thesis investigates the star formation and galaxy evolution of the nearby Local Volume based on Neutral Hydrogen (HI) studies. A large portion of this thesis con- sists of work with the Northern extension of the HI Parkes All Sky Survey (HIPASS). HIPASS is an HI survey of the entire Southern sky up to a declination of +25.5 de- grees (including the Northern extension) using the Parkes 64-metre radio telescope. I have also produced a catalogue of the optical counterparts corresponding to the galaxies found in Northern HIPASS. From this optical catalogue, we also conclude that we did not find any isolated dark galaxies. The other half of my thesis consists of work with the SINGG and SUNGG projects. SINGG is the Survey for Ioniza- tion in Neutral Gas Galaxies and SUNGG is the Survey of Ultraviolet emission in Neutral Gas Galaxies. Both SINGG and SUNGG are selected from HIPASS and are star formation studies in the H-alpha and ultraviolet (UV), respectively. My work in the SINGG-SUNGG collaboration is mostly based on SUNGG. Using the results of SUNGG, I measured the local luminosity density and the cosmic star formation rate density (SFRD) of the Local Universe. Using far-infrared (FIR) observations from IRAS, the FIR luminosity density was also calculated. Combining the FUV luminosity density and the FIR luminosity density, the bolometric SFRD of the Lo- cal Universe was estimated. -
9905625.PDF (3.665Mb)
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are m is^ g pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., m ^ s, drawings, charts) are reproduced by sectioning the orignal, begnning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. KGgher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Infoimation Compaiy 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE “ ‘TIS SOMETHING, NOTHING”, A SEARCH FOR RADIO SUPERNOVAE A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY By CHRISTOPHER R. -
115 Abell Galaxy Cluster # 373
WINTER Medium-scope challenges 271 # # 115 Abell Galaxy Cluster # 373 Target Type RA Dec. Constellation Magnitude Size Chart AGCS 373 Galaxy cluster 03 38.5 –35 27.0 Fornax – 180 ′ 5.22 Chart 5.22 Abell Galaxy Cluster (South) 373 272 Cosmic Challenge WINTER Nestled in the southeast corner of the dim early winter western suburbs. Deep photographs reveal that NGC constellation Fornax, adjacent to the distinctive triangle 1316 contains many dust clouds and is surrounded by a formed by 6th-magnitude Chi-1 ( 1), Chi-2 ( 2), and complex envelope of faint material, several loops of Chi-3 ( 3) Fornacis, is an attractive cluster of galaxies which appear to engulf a smaller galaxy, NGC 1317, 6 ′ known as Abell Galaxy Cluster – Southern Supplement to the north. Astronomers consider this to be a case of (AGCS) 373. In addition to his research that led to the galactic cannibalism, with the larger NGC 1316 discovery of more than 80 new planetary nebulae in the devouring its smaller companion. The merger is further 1950s, George Abell also examined the overall structure signaled by strong radio emissions being telegraphed of the universe. He did so by studying and cataloging from the scene. 2,712 galaxy clusters that had been captured on the In my 8-inch reflector, NGC 1316 appears as a then-new National Geographic Society–Palomar bright, slightly oval disk with a distinctly brighter Observatory Sky Survey taken with the 48-inch Samuel nucleus. NGC 1317, about 12th magnitude and 2 ′ Oschin Schmidt camera at Palomar Observatory. In across, is visible in a 6-inch scope, although averted 1958, he published the results of his study as a paper vision may be needed to pick it out. -
Dynamics and Mass of the Shapley Supercluster, the Largest Bound Structure in the Local Universe A
