Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways

Total Page:16

File Type:pdf, Size:1020Kb

Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways biology Review Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways Antonin Ginguay 1,2, Luc Cynober 1,2,*, Emmanuel Curis 3,4,5,6 and Ioannis Nicolis 3,7 1 Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France; [email protected] 2 Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France 3 Laboratoire de biomathématiques, plateau iB2, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France; [email protected] (E.C.); [email protected] (I.N.) 4 UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France 5 UMR 1144, Université Paris Descartes, 75006 Paris, France 6 Service de biostatistiques et d’informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France 7 EA 4064 “Épidémiologie environnementale: Impact sanitaire des pollutions”, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France * Correspondence: [email protected]; Tel.: +33-158-411-599 Academic Editors: Arthur J.L. Cooper and Thomas M. Jeitner Received: 26 October 2016; Accepted: 24 February 2017; Published: 6 March 2017 Abstract: Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme. Keywords: ornithine aminotransferase; glutamate; ornithine; gyrate atrophy 1. Introduction Ornithine δ-aminotransferase (E.C. 2.6.1.13; OAT), or ornithine δ-transaminase, is an enzyme found in almost all eukaryotic organisms, from protozoans to humans, and from fungi to higher plants. It is strongly conserved among these organisms. In humans, OAT deficiency causes gyrate atrophy, a serious inherited disease. This suggests that OAT plays an important role in metabolism. In most situations, it uses L-ornithine (Orn) as a substrate, with L-glutamate (Glu) as an end product; OAT therefore belongs to what is termed the “glutamate crossway” [1]. At first sight, the importance of OAT may appear to be related to the roles of Glu in metabolism (bioenergetics, nitrogen flux, acid-base homeostasis), like the major enzymes involved in Glu metabolism (e.g., aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), and glutamate dehydrogenase (GDH)). This paper summarizes current knowledge on OAT, in particular in the light of recent advances in large scale analysis, and of clinical experience, and argues that viewing the role of OAT as limited to glutamate-related energy metabolism, especially in mammals, probably misses other important functions of OAT. This is evident from an examination of the pathways relating glutamate and ornithine Biology 2017, 6, 18; doi:10.3390/biology6010018 www.mdpi.com/journal/biology Biology 2017, 6, 1 2 of 40 BiologyornithineBiology 20172017 , 6,to,6 1, 18several key molecules in cell metabolism and “fate” regulation (Figure 1); 2these 2of of 40 38 functions are briefly summarized here—a detailed description lies outside the scope of this paper, ornithinebut interested to several readers key can molecules find information in cell metabolism in recent andreviews “fate” [2 –regulation5]. To present (Figure the 1)state; these of to several key molecules in cell metabolism and “fate” regulation (Figure1); these functions are briefly functionsknowledge are on briefly OAT, summarizedwe will first describe here—a thedetail physiced descriptional, chemical lies and outside biological the characteristicsscope of this paper, of the summarized here—a detailed description lies outside the scope of this paper, but interested readers butOAT interested reaction, andreaders then gocan on find to consider information the involvement in recent reviewsof OAT in[2 pathological–5]. To present states the or diseases.state of can find information in recent reviews [2–5]. To present the state of knowledge on OAT, we will first knowledgeThis systematic on OAT overview, we will will first alsodescribe highlight the physic needals, chemicalfor further and studies biological of thischaracteristics enzyme and of theits describe the physical, chemical and biological characteristics of the OAT reaction, and then