Entschlüsselung Des Genoms Von Gluconobacter Oxydans 621H – Einem Bakterium Von Industriellem Interesse

Total Page:16

File Type:pdf, Size:1020Kb

Entschlüsselung Des Genoms Von Gluconobacter Oxydans 621H – Einem Bakterium Von Industriellem Interesse Entschlüsselung des Genoms von Gluconobacter oxydans 621H – einem Bakterium von industriellem Interesse Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Christina Prust aus Göttingen Göttingen, 2004 D7 Referent: Prof. Dr. G. Gottschalk Korreferent: Prof. Dr. U. Deppenmeier Tag der mündlichen Prüfung: 29. Juni 2004 für meinen Mann Jörg Inhaltsverzeichnis I INHALTSVERZEICHNIS ABKÜRZUNGSVERZEICHNIS 1 EINLEITUNG 1 2 MATERIAL UND METHODEN 5 2.1 Organismen und Plasmide 5 2.2 Nährmedien, Puffer und Stammlösungen 6 2.2.1 Komplexmedien 6 2.2.2 Antibiotika und Medienzusätze 7 2.3 Kultivierung und Stammhaltung von Mikroorganismen 7 2.3.1 Zellanzucht 7 2.3.2 Stammhaltung 7 2.3.3 Reinheitskontrolle 8 2.4 Messung der optischen Dichte 8 2.5 Standardtechniken für das Arbeiten mit Nukleinsäuren 8 2.5.1 Behandlung von Geräten und Lösungen 8 2.5.2 Reinigung und Konzentrierung von Nukleinsäuren 9 2.5.2.1 Phenol/Chloroform-Extraktion 9 2.5.2.2 Fällung von Nukleinsäuren 9 2.5.3 Konzentrationsbestimmung und Reinheitskontrolle von DNA 9 2.5.4 Standard-Agarosegelelektrophorese 10 2.5.5 Größenbestimmung von Nukleinsäuren 11 2.6 Isolierung von Nukleinsäuren 12 2.6.1 Isolierung genomischer DNA mit dem AquaPure GenomicDNA Kit 12 Inhaltsverzeichnis II 2.6.2 Isolierung genomischer DNA mit CTAB 13 2.6.3 Isolierung von Plasmid-DNA 14 2.6.4 Isolierung von DNA-Fragmenten aus Agarosegelen 14 2.6.5 Aufreinigung von PCR-Produkten 15 2.6.6 Phenol-Chloroform-Extraktion 15 2.7 Enzymatische Modifikation von DNA 16 2.7.1 Spaltung von DNA durch Restiktionsendonukleasen 16 2.7.2 Dephosphorylierung von DNA-Fragmenten 16 2.7.3 Herstellung von stumpfen Enden 17 2.7.4 Ligation von DNA Fragmenten 17 2.8 Übertragung von DNA in E. coli und Selektion rekombinanter Klone 17 2.8.1 Herstellung von transformationskompetenten E. coli-Zellen (INOUE et al., 1990) 17 2.8.2 Transformation von E. coli DH5α durch Hitzeschock 18 2.8.3 Transformation von E. coli durch Elektroporation 18 2.8.4 Selektion rekombinanter Klone durch den Blau-Weiß-Test 19 2.9 In vitro-Amplifikation von DNA durch Polymerasekettenreaktion (PCR) 20 2.10 Sequenzierung von DNA 21 2.11 Die Prozessierung von Rohsequenzen 22 2.11.1 Einführund in das Staden Package 22 2.11.2. Das Pregap4 Interface 22 2.11.3 Gap4 23 2.11.3.1 Der Contig Editor 24 2.11.3.2 Das Template Display 24 2.12 Methoden zur Überwindung von Sequenzlücken in einem Genomsequenzierungsprojekt 25 Inhaltsverzeichnis III 2.12.1. Identifikation von Contigüberlappungen mittels Gap4 oder BLASTN 26 2.12.2 Lückenschluss durch Walkings auf Plasmiden 26 2.12.3 Lückenschluss mit Hilfe von PCR 27 2.12.3.1 Auf der Cosmid-Genbank basierende PCR 27 2.12.3.2 Kombinatorische PCR 27 2.13 Auffinden repetiver Sequenzen 28 2.13.1 Identifikation repetiver Sequenzen mit Hilfe von und Gap4 28 2.13.2 Auffinden repetitiver Sequenzen mit Hilfe von RepVis und BLASTN 29 2.14 Sequenzanalyse 29 2.14.1 ORF-Vorhersage 30 2.14.2 Genomweite Annotation mit ERGO 31 2.15 Bezugsquellen für Biochemikalien