Membrane-Bound Dehydrogenases of Acetic Acid Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Membrane-Bound Dehydrogenases of Acetic Acid Bacteria Chapter 13 Membrane-Bound Dehydrogenases of Acetic Acid Bacteria Osao Adachi and Toshiharu Yakushi Abstract One of the major key features of acetic acid bacteria is their strong oxidation ability of alcohols and sugars, resulting in quantitative production of oxidized compounds. Respiratory chains consisting of ubiquinone, terminal ubiquinol oxidase, and several primary membrane-bound dehydrogenases are responsible for this unique ability. Here, we describe recent progress in the under- standing of enzymatic and molecular properties and biogenesis of the membrane- bound dehydrogenases, such as pyrroloquinoline quinone-dependent alcohol dehydrogenase–cytochrome complex, and recent findings on new membrane- bound dehydrogenases. Quinate oxidation by quinate dehydrogenase (QDH) of acetic acid bacteria is a key agent in the vitro shikimate production process composed of the membranes containing QDH and 3-dehydroquinate dehydratase and NADP+-dependent shikimate dehydrogenase. The addition of a catalytic amount of NADP+ and an NADPH-regeneration system drive the process forward to produce shikimate with almost 100 % yield. The pentose oxidation respiratory chain produces 4-keto-D-arabonate or 4-keto-D-ribonate, depending on the substrate. Novel three different membrane-bound enzymes are indicated: D-aldopentose 4-dehydrogenase, 4-keto-D-aldopentose 1-dehydrogenase, and D-pentonate 4-dehydrogenase. Keywords Flavoprotein • Molybdoprotein • Quinoportein • Quinate • Respiratory chain • Shikimate • 4-Keto-D-aldopentonate • D-Aldopentonate O. Adachi (*) Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan e-mail: [email protected] T. Yakushi (*) Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan e-mail: [email protected] © Springer Japan 2016 273 K. Matsushita et al. (eds.), Acetic Acid Bacteria, DOI 10.1007/978-4-431-55933-7_13 274 O. Adachi and T. Yakushi Fig. 13.1 Substance oxidation respiratory chains of acetic acid bacteria. Many kinds of membrane-bound dehydrogenases oxidize the cognate substrates with coupling to reduction of ubiquinone (UQ). The reduced ubiquinone (UQH2) is then directly reoxidized by the terminal ubuquinol oxidase (Cyt. bo3). The colors of Enz 1, Enz 2, and Enz 3 are related to those in Fig. 13.7. DEC, putative 2,5-diketo-D-gluconate decarboxylase; other abbreviations are referred to the text 13.1 Introduction Incomplete oxidation with acetic acid bacteria is carried out through oxidation reactions by membrane-bound dehydrogenases located on the periplasmic surface of the cytoplasmic membrane. These dehydrogenases reduce membranous ubiqui- none (UQ) coupled with the substrate oxidation. Reduced form of ubiquinone (UQH2) is then directly re-oxidized by the terminal ubiquinol oxidases. Thus, several kinds of the dehydrogenases function as the primary dehydrogenase in substance-oxidizing respiratory chains (Matsushita et al. 1994) (Fig. 13.1). For example, ethanol- and glucose-oxidizing respiratory chains carry out incomplete oxidations of ethanol and D-glucose, respectively. Although some enzymes are poorly examined in their physiological electron acceptor, all the membrane- bound dehydrogenases mentioned in this chapter are thought to react with mem- branous ubiquinone (Table 13.1). We briefly review “conventional” membrane- bound dehydrogenases of acetic acid bacteria in the first part. The second part explains new membrane-bound