go on to OATregulation. reaction , and then go on to consider the involvement of OAT in pathological states or diseases. Thisconsider systematic the involvement overview ofwill OAT also in pathologicalhighlight need statess for or diseases.further studies This systematic of this overviewenzyme and will alsoits regulation.highlight needs for further studies of this enzyme and its regulation. Figure 1. End products of the reaction mediated by ornithine (Orn) aminotransferase (OAT) and theirFigure functions 1. End (in products italics) ofGABA: the reaction γ-aminobutyric mediated acid, byornithine Glu: glutamate, (Orn)aminotransferase Pro: proline, Arg: (OAT) arginine, and FigureCit:their citrulline, functions1. End Put:products (in putrescine, italics) of GABA:the NO: reaction γnitric-aminobutyric mediated oxide. by acid, ornithine Glu: glutamate, (Orn) aminotransferase Pro: proline, Arg: (OAT) arginine, and theirCit: functions citrulline, Put:(in italic putrescine,s) GABA: NO: γ-aminobutyric nitric oxide. acid, Glu: glutamate, Pro: proline, Arg: arginine, 1.1. PhysicCit: citrulline,al And Chemical Put: putrescine, Aspects NO: of the nitric Oat oxide-Mediated. Reaction 1.1. Physical And Chemical Aspects of the Oat-Mediated Reaction 1.11.1.1. Physic. Reactional And Chemical Aspects of the Oat-Mediated Reaction 1.1.1. Reaction 1.1.1. OATReaction catalyzes the conversion of Orn into glutamyl-5-semi-aldehyde (GSA) and vice versa, using OATaKG and catalyzes Glu as the cosubstrates conversion (Figure of Orn 2). into This glutamyl-5-semi-aldehyde reaction has an apparent equilibrium (GSA) and constant, vice versa, K [Glu][GSA] =using OAT aKG ,catalyzes that and favor Glu the ass the cosubstratesconversion degradation of (Figure ofOrn Orn: into2). experimentally, This glutamyl reaction-5-semi has K lies an-aldehydeapparent between (GSA) equilibrium50 and and 70 viceat constant,25 versa°C [6], using[Orn[ ]Glua[aKGKG][GSA] and] Glu as cosubstrates (Figure 2). This reaction has an apparent equilibrium constant,◦ K K = [Orn][aKG] , that favors the degradation of Orn: experimentally, K lies between 50 and 70 at 25 C[6] and[Glu pH][GSA 7.] 1. Even so, when Orn is at a very low concentration, or GSA in large excess, the reaction =and pH 7.1., that Even favor so,s the when degradation Orn is ata of very Orn: low experimentally, concentration, K orlies GSA between in large 50 and excess, 70 at the 25 reaction °C [6] can[Orn proceed][aKG] towards Orn synthesis, which has indeed been demonstrated in vitro by Strecker et al. can proceed towards Orn synthesis, which has indeed been demonstrated in vitro by Strecker et al. [6]. and[6]. OATpH 7. can1. Even thus so,catalyze when the Orn reaction is at a invery either low direction, concentration, dependi or ngGSA on inthe large relative excess, amounts the reaction of each OAT can thus catalyze the reaction in either direction, depending on the relative amounts of each cansubstrate proceed present, towards and Orn their synthesis use by ,subsequent which has indeedenzymes. been This demonstrated observation isin thevitro first by indication Strecker et that al. substrate present, and their use by subsequent enzymes. This observation is the first indication that [6]OAT. OAT stands can atthus the catalyze crossroad thes ofreaction several in metabolic either direction, pathways. dependi ng on the relative amounts of each substrateOAT stands present, at the and crossroads their use of by several subsequent metabolic enzymes. pathways. This observation is the first indication that OAT stands at the crossroads of several metabolic pathways. Figure 2. Overview of the reaction catalyzed by OAT. Figure 2. Overview of the reaction catalyzed by OAT. 1.1.2. A Key Feature: Spontaneous Cyclization of GSA 1.1.2. A Key Feature: SpontaneousFigure 2. Overview Cyclization of the of GSAreaction catalyzed by OAT. Since GSA contains both an aldehyde and an amine function, internal imination can occur (Figure3), leading to a chemical equilibrium with the cyclic form ( S)-D1-pyrroline-5-carboxylate 1.1.2. A Key Feature: Spontaneous Cyclization of GSA Biology 2017, 6, 1 3 of 40 Since GSA contains both an aldehyde and an amine function, internal imination can occur (Figure 3), leading to a chemical equilibrium with the cyclic form (S)-Δ1-pyrroline-5-carboxylate (P5C). In addition, the aldehyde can react with water to give a GSA hydrated form, as shown in Figure 3. It has been suggested since the 1930s that the cyclic forms of these types of compounds are Biologyfavored2017 for, 6, 18entropic reasons, as is often the case for similar reactions (almost all oses), at least3 of 38at physiological