und Enzyme 33 3 EXPERIMENTE UND ERGEBNISSE 35 3.1 Vorarbeiten und Überblick über die Strategie des Sequenzierungsprojekts 35 3.2 Editieren der Rohsequenzen 37 3.3 Lückenschluss 41 3.3.1 Lückenschluss durch Walkings und BLASTN 42 3.3.2 Erstellen eines „Supercontigs“ 43 3.3.3 Kombinatorische Ansätze 46 3.3.4 Abschluss der Sequenzierung 47 3.4 Identifizierung von Plasmiden 50 3.4.1 Auffinden der Plasmide mit Hilfe von Gap4 50 3.4.2 Isolierung der identifizierten Plasmide 51 Inhaltsverzeichnis IV 3.4.3 Analyse der Plasmide 54 3.4.3.1 Analyse von pGOX1 54 3.4.3.2 Analyse von pGOX2 57 3.4.3.3 Analyse von pGOX3 58 3.4.3.4 Analyse von pGOX4 59 3.4.3.5 Analyse von pGOX5 59 3.5. Analyse des Chromosoms von G. oxydans 60 3.5.1 Allgemeine Merkmale des Chromosoms 60 3.5.1.1 ORF-Vorhersage und Übersicht über die Annotation 62 3.5.2 Identifizierung des Replikationsursprungs 64 3.6 Rekonstruktion des Stoffwechsels 66 3.6.1 Transportsysteme in G. oxydans 67 3.6.1.1 Erleichterte Diffusion 68 3.6.1.2 ABC-Transporter 68 3.6.1.3 Symporter und Antiporter 69 3.6.1.4 Permeasen 70 3.6.2 Substratverwertung 71 3.6.2.1 Glykolyse und Gluconeogenese 72 3.6.2.2 Pentosephosphat-Weg 74 3.6.2.3 Entner-Doudoroff-Weg (KDPG-Weg) 77 3.6.2.4 Zitratzyklus 79 3.6.3 Biosynthese der Aminosäuren 81 3.6.3.1 Biosynthese von Histidin 81 3.6.3.2 Biosynthese der aromatischen Aminosäuren Phenylalanin, Tyrosin und Tryptophan 84 3.6.3.3 Biosynthese von Serin, Glycin und Cystein 86 3.6.3.4 Biosynthese von Alanin, Leucin, Isoleucin und Valin 87 3.6.3.5 Biosynthese von Aspartat, Asparagin, Lysin, Threonin und Methionin in G. oxydans 89 3.6.3.6 Biosynthese von Glutamin, Glutamat, Prolin und Arginin in G. oxydans 91 3.6.4 Transhydrogenasen 92 Inhaltsverzeichnis V 3.6.4.1 Analyse der Transhydrogenase aus G. oxydans 93 3.6.5 Membrangebundene Prozesse 97 3.6.5.1 Rekonstruktion der Atmungskette 97 3.6.5.2 Die ATP-Synthase 101 3.6.6 Dehydrogenasen 102 3.6.6.1 Pyrrolochinolin Chinon (PQQ) 107 3.7 Abschließende Bemerkungen 108 4 DISKUSSION 110 4.1 Mobile Elemente 110 4.2 Betrachtungen zur Energiekonservierung 114 4.3 Chinoproteine 119 4.3.1 Allgemeine Merkmale von Chinoproteinen 120 4.3.2 PQQ-abhängige Proteine aus G. oxydans 123 4.3.2.1 Die membrangebundene Alkohol-Dehydrogenase aus G. oxydans 124 4.3.2.2 Chinat-Dehydrogenase 126 4.3.3 Der Cofaktor PQQ 128 4.4 G. oxydans im Dienst der Biotechnologie 129 4.4.1 Essigsäureproduktion 130 4.4.2 Produktion von Vitamin C 131 4.4.3 Miglitol und 1-Deoxynojirimycin 136 4.4.4 Produktion von Dihydroxyaceton 138 4.4.5 Produktion von Xylitol 139 4.4.6 Produktion von Gluconat und Ketogluconaten durch G. oxydans 142 4.4.6.1 Membrangebundene Produktion von Ketogluconaten 142 4.4.6.2 Cytoplasmatische Produktion von Ketogluconaten 144 4.5 Ausblick 148 Inhaltsverzeichnis VI 5 ZUSAMMENFASSUNG 149 6 LITERATURVERZEICHNIS 152 Abkürzungsverzeichnis VII Abkürzungsverzeichnis A. Acinetobacter °C Grad Celsius A Adenin Abb. Abbildung ABC ATP-bindende Kassette, ATP-binding cassette AICAR 5’-Phospho-Ribosyl-5-Amino-4-Imidazol-Carboxamid Amp Ampicillin ATP Adenosintriphosphat BLAST Basic Local Alignment Search Tool BLASTN BLAST auf Nukleotidebene BLASTP BLAST auf Proteinebene bp Basenpaar bzw. beziehungsweise C Cytosin