dehydrogenases found recently and their applications. Table 13.1 Membrane-bound dehydrogenases of acetic acid bacteria 13 Membrane-Bound Dehydrogenases of Acetic Acid Bacteria 275 Category Enzyme Substrate Product Subunit Prosthetic Prosthetic Electron References composition group 1a group 2a acceptorb Quinoprotein– ADH Ethanol Acetaldehyde αβγ or αβ PQQ 4 Heme C UQ Yakushi and cytochrome complex EC1.1.5.5 Matsushita (2010) Molybdoprotein– ALDH Acetaldehyde Acetic acid αβγ MCD 2 [2Fe-2S] À Thurner cytochrome complex EC1.2.99.3 3 Heme C et al. (1997) Heme B Flavoprotein– GADH D-Gluconate 2-Keto- αβγ FAD 3 Heme C UQ Shinagawa cytochrome complex EC1.1.99.3 D-gluconate et al. (1984) 2KGDH 2-Keto- 2,5-Diketo- αβγ FAD 3 Heme C À Shinagawa EC1.1.99.4 gluconate D-gluconate et al. (1981) FDH D-Fructose 5-Keto-D-fructose αβγ FAD 3 Heme C À Ameyama EC1.1.99.11 et al. (1981a) SLDH D-Sorbitol L-Sorbose αβγ FAD 3 Heme C À Shinagawa EC1.1.99.21 et al. (1982) Membrane-bound GDH D-Glucose Glucono-δ-lactone α PQQ À UQ Ameyama quinoprotein EC1.1.5.2 et al. (1981b) GLDH Polyols Ketones αβ PQQ À UQ Matsushita EC1.1.99.22 et al. (2003) QDH Quinate 3-Dehydroquinate α PQQ À UQ Vangnai EC1.1.5.8 et al. (2004) IDH myo-Inositol 2-Keto- α PQQ ÀÀHolscher€ myo-inositol et al. (2007) (continued) Table 13.1 (continued) 276 O. Adachi and T. Yakushi Others SDH L-Sorbose L-Sorbosone α FAD À UQ Sugisawa EC1.1.99.12 et al. (1991) SNDH L-Sorbosone 2-Keto-L-gulonate α ÀÀÀShinjoh et al. (1995) aProsthetic groups 1 and 2 that are involved in substrate oxidation and that are involved in intramolecular electron transfer, respectively bPhysiological electron acceptor: those for all the dehydrogenases are assumed to be ubiquinone, but UQ (ubiquinone) was placed in the table based on experimental data 13 Membrane-Bound Dehydrogenases of Acetic Acid Bacteria 277 13.2 Fermentation and Membrane-Bound Dehydrogenases Acetic acid fermentation is carried out by sequential oxidations of ethanol to acetic acid via acetaldehyde. The membrane-bound, pyrroloquinoline quinone (PQQ)- dependent alcohol dehydrogenase (ADH) and membrane-bound aldehyde dehydro- genase (ALDH) constitute the ethanol-oxidizing respiratory chain on the outer surface of the cytoplasmic membrane of acetic acid bacteria: Komagataeibacter, Acetobacter, and Gluconobacter (Thurner et al. 1997; Yakushi and Matsushita 2010; Adachi et al. 1980). Unfortunately, it was long misunderstood that these oxidation reactions are mediated by cytoplasmic NAD+- or NADP+-dependent dehydrogenases. However, explanations for acetic acid fermentation were revised in the textbook as the current understanding in 2003 (Madigan et al. 2003). Gluconate fermentation is carried out by a single oxidation of D-glucose to produce glucono-δ-lactone, which is converted to D-gluconate spontaneously or with membrane-bound gluconolactonase. 2-Ketogluconate and 5-ketogluconate fermentations are carried out by a single oxidation in position C2 or C5 of D-gluconate, respectively. 2-Ketogluconate (2KGA) is further oxidized at position C5 to produce 2,5-diketogluconate. 13.3 Membrane-Bound Dehydrogenases: An Overview We take a quick look on the series of membrane-bound dehydrogenase of acetic acid bacteria. We try to categorize them into five groups, that is, quinoprotein– cytochrome complex, molybdoprotein-cytochrome complex, flavoprotein– cytochrome complex, membrane-bound quinoprotein, and others, in terms of their primary structure. 