Recommended publications
  • Aspartate Aminotransferase (AST, GOT), Human Liver
    BioVision 05/18 For research use only Aspartate Aminotransferase (AST, GOT), Human Liver CATALOG NO: P1299-100 1 units RELATED PRODUCTS: ALTERNATE NAMES: Aspartate Transaminase, Glutamate Oxaloacetate, AST, GOT, Aspartate Aminotransferase (AST) (Mouse) ELISA Kit (Cat. No. E4320) sGOT, AspAT, ASAT, serum glutamic oxaloacetic transaminase, AAT Aspartate Aminotransferase (AST) (Human) ELISA Kit (Cat. No. E4319) Aspartate Aminotransferase (AST) (Rat) ELISA Kit (Cat. No. E4321) SOURCE: Human Liver Aspartate Aminotransferase (AST or SGOT) Activity Colorimetric Assay Kit (Cat. PURITY: Purified No. K753) Anti-GOT2 Antibody (cat. No. A1273) MOL. WEIGHT: ~92 kDa Anti-GOT1 Antibody (Cat. No. A1272) FORM: Lyophilized GOT2, human recombinant (Cat. No. 7809) GOT1, human recombinant (Cat. No. 7808) STORAGE CONDITIONS: Store at -20°C. Avoid repeated freezing and thawing cycles. BIOLOGICAL ACTIVITY: ≥ 1 U/mg (Dimension® Clinical Chemistry System) UNIT DEFINITATION: One unit will catalyze the transamination of one micromole of L- aspartate to alpha-ketoglutarate forming L-glutamate and oxaloacetate per minute at 37°C and pH 7.8.Measured at 340 nm as one equimolar amount of NAD produced by a coupled reaction. RECONSTITUTION: > 1 mg/mL in tris buffered saline, 1% BSA, pH 8.0. AST/SGOT is found in many tissues throughout the body, including DESCRIPTION: the liver, heart, muscles, kidney, and brain. If any of these organs or tissues is affected by disease or injury, AST is released into the bloodstream. This means that AST isn't as specific an indicator of liver damage as ALT (also known as alanine aminotransferase, another type of enzyme found almost entirely in the liver). The ratio of AST and ALT levels are commonly used as biomarkers for liver health.
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Multiomics Integration Elucidates Metabolic Modulators of Drug
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.07.425721; this version posted January 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Multiomics Integration Elucidates Metabolic Modulators of Drug Resistance in Lymphoma Choueiry, Fouad1*, Singh, Satishkumar2,3*, Sun, Xiaowei1, Zhang, Shiqi1, Sircar, Anuvrat2,3 ,Hart, Amber2, Alinari, Lapo2,3, Narendranath Epperla2,3, Baiocchi, Robert2,3, Zhu, Jiangjiang1,# and Sehgal, Lalit2,3# 1 Department of Human Sciences, The Ohio State University, Columbus, OH 43210; 2 Division of Hematology, Department of Internal Medicine, The Ohio State, 3 James Comprehensive Cancer Center, The Ohio State University Columbus, OH 43210. *Equal contribution, #Corresponding authors Abstract Background Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL). B-cell NHLs rely on Bruton’s tyrosine kinase (BTK) mediated B-cell receptor signaling for survival and disease progression. However, they are often resistant to BTK inhibitors or soon acquire resistance after drug exposure resulting in the drug tolerant form. The drug tolerant clones proliferate faster, have increased metabolic activity, and shift to oxidative phosphorylation; however, how this metabolic programming occurs in the drug resistant tumor is poorly understood. Methods In this study, we explored for the first time the metabolic regulators of ibrutinib-resistant activated B-cell (ABC) DLBCL using a ‘multi-omics’ analysis that integrated metabolomics (using high-resolution mass spectrometry) and transcriptomic (gene expression analysis). Overlay of the unbiased statistical analyses, genetic perturbation and pharmaceutical inhibition, were further used to identify the key players that contribute to the metabolic reprograming of the drug resistant clone.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Supporting Information