C- Carboxy ca. circa cm Zentimeter CoA Coenzym A Da Dalton DH Dehydrogenase DMSO Dimethylsulfoxid DNA Desoxyribonukleinsäure dNTP Desoxyribonukleotid-5’-triphosphat E. Escherichia ed(s). Herausgeber EDTA Etylendiamintetraessigsäure einschl. einschließlich et al. et alteri (und andere) Fa. Firma FAD Flavinadenindinukleotid G Guanin g Gramm Abkürzungsverzeichnis VIII G. Gluconobacter Gap Genomassemblierungsprogramm, genome assembly program H2Odest. destilliertes Wasser Hrsg. Herausgeber IPTG Isopropyl-β-D-thiogalactopyranosid IS Insertionssequenz(en) k Kilo kb Kilobasenpaare l Liter µ Mikro (106) M Molar (Mol pro Liter) Mb Megabasenpaare min Minute mod. modifiziert N- Amino- NAD(P) Nicotinadenindinukleotid(phosphat) NCBI National Center for Biotechnology Information OD Optische Dichte ORF “open reading frame”, offener Leserahmen P. Pseudomonas PCR Polymerasekettenreaktion pH negativer dekadischer Logarithmus der Protonenkonzentration PQQ Pyrrolochinolinchinon PRPP 5-Phosphoribosyl-1-Pyrophosphat R. Rhizobium RNA Ribonukleinsäure rRNA Ribosomale Ribonukleinsäure RT Raumtemperatur s. siehe S. Sinorhizobium SDS Natriumdodecylsulfat sp. Spezies TAE Tris-Acetat-EDTA TE Tris-EDTA Abkürzungsverzeichnis IX Tm Schmelztemperatur U Unit (Einheit der Enzymaktivität) u.a. unter anderem u.s.w. und so weiter v/v Volumen pro Volumen vgl. vergleiche w/v Masse pro Volumen X-Gal 5-Brom-4-chlor-3-indolyl-β-galactosid z. B. zum Beispiel Aminosäuren A Ala Alanin M Met Methionin C Cys Cystein N Asn Asparagin D Asp Aspartat P Pro Prolin E Glu Glutamat Q Gln Glutamin F Phe Phenylalanin R Arg Arginin G Gly Glycin S Ser Serin H His Histidin T Thr Threonin I Ile Isoleucin V Val Valin K Lys Lysin W Trp Tryptophan L Leu Leucin Y Tyr Tyrosin Einleitung 1 1 EINLEITUNG Gluconobacter-Arten gehören, zusammen mit Vertretern der Gattungen Acetobacter und Gluconacetobacter, zu der Familie der Acetobacteriaceae. Sie unterscheiden sich von denen der Gattung Acetobacter dadurch, dass sie Acetat und Lactat nicht zu Kohlendioxid und Wasser oxidieren können (DE LEY et al., 1984). Während die Produktion von Essigsäure aus Ethanol vor allem durch Organismen der Gattung Acetobacter besonders effizient ist, dominieren Gluconobacter Spezies bei der Oxidation verschiedener Zucker. Essigsäurebakterien sind strikt aerobe, Gram-negative, stäbchenförmige Bakterien, welche der α-Subklasse der Proteobakterien zugeordnet werden. Gluconobacter-Arten sind durch polar angeordnete Flagellen schwach beweglich. Im Gegensatz dazu sind Vertreter der Gattung Acetobacter peritrich begeißelt (LEISINGER, 1965). In der Natur findet man Gluconobacter Spezies vor allem auf Früchten und in alkoholischen Getränken wie Bier und Wein. Dabei tragen sie durch die Säureproduktion auch zum Verderben der Getränke und Früchte bei. Die optimale Wachstumstemperatur beträgt 25-30 °C bei einem pH-Wert von 5,5-6. Viele Gluconobacter-Stämme sind jedoch auch in der Lage, in einem Komplexmedium bei einem konstanten pH-Wert von 2,5 zu wachsen (DEPPENMEIER et al., 2002; MACAULEY et al., 2001; GUPTA et al., 2001). In der Regel oxidieren aerobe Mikroorganismen ihre Kohlenstoffquelle vollständig zu Kohlendioxid und Wasser. Bei diesem Abbauprozess werden sowohl Energie als auch Intermediärprodukte für die Biosynthese von Zellbestandteilen generiert. Nur unter ungünstigen Wachstumsbedingungen (Substratüberangebot, Spurenelementlimitierung oder in Anwesenheit von toxischen Verbindungen bzw. von Inhibitoren) werden die Substrate von einigen Bakteriengruppen unvollständig oxidiert.