13.4 Quinoprotein–Cytochrome Complex ADH is an ethanol:ubiquinone oxidoreductase that catalyzes oxidation of ethanol to produce acetaldehyde coupling with reduction of membranous ubiquinone (EC 1.1.5.5). Because the reaction by ADH is carried out in the periplasmic side of the membrane, ADH itself does not produce a proton gradient across the membrane. The enzymatic reaction of ADH was clearly demonstrated by the reconstitution experiments of ethanol-oxidizing respiratory chain in the proteoliposomes consisting of ADH, ubiquinone, and the terminal ubiquinol oxi- dase (Matsushita et al. 1992). ADH is a peripheral membrane protein localizing on the periplasmic surface of the cytoplasmic membrane without a predictable trans- membrane segment. Depending on the bacterial species, ADH consists of at least two subunits: the dehydrogenase subunit, having one molecule each of PQQ and 278 O. Adachi and T. Yakushi Quinoprotein Molybdoprotein Flavoprotein Acetaldehyde Acetic D- 2-Keto-D- acid Gluconate gluconate Ethanol Acetaldehyde MCD FAD PQQ III I I I II III II c Fe-S III II Cyt. c Cyt. c Cyt. c Periplasm Cytoplasmic QQH QQH2 2 QQH2 membrane Cytoplasm Fig. 13.2 Cartoon for three types of dehydrogenase–cytochrome complex: predicted structures of ADH, ALDH, and GADH. Although the dehydrogenase (large) and small subunits (shown as I and III, respectively) are not similar to one another, the cytochrome subunit (II) shows significant homology. See Chap. 7 by Matsushita and Matsutani for detailed phylogenetic analysis and discussion heme C, and a cytochrome subunit having three hemes C (Fig. 13.2) (Adachi et al. 1978; Tayama et al. 1989). The cytochrome subunit is responsible for reduction of ubiquinone (Matsushita et al. 1996). In the Acetobacter and Gluconobacter enzymes, an additional small subunit seemingly having no pros- thetic group associates with the ADH complex (Kondo et al. 1995). The adhAB genes for the large and cytochrome subunits constitute an operon, but the gene for the small subunit is mono-cistronic, apart from the adhAB operon. After protein synthesis on the ribosome in the cytosol, all three subunits are transported to the periplasmic space via the Sec protein translocation system, which is a general protein secretion system in gram-negative bacteria. In the periplasmic space, PQQ and heme C are incorporated into the transported proteins along with the protein folding, because the Sec system translocates proteins
Recommended publications
  • Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways
    biology Review Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways Antonin Ginguay 1,2, Luc Cynober 1,2,*, Emmanuel Curis 3,4,5,6 and Ioannis Nicolis 3,7 1 Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France; [email protected] 2 Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France 3 Laboratoire de biomathématiques, plateau iB2, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France; [email protected] (E.C.); [email protected] (I.N.) 4 UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France 5 UMR 1144, Université Paris Descartes, 75006 Paris, France 6 Service de biostatistiques et d’informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France 7 EA 4064 “Épidémiologie environnementale: Impact sanitaire des pollutions”, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France * Correspondence: [email protected]; Tel.: +33-158-411-599 Academic Editors: Arthur J.L. Cooper and Thomas M. Jeitner Received: 26 October 2016; Accepted: 24 February 2017; Published: 6 March 2017 Abstract: Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products.