    Supporting Information Edgar et al. 10.1073/pnas.1601895113 SI Methods (Actimetrics), and recordings were analyzed using LumiCycle Mice. Sample size was determined using the resource equation: Data Analysis software (Actimetrics). E (degrees of freedom in ANOVA) = (total number of exper- – Cell Cycle Analysis of Confluent Cell Monolayers. NIH 3T3, primary imental animals) (number of experimental groups), with −/− sample size adhering to the condition 10 < E < 20. For com- WT, and Bmal1 fibroblasts were sequentially transduced − − parison of MuHV-4 and HSV-1 infection in WT vs. Bmal1 / with lentiviral fluorescent ubiquitin-based cell cycle indicators mice at ZT7 (Fig. 2), the investigator did not know the genotype (FUCCI) mCherry::Cdt1 and amCyan::Geminin reporters (32). of the animals when conducting infections, bioluminescence Dual reporter-positive cells were selected by FACS (Influx Cell imaging, and quantification. For bioluminescence imaging, Sorter; BD Biosciences) and seeded onto 35-mm dishes for mice were injected intraperitoneally with endotoxin-free lucif- subsequent analysis. To confirm that expression of mCherry:: Cdt1 and amCyan::Geminin correspond to G1 (2n DNA con- erin (Promega E6552) using 2 mg total per mouse. Following < ≤ anesthesia with isofluorane, they were scanned with an IVIS tent) and S/G2 (2 n 4 DNA content) cell cycle phases, Lumina (Caliper Life Sciences), 15 min after luciferin admin- respectively, cells were stained with DNA dye DRAQ5 (abcam) and analyzed by flow cytometry (LSR-Fortessa; BD Biosci- istration. Signal intensity was quantified using Living Image ences). To examine dynamics of replicative activity under ex- software (Caliper Life Sciences), obtaining maximum radiance perimental confluent conditions, synchronized FUCCI reporter for designated regions of interest (photons per second per − − − monolayers were observed by time-lapse live cell imaging over square centimeter per Steradian: photons·s 1·cm 2·sr 1), relative 3 d (Nikon Eclipse Ti-E inverted epifluorescent microscope).
    [Show full text]
  • IL21R Expressing CD14+CD16+ Monocytes Expand in Multiple
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX IL21R expressing CD14 +CD16 + monocytes expand in multiple myeloma patients leading to increased osteoclasts Marina Bolzoni, 1 Domenica Ronchetti, 2,3 Paola Storti, 1,4 Gaetano Donofrio, 5 Valentina Marchica, 1,4 Federica Costa, 1 Luca Agnelli, 2,3 Denise Toscani, 1 Rosanna Vescovini, 1 Katia Todoerti, 6 Sabrina Bonomini, 7 Gabriella Sammarelli, 1,7 Andrea Vecchi, 8 Daniela Guasco, 1 Fabrizio Accardi, 1,7 Benedetta Dalla Palma, 1,7 Barbara Gamberi, 9 Carlo Ferrari, 8 Antonino Neri, 2,3 Franco Aversa 1,4,7 and Nicola Giuliani 1,4,7 1Myeloma Unit, Dept. of Medicine and Surgery, University of Parma; 2Dept. of Oncology and Hemato-Oncology, University of Milan; 3Hematology Unit, “Fondazione IRCCS Ca’ Granda”, Ospedale Maggiore Policlinico, Milan; 4CoreLab, University Hospital of Parma; 5Dept. of Medical-Veterinary Science, University of Parma; 6Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture; 7Hematology and BMT Center, University Hospital of Parma; 8Infectious Disease Unit, University Hospital of Parma and 9“Dip. Oncologico e Tecnologie Avanzate”, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2016.153841 Received: August 5, 2016. Accepted: December 23, 2016. Pre-published: January 5, 2017. Correspondence: [email protected] SUPPLEMENTAL METHODS Immunophenotype of BM CD14+ in patients with monoclonal gammopathies. Briefly, 100 μl of total BM aspirate was incubated in the dark with anti-human HLA-DR-PE (clone L243; BD), anti-human CD14-PerCP-Cy 5.5, anti-human CD16-PE-Cy7 (clone B73.1; BD) and anti-human CD45-APC-H 7 (clone 2D1; BD) for 20 min.