Recommended publications
  • Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways
    biology Review Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways Antonin Ginguay 1,2, Luc Cynober 1,2,*, Emmanuel Curis 3,4,5,6 and Ioannis Nicolis 3,7 1 Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France; [email protected] 2 Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France 3 Laboratoire de biomathématiques, plateau iB2, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France; [email protected] (E.C.); [email protected] (I.N.) 4 UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France 5 UMR 1144, Université Paris Descartes, 75006 Paris, France 6 Service de biostatistiques et d’informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France 7 EA 4064 “Épidémiologie environnementale: Impact sanitaire des pollutions”, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France * Correspondence: [email protected]; Tel.: +33-158-411-599 Academic Editors: Arthur J.L. Cooper and Thomas M. Jeitner Received: 26 October 2016; Accepted: 24 February 2017; Published: 6 March 2017 Abstract: Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products.
    [Show full text]
  • |I|||||IIIHIII US005541.108A United States Patent (19) 11 Patent Number: 5,541,108 Fujiwara Et Al
    |I|||||IIIHIII US005541.108A United States Patent (19) 11 Patent Number: 5,541,108 Fujiwara et al. (45) Date of Patent: Jul. 30, 1996 54 GLUCONOBACTER OXYDANS STRAINS 5,082,785 l/1992. Manning et al. .................. 435/252.32 75 Inventors: Akiko Fujiwara, Kamakura; Teruhide FOREIGN PATENT DOCUMENTS Sugisawa; Masako Shinjoh, both of 994119 9/1963 United Kingdom................... 435/138 Yokohama; Yutaka Setoguchi; Tatsuo Hoshino, both of Kamakura, all of OTHER PUBLICATIONS Japan Stanbury et al. Principles of fermentation Technology, 1984, Pergamon Press. 73 Assignee: Hoffmann-La Roche Inc., Nutley, N.J. ATCC Catalogue of Bacteria, 1989, p. 106. Tsukada et al, Biotechnology and Bioengineering, vol 14, 21 Appl. No. 266,998 1972 pp. 799-810, John Wiley & Sons, Inc. Makover, et al., Biotechnology and Bioengineering XVII, 22 Filed: Jun. 28, 1994 pp. 1485-1514 (1975). Related U.S. Application Data Isono, et al. Agr. Biol. Chem, 35 No. 4 pp. 424–431 (1968). Okazaki, et al, Agr. Biol. Chem 32 No. 10 pp. 1250-1255 63 Continuation of Ser. No. 183,924, Jan. 18, 1994, abandoned, (1968). which is a continuation of Ser. No. 16,478, Feb. 10, 1993, Martin etal, Eur. S. Appl. Microbiology3, pp. 91-95 (1976). abandoned, which is a continuation of Ser. No. 517,972, Apr. Acta Microbologica Sinica 20 (3):246-251 (1980) (Abstract 30, 1990, abandoned, which is a continuation of Ser. No. only). 899,586, Aug. 25, 1986, abandoned. Acta Microbiologica Sinica 21 (2): 185-191- (1981) 30 Foreign Application Priority Data (Abstract only). Aug. 28, 1985 GB United Kingdom ................... 852359 Primary Examiner Irene Marx Jul.