    [Show full text]
  • |I|||||IIIHIII US005541.108A United States Patent (19) 11 Patent Number: 5,541,108 Fujiwara Et Al
    |I|||||IIIHIII US005541.108A United States Patent (19) 11 Patent Number: 5,541,108 Fujiwara et al. (45) Date of Patent: Jul. 30, 1996 54 GLUCONOBACTER OXYDANS STRAINS 5,082,785 l/1992. Manning et al. .................. 435/252.32 75 Inventors: Akiko Fujiwara, Kamakura; Teruhide FOREIGN PATENT DOCUMENTS Sugisawa; Masako Shinjoh, both of 994119 9/1963 United Kingdom................... 435/138 Yokohama; Yutaka Setoguchi; Tatsuo Hoshino, both of Kamakura, all of OTHER PUBLICATIONS Japan Stanbury et al. Principles of fermentation Technology, 1984, Pergamon Press. 73 Assignee: Hoffmann-La Roche Inc., Nutley, N.J. ATCC Catalogue of Bacteria, 1989, p. 106. Tsukada et al, Biotechnology and Bioengineering, vol 14, 21 Appl. No. 266,998 1972 pp. 799-810, John Wiley & Sons, Inc. Makover, et al., Biotechnology and Bioengineering XVII, 22 Filed: Jun. 28, 1994 pp. 1485-1514 (1975). Related U.S. Application Data Isono, et al. Agr. Biol. Chem, 35 No. 4 pp. 424–431 (1968). Okazaki, et al, Agr. Biol. Chem 32 No. 10 pp. 1250-1255 63 Continuation of Ser. No. 183,924, Jan. 18, 1994, abandoned, (1968). which is a continuation of Ser. No. 16,478, Feb. 10, 1993, Martin etal, Eur. S. Appl. Microbiology3, pp. 91-95 (1976). abandoned, which is a continuation of Ser. No. 517,972, Apr. Acta Microbologica Sinica 20 (3):246-251 (1980) (Abstract 30, 1990, abandoned, which is a continuation of Ser. No. only). 899,586, Aug. 25, 1986, abandoned. Acta Microbiologica Sinica 21 (2): 185-191- (1981) 30 Foreign Application Priority Data (Abstract only). Aug. 28, 1985 GB United Kingdom ................... 852359 Primary Examiner Irene Marx Jul.
    [Show full text]
  • Quinic Acid-Mediated Induction of Hypovirulence and a Hypovirulence-Associated Double-Stranded RNA in Rhizoctonia Solani Chunyu Liu
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 8-2001 Quinic Acid-Mediated Induction of Hypovirulence and a Hypovirulence-Associated Double-Stranded RNA in Rhizoctonia Solani Chunyu Liu Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation Liu, Chunyu, "Quinic Acid-Mediated Induction of Hypovirulence and a Hypovirulence-Associated Double-Stranded RNA in Rhizoctonia Solani" (2001). Electronic Theses and Dissertations. 332. http://digitalcommons.library.umaine.edu/etd/332 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. QUlNlC ACID-MEDIATED INDUCTION OF HYPOVIRULENCE AND A HY POVlRULENCE-ASSOCIATED DOUBLESTRANDED RNA IN RHIZOCTONIA SOLANI BY Chunyu Liu B.S. Wuhan University, 1989 MS. Wuhan University. 1992 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Biochemistry and Molecular Biology) The Graduate School The Universrty of Maine August, 2001 Advisory Committee: Stellos Tavantzis, Professor of Plant Pathology, Advisor Seanna Annis, Assistant Professor of Mycology Robert Cashon, Assistant Professor of Biochemistry, Molecular Biology Robert Gundersen, Associate Professor of Biochemistry, Molecular Biology John Singer, Professor of Microbiology QUlNlC ACID-MEDIATED INDUCTION OF HYPOVIRULENCE AND A HYPOVIRULENCE-ASSOCIATED DOUBLE-STRANDED RNA (DSRNA) IN RHIZOCTONIA SOLANI By Chunyu Liu Thesis Advisor: Dr. Stellos Tavantzis An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Biochemistry and Molecular Biology) August, 2001 This study is a part of a project focused on the relationship between dsRNA and hypovirulence in R.