    [Show full text]
  • |I|||||IIIHIII US005541.108A United States Patent (19) 11 Patent Number: 5,541,108 Fujiwara Et Al
    |I|||||IIIHIII US005541.108A United States Patent (19) 11 Patent Number: 5,541,108 Fujiwara et al. (45) Date of Patent: Jul. 30, 1996 54 GLUCONOBACTER OXYDANS STRAINS 5,082,785 l/1992. Manning et al. .................. 435/252.32 75 Inventors: Akiko Fujiwara, Kamakura; Teruhide FOREIGN PATENT DOCUMENTS Sugisawa; Masako Shinjoh, both of 994119 9/1963 United Kingdom................... 435/138 Yokohama; Yutaka Setoguchi; Tatsuo Hoshino, both of Kamakura, all of OTHER PUBLICATIONS Japan Stanbury et al. Principles of fermentation Technology, 1984, Pergamon Press. 73 Assignee: Hoffmann-La Roche Inc., Nutley, N.J. ATCC Catalogue of Bacteria, 1989, p. 106. Tsukada et al, Biotechnology and Bioengineering, vol 14, 21 Appl. No. 266,998 1972 pp. 799-810, John Wiley & Sons, Inc. Makover, et al., Biotechnology and Bioengineering XVII, 22 Filed: Jun. 28, 1994 pp. 1485-1514 (1975). Related U.S. Application Data Isono, et al. Agr. Biol. Chem, 35 No. 4 pp. 424–431 (1968). Okazaki, et al, Agr. Biol. Chem 32 No. 10 pp. 1250-1255 63 Continuation of Ser. No. 183,924, Jan. 18, 1994, abandoned, (1968). which is a continuation of Ser. No. 16,478, Feb. 10, 1993, Martin etal, Eur. S. Appl. Microbiology3, pp. 91-95 (1976). abandoned, which is a continuation of Ser. No. 517,972, Apr. Acta Microbologica Sinica 20 (3):246-251 (1980) (Abstract 30, 1990, abandoned, which is a continuation of Ser. No. only). 899,586, Aug. 25, 1986, abandoned. Acta Microbiologica Sinica 21 (2): 185-191- (1981) 30 Foreign Application Priority Data (Abstract only). Aug. 28, 1985 GB United Kingdom ................... 852359 Primary Examiner Irene Marx Jul.
    [Show full text]
  • Metabolomics Analysis Reveals Differential T-Cell Serine Metabolism As a Target in Autoimmunity
    Metabolomics Analysis Reveals Differential T-Cell Serine Metabolism as a Target in Autoimmunity Gabriela Andrejeva Jeffrey Rathmell lab Vanderbilt University Medical Center [email protected] 2018 UK Metabolism Symposium Monday, 30th July 2018 Outline 2 dUMP dTMP Betaine aldehyde Choline TYMS CHDH Folate Se-Adenosylselenomethionine S-Adenosyl-L-methionine Dihydropteroate Dihydrofolate Cob(II)alamin 10-Formyltetrahydrofolylpolyglutamate10-Formyltetrahydrofolyl Betaine L-glutamate MAT2B MAT1A DHFR MAT2A Tetrahydrofolyl-[Glu](n) Formate Poly-L-glutamate ALDH1L2 MTR 3-Phospho-D-glycerate BHMT2 ALDH1L1 BHMT FPGS S-Adenosyl-L-homocysteine MTHFD1L GGH PHGDH MTHFD1 ATIC AHCYL1 L-Methionine MTHFD2 10-Formyltetrahydrofolate L-Homocysteine MTFMT "N,N-Dimethylglycine" Tetrahydrofolate 3-Phosphonooxypyruvate PDPR AHCY 5-Methyltetrahydrofolate Selenohomocysteine MTHFR GART "5,10-Methylenetetrahydrofolate" "5,10-Methenyltetrahydrofolate" DMGDH SHMT2 PSAT1O-Phospho-4-hydroxy-L-threonine IL4I1 MTHFS Cystathionine AMT Sarcosine SARDH SHMT1 5-Formyltetrahydrofolate O-Phospho-L-serine CBS FTCD N-Formimino-L-glutamate PSPH 2-Oxo-3-hydroxy-4-phosphobutanoate NAGS GNMT NH3 L-Serine L-Pipecolate PIPOX 5-Formiminotetrahydrofolate PPIG L-Cystathionine Thiocysteine Glycine Background and hypothesis GCAT Oxaloacetate L-AlanineL-Glutamate CTH 2-Oxobutanoate L-2-Amino-3-oxobutanoic acid L-Cysteine AGXT Hydroxypyruvate SDS ANPEP 2-Aminoacrylate ALAS2 AGXT2 S-Aminomethyldihydrolipoylprotein GLDC L-Cystine ALAS1 CP GOT1 GPT GPT2 GOT2 GSS ADC CO2 5-Aminolevulinate
    [Show full text]
  • GOT2 Antibody Cat