    [Show full text]
  • Solarbio Catalogue with PRICES
    CAS Name Grade Purity Biochemical Reagent Biochemical Reagent 75621-03-3 C8390-1 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS Ultra Pure Grade 1g 75621-03-3 C8390-5 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS 5g 57-09-0 C8440-25 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 25g 57-09-0 C8440-100 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 100g 57-09-0 C8440-500 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 500g E1170-100 0.5M EDTA (PH8.0) 100ml E1170-500 0.5M EDTA (PH8.0) 500ml 6381-92-6 E8030-100 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 100g 6381-92-6 E8030-500 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 500g 6381-92-6 E8030-1000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 1kg 6381-92-6 E8030-5000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 5kg 60-00-4 E8040-100 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 100g 60-00-4 E8040-500 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 500g 60-00-4 E8040-1000 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 1kg 67-42-5 E8050-5 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 5g 67-42-5 E8050-10 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 10g 50-01-1 G8070-100 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 100g 50-01-1 G8070-500 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 500g 56-81-5
    [Show full text]
  • Fungal Pathogenesis in Humans the Growing Threat
    Fungal Pathogenesis in Humans The Growing Threat Edited by Fernando Leal Printed Edition of the Special Issue Published in Genes www.mdpi.com/journal/genes Fungal Pathogenesis in Humans Fungal Pathogenesis in Humans The Growing Threat Special Issue Editor Fernando Leal MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Fernando Leal Instituto de Biolog´ıa Funcional y Genomica/Universidad´ de Salamanca Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Genes (ISSN 2073-4425) from 2018 to 2019 (available at: https://www.mdpi.com/journal/genes/special issues/Fungal Pathogenesis Humans Growing Threat). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-900-5 (Pbk) ISBN 978-3-03897-901-2 (PDF) Cover image courtesy of Fernando Leal. c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Fernando Leal Special Issue: Fungal Pathogenesis in Humans: The Growing Threat Reprinted from: Genes 2019, 10, 136, doi:10.3390/genes10020136 ..................
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical
    [Show full text]
  • Expression, Purification and Characterization of a Quinoprotein L-Sorbose Dehydrogenase from Ketogulonicigenium Vulgare Y25
    Vol. 7(24), pp. 3117-3124, 11 June, 2013 DOI: 10.5897/AJMR12.2280 ISSN 1996-0808 ©2013 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Expression, purification and characterization of a quinoprotein L-sorbose dehydrogenase from Ketogulonicigenium vulgare Y25 Xionghua Xiong1#, Xin Ge1#, Yan Zhao2#, Xiaodong Han3, Jianhua Wang1 and Weicai Zhang1* 1Laboratory of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing, China. 2Central Laboratory, The first Affiliated Hospital of Xiamen University, Xiamen 361003, China. 3College of Life Sciences, Nankai University, Tianjin 300071, China. Accepted 10 May, 2013 It is well known that Ketogulonicigenium vulgare Y25 could effectively oxidize L-sorbose to 2-keto-L- gulonic acid (2KGA), an industrial precursor of vitamin C. There in, L-sorbose dehydrogenase is one of the key enzymes responsible for the production of 2KGA. From this organism, the coding region of sdh gene was cloned into pET22b plasmid and its transcription product was overexpressed. This procedure allowed purification of L-sorbose dehydrogenase and production of polyclonal antibodies. In Western blot assays, the antibodies gave a positive reaction against bacteria protein extract and purified L- sorbose dehydrogenase. The molecular mass of the enzyme was 60532 Da, and the N-terminal amino acid sequence was determined to be QTAIT. The Native-PAGE and resting-cell reaction assay showed that purified L-sorbose dehydrogenase could convert L-sorbose to 2KGA, and PQQ was found to be indispensable for its activity as prosthetic group. The enzyme showed broad substrates specificity and the Km value for L-sorbose and 1-propanol was 21.9 mM and 0.13 mM, respectively.