    [Show full text]
  • Microbial Degradation of the Morphine Alkaloids Purification and Characterization of Morphine Dehydrogenase from Pseudomonas Putida M10
    Biochem. J. (1991) 274, 875-880 (Printed in Great Britain) 875 Microbial degradation of the morphine alkaloids Purification and characterization of morphine dehydrogenase from Pseudomonas putida M10 Neil C. BRUCE,* Clare J. WILMOT, Keith N. JORDAN, Lauren D. Gray STEPHENS and Christopher R. LOWE Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, U.K. The NADP+-dependent morphine dehydrogenase that catalyses the oxidation of morphine to morphinone was detected in glucose-grown cells of Pseudomonas putida M 10. A rapid and reliable purification procedure involving two consecutive affinity chromatography steps on immobilized dyes was developed for purifying the enzyme 1216-fold to electrophoretic homogeneity from P. putida M 10. Morphine dehydrogenase was found to be a monomer of Mr 32000 and highly specific with regard to substrates, oxidizing only the C-6 hydroxy group of morphine and codeine. The pH optimum of morphine dehydrogenase was 9.5, and at pH 6.5 in the presence of NADPH the enzyme catalyses the reduction of codeinone to codeine. The Km values for morphine and codeine were 0.46 mm and 0.044 mm respectively. The enzyme was inhibited by thiol-blocking reagents and the metal-complexing reagents 1, 10-phenanthroline and 2,2'-dipyridyl, suggesting that a metal centre may be necessary for activity of the enzyme. INTRODUCTION EXPERIMENTAL The morphine alkaloids have attracted considerable attention Materials owing to their analgaesic properties and, consequently, much Mimetic Orange 3 A6XL and Mimetic Red A6XL were effort in the past has been directed at the production of new obtained from Affinity Chromatography Ltd., Freeport, morphine alkaloids by micro-organisms (lizuka et al., 1960, Ballasalla, Isle of Man, U.K.
    [Show full text]
  • Downloaded As a Text File, Is Completely Dynamic
    BMC Bioinformatics BioMed Central Database Open Access ORENZA: a web resource for studying ORphan ENZyme activities Olivier Lespinet and Bernard Labedan* Address: Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France Email: Olivier Lespinet - [email protected]; Bernard Labedan* - [email protected] * Corresponding author Published: 06 October 2006 Received: 25 July 2006 Accepted: 06 October 2006 BMC Bioinformatics 2006, 7:436 doi:10.1186/1471-2105-7-436 This article is available from: http://www.biomedcentral.com/1471-2105/7/436 © 2006 Lespinet and Labedan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. Description: We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities.
    [Show full text]
  • Solarbio Catalogue with PRICES
    CAS Name Grade Purity Biochemical Reagent Biochemical Reagent 75621-03-3 C8390-1 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS Ultra Pure Grade 1g 75621-03-3 C8390-5 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS 5g 57-09-0 C8440-25 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 25g 57-09-0 C8440-100 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 100g 57-09-0 C8440-500 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 500g E1170-100 0.5M EDTA (PH8.0) 100ml E1170-500 0.5M EDTA (PH8.0) 500ml 6381-92-6 E8030-100 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 100g 6381-92-6 E8030-500 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 500g 6381-92-6 E8030-1000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 1kg 6381-92-6 E8030-5000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 5kg 60-00-4 E8040-100 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 100g 60-00-4 E8040-500 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 500g 60-00-4 E8040-1000 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 1kg 67-42-5 E8050-5 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 5g 67-42-5 E8050-10 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 10g 50-01-1 G8070-100 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 100g 50-01-1 G8070-500 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 500g 56-81-5
    [Show full text]
  • Fungal Pathogenesis in Humans the Growing Threat
    Fungal Pathogenesis in Humans The Growing Threat Edited by Fernando Leal Printed Edition of the Special Issue Published in Genes www.mdpi.com/journal/genes Fungal Pathogenesis in Humans Fungal Pathogenesis in Humans The Growing Threat Special Issue Editor Fernando Leal MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Fernando Leal Instituto de Biolog´ıa Funcional y Genomica/Universidad´ de Salamanca Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Genes (ISSN 2073-4425) from 2018 to 2019 (available at: https://www.mdpi.com/journal/genes/special issues/Fungal Pathogenesis Humans Growing Threat). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-900-5 (Pbk) ISBN 978-3-03897-901-2 (PDF) Cover image courtesy of Fernando Leal. c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Fernando Leal Special Issue: Fungal Pathogenesis in Humans: The Growing Threat Reprinted from: Genes 2019, 10, 136, doi:10.3390/genes10020136 ..................