    GOT2 Antibody Cat. No.: 25-873 GOT2 Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Antibody produced in rabbits immunized with a synthetic peptide corresponding a region IMMUNOGEN: of human GOT2. TESTED APPLICATIONS: ELISA, WB GOT2 antibody can be used for detection of GOT2 by ELISA at 1:312500. GOT2 antibody APPLICATIONS: can be used for detection of GOT2 by western blot at 1 μg/mL, and HRP conjugated secondary antibody should be diluted 1:50,000 - 100,000. POSITIVE CONTROL: 1) 293T Cell Lysate PREDICTED MOLECULAR 45 kDa WEIGHT: Properties PURIFICATION: Antibody is purified by peptide affinity chromatography method. CLONALITY: Polyclonal CONJUGATE: Unconjugated PHYSICAL STATE: Liquid September 29, 2021 1 https://www.prosci-inc.com/got2-antibody-25-873.html Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% BUFFER: sucrose. CONCENTRATION: batch dependent For short periods of storage (days) store at 4˚C. For longer periods of storage, store GOT2 STORAGE CONDITIONS: antibody at -20˚C. As with any antibody avoid repeat freeze-thaw cycles. Additional Info OFFICIAL SYMBOL: GOT2 ALTERNATE NAMES: GOT2, FLJ40994, kat4, kativ, mitaat, KAT4, KATIV, mitAAT ACCESSION NO.: NP_002071 PROTEIN GI NO.: 73486658 GENE ID: 2806 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and inner-membrane mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the urea and tricarboxylic acid cycles. The two enzymes are homodimeric and show close homology.Glutamic- oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in BACKGROUND: cytoplasmic and inner-membrane mitochondrial forms, GOT1 and GOT2, respectively.
    [Show full text]
  • Solarbio Catalogue with PRICES
    CAS Name Grade Purity Biochemical Reagent Biochemical Reagent 75621-03-3 C8390-1 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS Ultra Pure Grade 1g 75621-03-3 C8390-5 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS 5g 57-09-0 C8440-25 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 25g 57-09-0 C8440-100 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 100g 57-09-0 C8440-500 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 500g E1170-100 0.5M EDTA (PH8.0) 100ml E1170-500 0.5M EDTA (PH8.0) 500ml 6381-92-6 E8030-100 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 100g 6381-92-6 E8030-500 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 500g 6381-92-6 E8030-1000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 1kg 6381-92-6 E8030-5000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 5kg 60-00-4 E8040-100 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 100g 60-00-4 E8040-500 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 500g 60-00-4 E8040-1000 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 1kg 67-42-5 E8050-5 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 5g 67-42-5 E8050-10 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 10g 50-01-1 G8070-100 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 100g 50-01-1 G8070-500 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 500g 56-81-5
    [Show full text]
  • Fungal Pathogenesis in Humans the Growing Threat
    Fungal Pathogenesis in Humans The Growing Threat Edited by Fernando Leal Printed Edition of the Special Issue Published in Genes www.mdpi.com/journal/genes Fungal Pathogenesis in Humans Fungal Pathogenesis in Humans The Growing Threat Special Issue Editor Fernando Leal MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Fernando Leal Instituto de Biolog´ıa Funcional y Genomica/Universidad´ de Salamanca Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Genes (ISSN 2073-4425) from 2018 to 2019 (available at: https://www.mdpi.com/journal/genes/special issues/Fungal Pathogenesis Humans Growing Threat). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-900-5 (Pbk) ISBN 978-3-03897-901-2 (PDF) Cover image courtesy of Fernando Leal. c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Fernando Leal Special Issue: Fungal Pathogenesis in Humans: The Growing Threat Reprinted from: Genes 2019, 10, 136, doi:10.3390/genes10020136 ..................
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]