    [Show full text]
  • Establishing an Innovative Carbohydrate Metabolic Pathway For
    Wang et al. Microb Cell Fact (2018) 17:81 https://doi.org/10.1186/s12934-018-0932-9 Microbial Cell Factories RESEARCH Open Access Establishing an innovative carbohydrate metabolic pathway for efcient production of 2‑keto‑L‑gulonic acid in Ketogulonicigenium robustum initiated by intronic promoters Cai‑Yun Wang1, Ye Li1,2, Zi‑Wei Gao3, Li‑Cheng Liu1, Meng‑Yue Zhang1, Tian‑Yuan Zhang1, Chun‑Fu Wu1 and Yi‑Xuan Zhang1* Abstract Background: 2-Keto-L-gulonic acid (2-KGA), the precursor of vitamin C, is currently produced by two-step fermenta‑ tion. In the second step, L-sorbose is transformed into 2-KGA by the symbiosis system composed of Ketogulonicige- nium vulgare and Bacillus megaterium. Due to the diferent nutrient requirements and the uncertain ratio of the two strains, the symbiosis system signifcantly limits strain improvement and fermentation optimization. Results: In this study, Ketogulonicigenium robustum SPU_B003 was reported for its capability to grow well indepen‑ dently and to produce more 2-KGA than that of K. vulgare in a mono-culture system. The complete genome of K. robustum SPU_B003 was sequenced, and the metabolic characteristics were analyzed. Compared to the four reported K. vulgare genomes, K. robustum SPU_B003 contained more tRNAs, rRNAs, NAD and NADP biosynthetic genes, as well as regulation- and cell signaling-related genes. Moreover, the amino acid biosynthesis pathways were more complete. Two species-specifc internal promoters, P1 (orf_01408 promoter) and P2 (orf_02221 promoter), were predicted and validated by detecting their initiation activity. To efciently produce 2-KGA with decreased ­CO2 release, an innovative acetyl-CoA biosynthetic pathway (XFP-PTA pathway) was introduced into K.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Enzyme Classification
    1st Proof 29-7-08 + 0)26-4 ENZYME CLASSIFICATION 2.1 INTRODUCTION 2.1.1 Enzymes Enzymes are biological catalysts that increase the rate of chemical reactions by lowering the activation energy. The molecules involved in the enzyme mediated reactions are known as substrates and the outcome of the reaction or yield is termed product. Generally, the chemical nature of most of the enzymes are proteins and rarely of other types (e.g., RNA). The enzymes are too specific towards their substrates to which they react and thereby the reaction will also be so specific. Sometimes the enzyme needs the presence of a non-protein component (co-enzyme, if it is a vitamin derived organic compound or co-factor, if it is a metal ion) for accomplishing the reaction. In this case, the whole enzyme may be called a holoenzyme, the protein part as apoenzyme and the non-protein constituent a prosthetic group. 2.1.2 Enzyme Nomenclature Principles The sixth complete edition of Enzyme Nomenclature, was published under the patronage of the International Union of Biochemistry and Molecular Biology (formerly the International Union of Biochemistry). By the late 1950s it had become evident that the nomenclature of enzymology was not following the guidelines formulated owing to an increase in the number of enzymes. The naming of enzymes by individual workers had proved far from satisfactory in practice. In many cases the same enzymes were known by several different names, while conversely the same name was sometimes coined to different enzymes. Many of the names conveyed little or no idea about the nature of the reactions catalyzed.