    [Show full text]
  • STRUCTURAL STUDIES and EVALUATION of INHIBITORS of Mycobacterium
    STRUCTURAL STUDIES AND EVALUATION OF INHIBITORS OF Mycobacterium tuberculosis H37Rv SHIKIMATE DEHYDROGENASE (MtSDH) A Thesis by MALLIKARJUN LALGONDAR Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, James C. Sacchettini Committee Members, David P. Barondeau Mary Bryk Head of Department, Gregory D. Reinhart May 2014 Major Subject: Biochemistry Copyright 2014 Mallikarjun Lalgondar ABSTRACT Shikimate dehydrogenase (SDH) is a reversible enzyme catalyzing the reduction of 3-dehydroshikimate (3DHS) to shikimate (SKM) utilizing NADPH cofactor in the shikimate pathway, a central route for biosynthesis of aromatic amino acids, folates and ubiquinones in microogransims, plants and parasites, which renders the enzymes of this essential pathway as attractive targets for developing antimicrobials, herbicides and antiparasitic agents. In this study, the crystal structure of Mycobacterium tuberculosis SDH (MtSDH) was determined in the apo-form and in complex with a ligand, SKM. The overall structure of MtSDH contains two structural domains with α/β architecture. The N-terminal substrate binding domain and C-terminal cofactor binding domain are interconnected by two helices forming an active site groove where catalysis occurs. In MtSDH, a series of helices connecting β10 and β11 strands replace a long loop found in other known SDH structures and this region may undergo structural changes upon cofactor binding. NADP+ was modeled reliably in the cofactor binding site to gain insight into specific interactions. The analysis reveals that NADP(H) binds in anti conformation and in addition to residues in “basic patch”, Ser125 within the glycine rich loop may interact with the 2'-phosphate of adenine ribose and form a novel cofactor binding microenvironment in SDH family of enzymes.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical
    [Show full text]
  • Proof of De Novo Synthesis of the Qa Enzymes of Neurospora Crassa During Induction
    Proc. Nati. Acad. Sci. USA Vol. 74, No. 10, pp. 4256-4260, October 1977 Biochemistry Proof of de novo synthesis of the qa enzymes of Neurospora crassa during induction [catabolic dehydroquinase (5-dehydroquinate dehydratase)/quinate dehydrogenase/qa gene cluster/eukaryote gene regulation] WILLIAM R. REINERT AND NORMAN H. GILES Program in Genetics, Department of Zoology, University of Georgia, Athens, Georgia 30602 Contributed by Norman H. Giles, July 22, 1977 ABSTRACT In Neurospora crassa three inducible enzymes There is strong genetic evidence that the qa-1 gene encodes a are necessary to catabolize quinic acid to protocatechuic acid. regulatory protein which, in the presence of quinic acid, exerts The three genes encoding these enzymes are tightly linked on chromosome VII near methionine-7 (me-7). This qa cluster in- positive control over the synthesis of the enzymes encoded in cludes a fourth gene, qa-1, which encodes a regulatory protein the three adjacent structural genes (6, 10). The appearance of apparently exerting positive control over transcription of the enzyme activity is very specifically regulated. In the presence other three qa genes. However, an alternative hypothesis is that of a preferred carbon source, e.g., sucrose, the activities of all the qa-I protein simply activates preformed polypeptides de- three enzymes are quite low. Quinate as a sole carbon source rived from the three structural genes. The use of density labeling causes a coordinate induction of all three enzymes (9). This with D20 demonstrated conclusively that the qa enzymes are synthesized de novo only during induction on quinic acid. Na- increase in enzyme activity can be inhibited by the simulta- tive catabolic dehydroquinase (5-dehydroquinate dehydratase; neous addition of cycloheximide to the medium (ref.