mega-telescopes and their IR instru- modern techniques such as radial ve- such systems with evolutionary models mentation it will be possible to in- locities, planetary occultations (transits) of our own solar system. vestigate the physical characteristics and micro-lensing. Once ALMA is avail- of these objects, particularly those in able we will be able to undertake mo- The present article could not have orbit around nearby stars which will al- lecular line observations of the atmos- been written without the contribution of low us to obtain their masses. ALMA pheres of planets and other bodies the FONDAP Centre of Excellence will be a perfect instrument for the fol- which will give new knowledge of plan- Director, Guido Garay, and of its P.I. low-up studies of brown dwarfs found in etary “weather”, the structure of atmos- Members. I thankfully acknowledge the these studies. pheric wind and the variations in chem- contribution from M.T. Ruiz, Director of • Extrasolar planets and proto-plane- ical constituents. Studies of proto-plan- the Astronomy Department at Universi- tary disks. – One of the great appeals etary disks will be carried out using the dad de Chile; L. Infante, Chairman of of astronomy is undoubtedly its poten- recently available IR facilities. ALMA, the Pontificia Universidad Católica de tial to help us understand the origin of with its sensitivity and resolving power, Chile Department of Astronomy and our planet. The Centre will foster the will be the ideal instrument to provide Astrophysics; W. Gieren, Head of the development of the area of planetary definite answers regarding the forma- Astronomy Group at the Universidad de science, currently non-existent in the tion and evolution of proto-planetary Concepción Physics Department; L. -
Astrophysical Plasma Modeling of the Hot Universe
Astrophysical plasma modeling of the hot Universe Advances and challenges in high-resolution X-ray spectroscopy Astrophysical plasma modeling of the hot Universe Advances and challenges in high-resolution X-ray spectroscopy Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr. C. J. J. M. Stolker, volgens besluit van het College voor Promoties te verdedigen op donderdag 7 juni 2018 klokke 10:00 uur door Junjie Mao geboren te Ningbo, China in 1988 Promotiecommissie: Promotor: Prof. dr. J. S. Kaastra Co-promotor: Dr. J. de Plaa (SRON) Overige leden: Prof. dr. H. Röttgering Prof. dr. J. Schaye Prof. dr. W. R. Jaffe Prof. dr. G. Branduardi-Raymont (University College London) Prof. dr. F. B. S. Paerels (Columbia University) To Lilan our active family nucleus with her inflows and outflows © 2018 Junjie Mao Cover design by Junjie Mao Image credit: Adobe Spark Contents 1 Introduction 1 1.1 Hot astrophysical plasmas in X-rays . 2 1.2 Active Galactic Nuclei and circumnuclear media . 3 1.3 Intracluster media and chemical enrichment . 9 1.4 Plasma code and atomic data . 13 1.5 This thesis . 15 References. 18 2 Parameterization of the level-resolved radiative recombination rate coefficients for the SPEX code 21 2.1 Introduction . 22 2.2 Historical background . 22 2.3 RR rate coefficients for H-like ions . 25 2.3.1 Photoionization cross sections . 25 2.3.2 Radiative recombination data . 26 2.4 RR rate coefficients for He-like to Na-like ions. 26 2.5 Fitting strategy . -
Observational Cosmology - 30H Course 218.163.109.230 Et Al
Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity. -
Supernova 091212.Pdf
RAC Presentation Joe Francis 12 Sept 2012 Outline Introduction Supernova Type Ia Other Supernova Types Massive Star Evolution Supernova Examples Summary Questions Acknowledgements : This material was copied from Wikipedia & other public sources for non-profit, educational use only. Introduction Supernova (SN); plural Supernovae or Supernovas Hypernova •20 x SN Type Ia •Gamma ray burst from collapse of extremely massive stars Supernova Collapse of massive star or accretion by white dwarf & runaway C fusion Nova White dwarf accretes hydrogen and goes to runaway H fusion, uses 1/10,000 of star mass A Hubble Space Telescope image of the supernova remnant N 63A in the Large Magellanic Cloud. Supernova Definition The word supernova was coined by Walter Baade and Fritz Zwicky in 1931, Mount Wilson Observatory • Supernova • A stellar explosion that is much more energetic than a nova. • Extremely luminous and often briefly outshines an entire galaxy • Normally fades from view over