    [Show full text]
  • Supplementary Material (ESI) for Natural Product Reports
    Electronic Supplementary Material (ESI) for Natural Product Reports. This journal is © The Royal Society of Chemistry 2014 Supplement to the paper of Alexey A. Lagunin, Rajesh K. Goel, Dinesh Y. Gawande, Priynka Pahwa, Tatyana A. Gloriozova, Alexander V. Dmitriev, Sergey M. Ivanov, Anastassia V. Rudik, Varvara I. Konova, Pavel V. Pogodin, Dmitry S. Druzhilovsky and Vladimir V. Poroikov “Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review” Contents PASS (Prediction of Activity Spectra for Substances) Approach S-1 Table S1. The lists of 122 known therapeutic effects for 50 analyzed medicinal plants with accuracy of PASS prediction calculated by a leave-one-out cross-validation procedure during the training and number of active compounds in PASS training set S-6 Table S2. The lists of 3,345 mechanisms of action that were predicted by PASS and were used in this study with accuracy of PASS prediction calculated by a leave-one-out cross-validation procedure during the training and number of active compounds in PASS training set S-9 Table S3. Comparison of direct PASS prediction results of known effects for phytoconstituents of 50 TIM plants with prediction of known effects through “mechanism-effect” and “target-pathway- effect” relationships from PharmaExpert S-79 S-1 PASS (Prediction of Activity Spectra for Substances) Approach PASS provides simultaneous predictions of many types of biological activity (activity spectrum) based on the structure of drug-like compounds. The approach used in PASS is based on the suggestion that biological activity of any drug-like compound is a function of its structure.
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.
    [Show full text]
  • Ep 2308965 A1
    (19) & (11) EP 2 308 965 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.04.2011 Bulletin 2011/15 C12N 9/04 (2006.01) C12P 7/60 (2006.01) C12P 17/04 (2006.01) (21) Application number: 10183907.4 (22) Date of filing: 10.02.2006 (84) Designated Contracting States: (71) Applicant: DSM IP Assets B.V. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 6411 TE Heerlen (NL) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR (72) Inventors: • Beuzelin Ollivier, Marie-Gabrielle (30) Priority: 11.02.2005 EP 05405066 1131 Tolochenaz (CH) 11.02.2005 EP 05405067 • Chevreux, Bastien 11.02.2005 EP 05405072 79618, Rheinfelden (DE) 11.02.2005 EP 05405073 • Dalluegge, Manuela 11.02.2005 EP 05405081 79618, Rheinfelden (DE) 11.02.2005 EP 05405082 • Gelder Van, Marina 11.02.2005 EP 05405083 3205, TG Spijkenisse (NL) 11.02.2005 EP 05405084 • Goese, Markus G. 11.02.2005 EP 05405087 4054, Basel (CH) 11.02.2005 EP 05405088 • Hauk, Corina 11.02.2005 EP 05405089 79576 Weil am Rhein (DE) 11.02.2005 EP 05405090 • Koekman, Bertus Pieter 11.02.2005 EP 05405091 2636 BG Schipluiden (NL) 11.02.2005 EP 05405093 • Meury Bechtel, Anja 11.02.2005 EP 05405094 8032 Zürich (CH) 11.02.2005 EP 05405109 • Mouncey, Nigel John 11.02.2005 EP 05405110 Indiananpolis, IN 46220 (US) 11.02.2005 EP 05405111 • Mayer, Anne Françoise 11.02.2005 EP 05405112 4052 Basel (CH) 11.02.2005 EP 05405119 • Schipper, Dick 11.02.2005 EP 05405120 2612 HL Delft (NL) 11.02.2005 EP 05405121 • Toepfer, Christine 11.02.2005 EP 05405139 79630 Murg (DE) 11.02.2005 EP 05405140 • Vollebregt,
    [Show full text]