    [Show full text]
  • Elucidating the Role of Shikimate Dehydrogenase in Controlling The
    Habashi et al. BMC Plant Biology (2019) 19:476 https://doi.org/10.1186/s12870-019-2042-1 RESEARCH ARTICLE Open Access Elucidating the role of shikimate dehydrogenase in controlling the production of anthocyanins and hydrolysable tannins in the outer peels of pomegranate Rida Habashi1,2, Yael Hacham1,2, Rohit Dhakarey1, Ifat Matityahu1, Doron Holland3, Li Tian4 and Rachel Amir1,2* Abstract Background: The outer peels of pomegranate (Punica granatum L.) possess two groups of polyphenols that have health beneficial properties: anthocyanins (ATs, which also affect peel color); and hydrolysable tannins (HTs). Their biosynthesis intersects at 3-dehydroshikimate (3-DHS) in the shikimate pathway by the activity of shikimate dehydrogenase (SDH), which converts 3-DHS to shikimate (providing the precursor for AT biosynthesis) or to gallic acid (the precursor for HTs biosynthesis) using NADPH or NADP+ as a cofactor. The aim of this study is to gain more knowledge about the factors that regulate the levels of HTs and ATs, and the role of SDH. Results: The results have shown that the levels of ATs and HTs are negatively correlated in the outer fruit peels of 33 pomegranate accessions, in the outer peels of two fruits exposed to sunlight, and in those covered by paper bags. When calli obtained from the outer fruit peel were subjected to light/dark treatment and osmotic stresses (imposed by different sucrose concentrations), it was shown that light with high sucrose promotes the synthesis of ATs, while dark at the same sucrose concentration promotes the synthesis of HTs. To verify the role of SDH, six PgSDHs (PgSDH1, PgSDH3–1,2, PgSDH3a-1,2 and PgSDH4) were identified in pomegranate.
    [Show full text]
  • Expression, Purification and Characterization of a Quinoprotein L-Sorbose Dehydrogenase from Ketogulonicigenium Vulgare Y25
    Vol. 7(24), pp. 3117-3124, 11 June, 2013 DOI: 10.5897/AJMR12.2280 ISSN 1996-0808 ©2013 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Expression, purification and characterization of a quinoprotein L-sorbose dehydrogenase from Ketogulonicigenium vulgare Y25 Xionghua Xiong1#, Xin Ge1#, Yan Zhao2#, Xiaodong Han3, Jianhua Wang1 and Weicai Zhang1* 1Laboratory of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing, China. 2Central Laboratory, The first Affiliated Hospital of Xiamen University, Xiamen 361003, China. 3College of Life Sciences, Nankai University, Tianjin 300071, China. Accepted 10 May, 2013 It is well known that Ketogulonicigenium vulgare Y25 could effectively oxidize L-sorbose to 2-keto-L- gulonic acid (2KGA), an industrial precursor of vitamin C. There in, L-sorbose dehydrogenase is one of the key enzymes responsible for the production of 2KGA. From this organism, the coding region of sdh gene was cloned into pET22b plasmid and its transcription product was overexpressed. This procedure allowed purification of L-sorbose dehydrogenase and production of polyclonal antibodies. In Western blot assays, the antibodies gave a positive reaction against bacteria protein extract and purified L- sorbose dehydrogenase. The molecular mass of the enzyme was 60532 Da, and the N-terminal amino acid sequence was determined to be QTAIT. The Native-PAGE and resting-cell reaction assay showed that purified L-sorbose dehydrogenase could convert L-sorbose to 2KGA, and PQQ was found to be indispensable for its activity as prosthetic group. The enzyme showed broad substrates specificity and the Km value for L-sorbose and 1-propanol was 21.9 mM and 0.13 mM, respectively.
    [Show full text]