several weeks or months • Radiates as much energy as the Sun in its entire life • Explosion expels most or all of a star at velocities as high as 30,000 km/s, (10% c) & up to 70% c • The shock wave sweeps up an expanding shell of gas and dust called a “supernova remnant” • Supernovae can be triggered in two ways: 1. Sudden re-ignition of nuclear fusion in a degenerate star -- White Dwarf ( ignites Carbon fusion – runaway nuclear fusion – Type Ia Supernova): a) Binary Star merger b) Accretion from companion Star 2. Collapse of the core of a massive star – Red Giant –Fe core (Type Ib, Ic, and II Supernova) Credit: Wikipedia, Sept 2012 Supernovae Type I Model Type I supernovae have a sharp maxima and smooth decay of light. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Infrared and Optical Spectroscopy of Type Ia Supernovae in the Nebular
Infrared and Optical Spectroscopy of Type Ia Supernovae in the Nebular Phase E.J.C. Bowers1, W.P.S. Meikle1, T.R. Geballe 2, N.A. Walton3, P.A. Pinto4, V.S. Dhillon5, S.B. Howell6, M.K. Harrop-Allin7. 1Astrophysics Group, Blackett Laboratory, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, UK 2Joint Astronomy Centre, 660 N. A’ohoku Place, University Park, Hilo, Hawaii 96720, USA 3Royal Greenwich Observatory, Apartado de Correos 321, 38780 Santa Cruz de La Palma, Tenerife, Islas Canarias, Spain 4Steward Observatory, University of Arizona, Tucson, AZ 85721, USA 5Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ, UK 6Department of Physics and Astronomy, University of Wyoming, PO Box 3905, University Station, Laramie, WY 82071, USA 7Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dork- ing, Surrey, RH5 6NT, UK arXiv:astro-ph/9707119v1 10 Jul 1997 1 Abstract We present near-infrared (NIR) spectra for Type Ia supernovae at epochs of 13 to 338 days after maximum blue light. Some contemporary optical spectra are also shown. All the NIR spectra exhibit considerable structure throughout the J-, H- and K-bands. In particular they exhibit a flux ‘deficit’ in the J-band which persists as late as 175 days. This is responsible for the well-known red J-H colour. To identify the emission features and test the 56Ni hypothesis for the explosion and subsequent light curve, we compare the NIR and optical nebular- phase data with a simple non-LTE nebular spectral model. We find that many of the spectral features are due to iron-group elements and that the J-band deficit is due to a lack of emission lines from species which dominate the rest of the IR/optical spectrum. -
Observer's Handbook 1989
OBSERVER’S HANDBOOK 1 9 8 9 EDITOR: ROY L. BISHOP THE ROYAL ASTRONOMICAL SOCIETY OF CANADA CONTRIBUTORS AND ADVISORS Alan H. B atten, Dominion Astrophysical Observatory, 5071 W . Saanich Road, Victoria, BC, Canada V8X 4M6 (The Nearest Stars). L a r r y D. B o g a n , Department of Physics, Acadia University, Wolfville, NS, Canada B0P 1X0 (Configurations of Saturn’s Satellites). Terence Dickinson, Yarker, ON, Canada K0K 3N0 (The Planets). D a v id W. D u n h a m , International Occultation Timing Association, 7006 Megan Lane, Greenbelt, MD 20770, U.S.A. (Lunar and Planetary Occultations). A lan Dyer, A lister Ling, Edmonton Space Sciences Centre, 11211-142 St., Edmonton, AB, Canada T5M 4A1 (Messier Catalogue, Deep-Sky Objects). Fred Espenak, Planetary Systems Branch, NASA-Goddard Space Flight Centre, Greenbelt, MD, U.S.A. 20771 (Eclipses and Transits). M a r ie F i d l e r , 23 Lyndale Dr., Willowdale, ON, Canada M2N 2X9 (Observatories and Planetaria). Victor Gaizauskas, J. W. D e a n , Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Solar Activity). R o b e r t F. G a r r i s o n , David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (The Brightest Stars). Ian H alliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Miscellaneous Astronomical Data). W illiam H erbst, Van Vleck Observatory, Wesleyan University, Middletown, CT, U.S.A. 06457 (Galactic Nebulae). Ja m e s T. H im e r, 339 Woodside Bay S.W., Calgary, AB, Canada, T2W 3K9 (Galaxies). -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39